Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Bunium persicum Seeds Extract in Combination with Vincristine Mediates Apoptosis in MCF-7 Cells through Regulation of Involved Genes and Proteins Expression

Author(s): Mohammad Rasoul Samandari-Bahraseman, Ahmad Ismaili, Saeed Esmaeili-Mahani*, Esmaeil Ebrahimie* and Evelin Loit

Volume 24, Issue 3, 2024

Published on: 30 November, 2023

Page: [213 - 223] Pages: 11

DOI: 10.2174/0118715206277444231124051035

Price: $65

conference banner
Abstract

Background: Bunium persicum seeds, a member of the Apiaceae family, have historically been consumed as part of the Iranian diet.

Objective: While many of this herb's biological properties have been fully investigated, there is currently no reliable information about its anticancer/cytotoxic properties.

Methods: Herein, we first determined the major bioactive compounds of B. persicum seed extract (BPSE) via GC-Mass analysis. We evaluated the cytotoxicity of the extract alone as well as in combination with vincristine (VCR), a commonly used chemotherapy drug, using MTT assays on two breast cancer cell lines, MCF-7 and MDA-MB-231, as well as a normal breast cancer cell line, MCF-10A. Moreover, these compounds were evaluated in vitro for their anticancer activity using ROS assays, Real-Time PCR, Western blots, flow cytometry, and cell cycle assays.

Results: As a result of our investigation, it was determined that the extract significantly reduced the viability of cancerous cells while remaining harmless to normal cells. The combination of BPSE and VCR also resulted in synergistic effects. BPSE and/or BPSE-VCR treatment increased the intracellular ROS of MCF-7 cells by over twofold. Moreover, the IC30 of BPSE (100 μg/ml) significantly increased the BAX/BCL-2 and P53 gene expression while reducing the expression of the MYC gene. Moreover, treated cells were arrested in the G2 phase of the cell cycle. The BPSE-VCR combination synergistically reduced the NF-κB and increased the Caspase-7 proteins’ expression. The percent of apoptosis in the cells treated with the extract, VCR, and their combination was 27, 11, and 50, respectively.

Conclusions: The present study demonstrated the anticancer activity of the BPSE and its potential for application in combination therapy with VCR.

Keywords: Cancer, chemotherapy, herbal extract, combination therapy, vincristine, apoptosis.

Graphical Abstract
[1]
Amethiya, Y.; Pipariya, P.; Patel, S.; Shah, M. Comparative analysis of breast cancer detection using machine learning and biosensors. Intelligent Medicine, 2022, 2(2), 69-81.
[http://dx.doi.org/10.1016/j.imed.2021.08.004]
[2]
Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[3]
Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers, 2021, 13(17), 4287.
[http://dx.doi.org/10.3390/cancers13174287] [PMID: 34503097]
[4]
Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol., 2017, 81(6), 772-781.
[http://dx.doi.org/10.1002/ana.24951] [PMID: 28486769]
[5]
Gidding, C.; Kellie, S.J.; Kamps, W.A.; de Graaf, S.S.N. Vincristine revisited. Crit. Rev. Oncol. Hematol., 1999, 29(3), 267-287.
[http://dx.doi.org/10.1016/S1040-8428(98)00023-7] [PMID: 10226730]
[6]
Moore, A.; Pinkerton, R. Vincristine: Can its therapeutic index be enhanced? Pediatr. Blood Cancer, 2009, 53(7), 1180-1187.
[http://dx.doi.org/10.1002/pbc.22161] [PMID: 19588521]
[7]
Yazdani, M.; Hallaj, A.; Salek, F.; Baharara, J. Potential of the combination of Artemisia absinthium extract and cisplatin in inducing apoptosis cascades through the expression of p53, BAX, caspase 3 ratio, and caspase 9 in lung cancer cells (Calu-6). Eur. J. Integr. Med., 2022, 56, 102193.
[http://dx.doi.org/10.1016/j.eujim.2022.102193]
[8]
Samandari Bahraseman, M.R.; Khorsand, B.; Esmaeilzadeh-Salestani, K.; Sarhadi, S.; Hatami, N.; Khaleghdoust, B.; Loit, E. The use of integrated text mining and protein-protein interaction approach to evaluate the effects of combined chemotherapeutic and chemopreventive agents in cancer therapy. PLoS One, 2022, 17(11), e0276458.
[http://dx.doi.org/10.1371/journal.pone.0276458] [PMID: 36367850]
[9]
Martino, E.; Casamassima, G.; Castiglione, S.; Cellupica, E.; Pantalone, S.; Papagni, F.; Rui, M.; Siciliano, A.M.; Collina, S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett., 2018, 28(17), 2816-2826.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.044] [PMID: 30122223]
[10]
D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[11]
Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Arch., 2005, 446(5), 475-482.
[http://dx.doi.org/10.1007/s00428-005-1264-9] [PMID: 15856292]
[12]
Guan, C. Zhou, X.; Li, H.; Ma, X.; Zhuang, J. NF-κB inhibitors gifted by nature: The anticancer promise of polyphenol compounds. Biomed. Pharmacother., 2022, 156, 113951.
[http://dx.doi.org/10.1016/j.biopha.2022.113951] [PMID: 36411636]
[13]
Das, R.; Mehta, D.K.; Dhanawat, M. Medicinal plants in cancer treatment: Contribution of nuclear factor-kappa B (NF-kB) inhibitors. Mini Rev. Med. Chem., 2022, 22(15), 1938-1962.
[http://dx.doi.org/10.2174/1389557522666220307170126] [PMID: 35260052]
[14]
Patel, M. Horgan, P.G.; McMillan, D.C.; Edwards, J. NF-κB pathways in the development and progression of colorectal cancer. Transl. Res., 2018, 197, 43-56.
[http://dx.doi.org/10.1016/j.trsl.2018.02.002] [PMID: 29550444]
[15]
Yang, L.; Zhou, Y.; Li, Y.; Zhou, J.; Wu, Y.; Cui, Y.; Yang, G.; Hong, Y. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett., 2015, 357(2), 520-526.
[http://dx.doi.org/10.1016/j.canlet.2014.12.003] [PMID: 25499080]
[16]
Surh, Y.J.; Han, S.S.; Keum, Y-S.; Seo, H-J.; Lee, S.S. Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of eukaryotic transcription factors, NF-κB and AP-1. Biofactors, 2000, 12(1-4), 107-112.
[http://dx.doi.org/10.1002/biof.5520120117] [PMID: 11216470]
[17]
Manson, M.M.; Gescher, A.; Hudson, E.A.; Plummer, S.M.; Squires, M.S.; Prigent, S.A. Blocking and suppressing mechanisms of chemoprevention by dietary constituents. Toxicol. Lett., 2000, 112-113, 499-505.
[http://dx.doi.org/10.1016/S0378-4274(99)00211-8] [PMID: 10720772]
[18]
Galante, J.M.; Mortenson, M.M.; Schlieman, M.G.; Virudachalam, S.; Bold, R.J. Targeting NF-kB/BCL-2 pathway increases apoptotic susceptibility to chemotherapy in pancreatic cancer. J. Surg. Res., 2004, 121(2), 306-307.
[http://dx.doi.org/10.1016/j.jss.2004.07.130]
[19]
Godwin, P.; Baird, A.M.; Heavey, S.; Barr, M.P.; O’Byrne, K.J.; Gately, K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front. Oncol., 2013, 3, 120.
[http://dx.doi.org/10.3389/fonc.2013.00120] [PMID: 23720710]
[20]
Pavitra, E.; Kancharla, J.; Gupta, V.K.; Prasad, K.; Sung, J.Y.; Kim, J.; Tej, M.B.; Choi, R.; Lee, J.H.; Han, Y.K.; Raju, G.S.R.; Bhaskar, L.V.K.S.; Huh, Y.S. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed. Pharmacother., 2023, 163, 114822.
[http://dx.doi.org/10.1016/j.biopha.2023.114822] [PMID: 37146418]
[21]
Montagut, C.; Tusquets, I.; Ferrer, B.; Corominas, J.M.; Bellosillo, B.; Campas, C.; Suarez, M.; Fabregat, X.; Campo, E.; Gascon, P.; Serrano, S.; Fernandez, P.L.; Rovira, A.; Albanell, J. Activation of nuclear factor-κB is linked to resistance to neoadjuvant chemotherapy in breast cancer patients. Endocr. Relat. Cancer, 2006, 13(2), 607-616.
[http://dx.doi.org/10.1677/erc.1.01171] [PMID: 16728586]
[22]
Levi, M.; Borne, R.; Williamson, J. A review of cancer chemopreventive agents. Curr. Med. Chem., 2001, 8(11), 1349-1362.
[http://dx.doi.org/10.2174/0929867013372229] [PMID: 11562271]
[23]
Alshabi, A.M.; Alkahtani, S.A.; Shaikh, I.A.; Orabi, M.A.A.; Abdel-Wahab, B.A.; Walbi, I.A.; Habeeb, M.S.; Khateeb, M.M.; Hoskeri, J.H.; Shettar, A.K.; Basheeruddin, A. S.M. Phytochemicals from Corchorus olitorius methanolic extract induce apoptotic cell death via activation of caspase-3, anti-Bcl-2 activity, and DNA degradation in breast and lung cancer cell lines. J. King Saud Univ. Sci., 2022, 34(7), 102238.
[http://dx.doi.org/10.1016/j.jksus.2022.102238]
[24]
Kamarya, Y.; Lijie, X.; Jinyao, L. Chemical constituents and antitumor mechanisms of artemisia. Anticancer. Agents Med. Chem., 2022, 22, 1838-1844.
[25]
Samandari-Bahraseman, M.R.; Khorsand, B.; Zareei, S.; Amanlou, M.; Rostamabadi, H. Various concentrations of hesperetin induce different types of programmed cell death in human breast cancerous and normal cell lines in a ROS-dependent manner. Chem. Biol. Interact., 2023, 382, 110642.
[http://dx.doi.org/10.1016/j.cbi.2023.110642] [PMID: 37487865]
[26]
Zhang, H.; Wang, Y.; Wang, S.; Wang, Q.; Wang, T.; Zhu, J.; Liu, B. Cytotoxic sesquiterpenes from Sonchus oleraceus. Anticancer. Agents Med. Chem., 2020, 20, 709-714.
[27]
Wei, Y.; Yang, P.; Cao, S.; Zhao, L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch. Pharm. Res., 2018, 41(1), 1-13.
[http://dx.doi.org/10.1007/s12272-017-0979-x] [PMID: 29230689]
[28]
Singh, C.K.; George, J.; Ahmad, N. Resveratrol-based combinatorial strategies for cancer management. Ann. N. Y. Acad. Sci., 2013, 1290(1), 113-121.
[http://dx.doi.org/10.1111/nyas.12160] [PMID: 23855473]
[29]
Samandari-bahraseman, M.R.; Sarhadi, S.; Esmaili-mahani, S. Artemether effect and its interaction with vincristine and doxorubicin on human breast carcinoma MCF-7 cells Physiol. Pharmacol., 2016, 20(2), 117-121.
[30]
Shakibaei, M.; Mobasheri, A.; Lueders, C.; Busch, F.; Shayan, P.; Goel, A. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PLoS One, 2013, 8(2), e57218.
[http://dx.doi.org/10.1371/journal.pone.0057218] [PMID: 23451189]
[31]
Hassanzadazar, H.; Taami, B.; Aminzare, M.; Daneshamooz, S. Bunium persicum (Boiss.) B. Fedtsch: An overview on phytochemistry, Therapeutic uses and its application in the food industry. J. Appl. Pharm. Sci., 2018, 8(10), 150-158.
[http://dx.doi.org/10.7324/JAPS.2018.81019]
[32]
Chizzola, R.; Saeidnejad, A.H.; Azizi, M.; Oroojalian, F.; Mardani, H. Bunium persicum: variability in essential oil and antioxidants activity of fruits from different Iranian wild populations. Genet. Resour. Crop Evol., 2014, 61(8), 1621-1631.
[http://dx.doi.org/10.1007/s10722-014-0158-6]
[33]
Deeptha, K.; Kamaleeswari, M.; Sengottuvelan, M.; Nalini, N. Dose dependent inhibitory effect of dietary caraway on 1,2-dimethylhydrazine induced colonic aberrant crypt foci and bacterial enzyme activity in rats. Invest. New Drugs, 2006, 24(6), 479-488.
[http://dx.doi.org/10.1007/s10637-006-6801-0] [PMID: 16598436]
[34]
Bogucka-Kocka, A.; Smolarz, H.D.; Kocki, J. Apoptotic activities of ethanol extracts from some Apiaceae on human leukaemia cell lines. Fitoterapia, 2008, 79(7-8), 487-497.
[http://dx.doi.org/10.1016/j.fitote.2008.07.002] [PMID: 18672039]
[35]
Sharififar, F.; Yassa, N.; Mozaffarian, V. Bioactivity of major components from the seeds of Bunium persicum (Boiss.). Fedtch. Pak. J. Pharm. Sci., 2010, 23(3), 300-304.
[PMID: 20566444]
[36]
Geraghty, R.J.; Capes-Davis, A.; Davis, J.M.; Downward, J.; Freshney, R.I.; Knezevic, I.; Lovell-Badge, R.; Masters, J.R.W.; Meredith, J.; Stacey, G.N.; Thraves, P.; Vias, M. Guidelines for the use of cell lines in biomedical research. Br. J. Cancer, 2014, 111(6), 1021-1046.
[http://dx.doi.org/10.1038/bjc.2014.166] [PMID: 25117809]
[37]
Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for cell viability assays. Food Front., 2020, 1(3), 332-349.
[http://dx.doi.org/10.1002/fft2.44]
[38]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[39]
Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.J.; Dick, T.P.; Finkel, T.; Forman, H.J.; Janssen-Heininger, Y.; Gems, D.; Kagan, V.E.; Kalyanaraman, B.; Larsson, N.G.; Milne, G.L.; Nyström, T.; Poulsen, H.E.; Radi, R.; Van Remmen, H.; Schumacker, P.T.; Thornalley, P.J.; Toyokuni, S.; Winterbourn, C.C.; Yin, H.; Halliwell, B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab., 2022, 4(6), 651-662.
[http://dx.doi.org/10.1038/s42255-022-00591-z] [PMID: 35760871]
[40]
Deepak, S.; Kottapalli, K.; Rakwal, R.; Oros, G.; Rangappa, K.; Iwahashi, H.; Masuo, Y.; Agrawal, G.; Real-time, P.C.R. revolutionizing detection and expression analysis of genes. Curr. Genomics, 2007, 8(4), 234-251.
[http://dx.doi.org/10.2174/138920207781386960] [PMID: 18645596]
[41]
Begum, H.; Murugesan, P.; Tangutur, A.D. Western blotting: A powerful staple in scientific and biomedical research. Biotechniques, 2022, 73(1), 58-69.
[http://dx.doi.org/10.2144/btn-2022-0003] [PMID: 35775367]
[42]
Lakshmanan, I.; Batra, S. Protocol for apoptosis assay by flow cytometry using annexin V staining method. Bio Protoc., 2013, 3(6), e374.
[http://dx.doi.org/10.21769/BioProtoc.374] [PMID: 27430005]
[43]
Riccardi, C.; Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc., 2006, 1(3), 1458-1461.
[http://dx.doi.org/10.1038/nprot.2006.238] [PMID: 17406435]
[44]
Ebada, M.E. Cuminaldehyde: A potential drug candidate. J. Pharmcol. Clin. Res., 2017, 2(2), 1-4.
[http://dx.doi.org/10.19080/JPCR.2017.02.555585]
[45]
Li, Y.; Wen, J.; Du, C.; Hu, S.; Chen, J.; Zhang, S.; Zhang, N.; Gao, F.; Li, S.; Mao, X.; Miyamoto, H.; Ding, K. Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis. Biochem. Biophys. Res. Commun., 2017, 491(2), 530-536.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.009] [PMID: 28389245]
[46]
Yasodha, R.; Ghosh, M.; Sumathi, R.; Gurumurthi, K. Cross-species amplification of eucalyptus SSR markers in Casuarinaceae. Acta Bot. Croat., 2005, 64, 115-120.
[47]
Singh, R.K.; Ranjan, A.; Srivastava, A.K.; Singh, M.; Shukla, A.K.; Atri, N.; Mishra, A.; Singh, A.K.; Singh, S.K. Cytotoxic and apoptotic inducing activity of Amoora rohituka leaf extracts in human breast cancer cells. J. Ayurveda Integr. Med., 2020, 11(4), 383-390.
[http://dx.doi.org/10.1016/j.jaim.2018.12.005] [PMID: 30846274]
[48]
Bahmani, F.; Esmaeili, S.; Bashash, D.; Dehghan-Nayeri, N.; Mashati, P.; Gharehbaghian, A. Centaurea albonitens extract enhances the therapeutic effects of Vincristine in leukemic cells by inducing apoptosis. Biomed. Pharmacother., 2018, 99, 598-607.
[http://dx.doi.org/10.1016/j.biopha.2018.01.101] [PMID: 29710458]
[49]
Dogani, M.; Askari, N.; Kalantari-Hesari, A.; Hosseini, R. F. The effects of P. atlantica as a libido booster and sexual enhancer on the reproductive system of male rats. J. Tradit. Complement. Med., 2022, 12(4), 345-353.
[http://dx.doi.org/10.1016/j.jtcme.2021.09.007] [PMID: 35747351]
[50]
Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomedicine, 2018, 13, 8013-8024.
[http://dx.doi.org/10.2147/IJN.S189295] [PMID: 30568442]
[51]
Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med., 2010, 31(6), 435-445.
[http://dx.doi.org/10.1016/j.mam.2010.09.006] [PMID: 20854840]
[52]
Yang, Y.; Zhang, Z.; Li, S.; Ye, X.; Li, X.; He, K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia, 2014, 92, 133-147.
[http://dx.doi.org/10.1016/j.fitote.2013.10.010] [PMID: 24177191]
[53]
Marchi, S.; Giorgi, C.; Suski, J.M.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E.; Missiroli, S.; Patergnani, S.; Poletti, F.; Rimessi, A.; Duszynski, J.; Wieckowski, M.R.; Pinton, P. Mitochondria-ros crosstalk in the control of cell death and aging. J. Signal Transduct., 2012, 2012, 1-17.
[http://dx.doi.org/10.1155/2012/329635] [PMID: 22175013]
[54]
Danwilai, K.; Konmun, J.; Sripanidkulchai, B.; Subongkot, S. Antioxidant activity of ginger extract as a daily supplement in cancer patients receiving adjuvant chemotherapy: A pilot study. Cancer Manag. Res., 2017, 9, 11-18.
[http://dx.doi.org/10.2147/CMAR.S124016] [PMID: 28203106]
[55]
Fattahi, S.; Ardekani, A.M.; Zabihi, E.; Abedian, Z.; Mostafazadeh, A.; Pourbagher, R.; Akhavan-Niaki, H. Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line. Asian Pac. J. Cancer Prev., 2013, 14(9), 5317-5323.
[http://dx.doi.org/10.7314/APJCP.2013.14.9.5317] [PMID: 24175819]
[56]
Rostamabadi, H.; Samandari, B. M.R.; Esmaeilzadeh-Salestani, K. Froriepia subpinnata Leaf extract-induced apoptosis in the MCF-7 breast cancer cell line by increasing intracellular oxidative stress. Iran. J. Pharm. Res., 2023. In Press
[http://dx.doi.org/10.5812/ijpr-136643]
[57]
Ganjouzadeh, F.; Khorrami, S.; Gharbi, S. Controlled cytotoxicity of Ag-GO nanocomposite biosynthesized using black peel pomegranate extract against MCF-7 cell line. J. Drug Deliv. Sci. Technol., 2022, 71, 103340.
[http://dx.doi.org/10.1016/j.jddst.2022.103340]
[58]
Doonan, F.; Cotter, T.G. Morphological assessment of apoptosis. Methods, 2008, 44(3), 200-204.
[http://dx.doi.org/10.1016/j.ymeth.2007.11.006] [PMID: 18314050]
[59]
Chaabane, W. User, S.D.; El-Gazzah, M.; Jaksik, R.; Sajjadi, E.; Rzeszowska-Wolny, J.; Łos, M.J. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch. Immunol. Ther. Exp., 2013, 61(1), 43-58.
[http://dx.doi.org/10.1007/s00005-012-0205-y] [PMID: 23229678]
[60]
Nichani, K.; Li, J.; Suzuki, M.; Houston, J.P. Evaluation of Caspase-3 activity during apoptosis with fluorescence lifetime-based cytometry measurements and phasor analyses. Cytometry A, 2020, 97(12), 1265-1275.
[http://dx.doi.org/10.1002/cyto.a.24207] [PMID: 32790129]
[61]
Fletcher, J.I.; Meusburger, S.; Hawkins, C.J.; Riglar, D.T.; Lee, E.F.; Fairlie, W.D.; Huang, D.C.S.; Adams, J.M. Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc. Natl. Acad. Sci. USA, 2008, 105(47), 18081-18087.
[http://dx.doi.org/10.1073/pnas.0808691105] [PMID: 18981409]
[62]
Khaleghi, M.; Khorrami, S.; Jafari-Nasab, T. Pediococcus acidilactici isolated from traditional cheese as a potential probiotic with cytotoxic activity against doxorubicin-resistant MCF-7 cells. 3 Biotech., 13, 1-11.
[63]
Uzoigwe, J.; Sauter, E.R. Cancer prevention and treatment using combination therapy with plant- and animal-derived compounds. Expert Rev. Clin. Pharmacol., 2012, 5(6), 701-709.
[http://dx.doi.org/10.1586/ecp.12.62] [PMID: 23234327]
[64]
Sauter, E.R. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev. Clin. Pharmacol., 2020, 13(3), 265-285.
[http://dx.doi.org/10.1080/17512433.2020.1738218] [PMID: 32154753]
[65]
Rengarajan, T.; Nandakumar, N.; Rajendran, P.; Haribabu, L.; Nishigaki, I.; Balasubramanian, M.P. D-pinitol promotes apoptosis in MCF-7 cells via induction of p53 and Bax and inhibition of Bcl-2 and NF-κ. B. Asian Pac. J. Cancer Prev., 2014, 15(4), 1757-1762.
[http://dx.doi.org/10.7314/APJCP.2014.15.4.1757] [PMID: 24641404]
[66]
Mortezaee, K. Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. J. Cell. Physiol., 2019, 234(10), 17187-17204.
[http://dx.doi.org/10.1002/jcp.28504] [PMID: 30912132]
[67]
Wang, C.Y. Guttridge, D.C.; Mayo, M.W.; Baldwin, A.S., Jr NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol. Cell. Biol., 1999, 19(9), 5923-5929.
[http://dx.doi.org/10.1128/MCB.19.9.5923]
[68]
Dorai, T.; Aggarwal, B.B. Role of chemopreventive agents in cancer therapy. Cancer Lett., 2004, 215(2), 129-140.
[http://dx.doi.org/10.1016/j.canlet.2004.07.013] [PMID: 15488631]
[69]
Muir, H. Blinded by the light The Growing Complexity of p53. New Sci., 2001, 171, 18.
[70]
Elbadawy, M.; Usui, T.; Yamawaki, H.; Sasaki, K. Emerging roles of C-myc in cancer stem cell-related signaling and resistance to cancer chemotherapy: A potential therapeutic target against colorectal cancer. Int. J. Mol. Sci., 2019, 20(9), 2340.
[http://dx.doi.org/10.3390/ijms20092340] [PMID: 31083525]
[71]
Hermeking, H. The MYC oncogene as a cancer drug target. Curr. Cancer Drug Targets, 2003, 3(3), 163-175.
[http://dx.doi.org/10.2174/1568009033481949] [PMID: 12769686]
[72]
Chen, Z.; Zhang, B.; Gao, F.; Shi, R. Modulation of G2/M cell cycle arrest and apoptosis by luteolin in human colon cancer cells and xenografts. Oncol. Lett., 2017, 15(2), 1559-1565.
[http://dx.doi.org/10.3892/ol.2017.7475] [PMID: 29434850]
[73]
Tuli, H.S.; Mistry, H.; Kaur, G.; Aggarwal, D.; Garg, V.K.; Mittal, S.; Yerer, M.B.; Sak, K.; Khan, M.A. Gallic acid: A dietary polyphenol that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Anticancer. Agents Med. Chem., 2022, 22, 499-514.
[74]
Ergul, M.; Bakar-Ates, F. Investigation of molecular mechanisms underlying the antiproliferative effects of colchicine against PC3 prostate cancer cells. Toxicol. In Vitro, 2021, 73, 105138.
[http://dx.doi.org/10.1016/j.tiv.2021.105138] [PMID: 33684465]
[75]
Xia, W.; Spector, S.; Hardy, L.; Zhao, S.; Saluk, A.; Alemane, L.; Spector, N.L. Tumor selective G 2/M cell cycle arrest and apoptosis of epithelial and hematological malignancies by BBL22, a benzazepine. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7494-7499.
[http://dx.doi.org/10.1073/pnas.97.13.7494] [PMID: 10861014]
[76]
Hu, A.; Huang, J.J.; Zhang, J.F.; Dai, W.J.; Li, R.L.; Lu, Z.Y.; Duan, J.L.; Li, J.P.; Chen, X.P.; Fan, J.P.; Xu, W.H.; Zheng, H.L. Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway. Oncotarget, 2017, 8(31), 50747-50760.
[http://dx.doi.org/10.18632/oncotarget.17096] [PMID: 28881600]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy