Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

A Comprehensive Review on Targeted Cancer Therapy: New Face of Treatment Approach

Author(s): Dipanjan Karati and Dileep Kumar*

Volume 29, Issue 41, 2023

Published on: 30 November, 2023

Page: [3282 - 3294] Pages: 13

DOI: 10.2174/0113816128272203231121034814

Price: $65

Abstract

Cancer is one of life's most difficult difficulties and a severe health risk everywhere. Except for haematological malignancies, it is characterized by unchecked cell growth and a lack of cell death, which results in an aberrant tissue mass or tumour. Vascularization promotes tumor growth, which eventually aids metastasis and migration to other parts of the body, ultimately resulting in death. The genetic material of the cells is harmed or mutated by environmental or inherited influences, which results in cancer. Presently, anti-neoplastic medications (chemotherapy, hormone, and biological therapies) are the treatment of choice for metastatic cancers, whilst surgery and radiotherapy are the mainstays for local and non-metastatic tumors. Regrettably, chemotherapy disturbs healthy cells with rapid proliferation, such as those in the gastrointestinal tract and hair follicles, leading to the typical side effects of chemotherapy. Finding new, efficient, targeted therapies based on modifications in the molecular biology of tumor cells is essential because current chemotherapeutic medications are harmful and can cause the development of multidrug resistance. These new targeted therapies, which are gaining popularity as demonstrated by the FDA-approved targeted cancer drugs in recent years, enter molecules directly into tumor cells, diminishing the adverse reactions. A form of cancer treatment known as targeted therapy goes after the proteins that regulate how cancer cells proliferate, divide, and disseminate. Most patients with specific cancers, such as chronic myelogenous leukemia (commonly known as CML), will have a target for a particular medicine, allowing them to be treated with that drug. Nonetheless, the tumor must typically be examined to determine whether it includes drug targets.

Keywords: Cancer, targeted therapy, apoptotic pathway, monoclonal antibody, polymeric nanocarriers, health risk.

[1]
What you need to know about cancer. National Cancer Institute. U.S. 1761 Department of Health and Human Services, 2006.
[2]
Stein GS, Pardee AB. Cell Cycle and Growth Control: Biomolecular 1763 Regulation and Cancer. Springer 2004.
[http://dx.doi.org/10.1002/0471656437]
[3]
Kumar D, Karati D, Mahadik KR, Trivedi P. Alkylating agents, the road less traversed, changing anticancer therapy. Anticancer Agents Med Chem 2022; 22(8): 1478-95.
[http://dx.doi.org/10.2174/1871520621666210811105344] [PMID: 34382529]
[4]
Karati D, Mahadik KR, Trivedi P. Molecular insights on selective and specific inhibitors of Cyclin Dependent Kinase 9 enzyme (CDK9) for the purpose of cancer therapy. Anticancer Agents Med Chem 2023; 23(4): 383-403.
[http://dx.doi.org/10.2174/1871520622666220615125826] [PMID: 35708082]
[5]
Karati D, Mahadik KR, Trivedi P, Kumar D. The emerging role of janus kinase inhibitors in the treatment of cancer. Curr Cancer Drug Targets 2022; 22(3): 221-33.
[http://dx.doi.org/10.2174/1568009622666220301105214] [PMID: 35232350]
[6]
Karati D, Shaoo KK, Mahadik KR, Kumr D. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective. Results Chem 2022; 4: 100532.
[http://dx.doi.org/10.1016/j.rechem.2022.100532]
[7]
McKinnell RG, Parchment RE, Perantoni AO, Pierce GB, Damjanov I. The 1765 Biological Basis of Cancer. Cambridge, United 1766 Kingdom: Cambridge University Press 1998.
[8]
Pollock PM, Meltzer PS. Cancer: Lucky draw in the gene raffle. Nature 2002; 417: 906-7.
[9]
Hanahan D, Robert A. Weinberg, hallmarks of cancer: The next generation. Cell 2011; 144: 646-74.
[10]
Fearon ER, Bommer GT. Progressing from gene mutations to cancer. In: Abeloff MD, Armitage JO, Niederhuber JE, Kastan MB, McKenna WG, Eds. Clinical Oncology, Churchill Livingstone. An imprint of Elsevier Inc 2008; p. 1774.
[http://dx.doi.org/10.1016/B978-0-443-06694-8.50017-8]
[11]
Croce CM. Oncogenes and cancer. N Engl J Med 2008; 358(5): 502-11.
[http://dx.doi.org/10.1056/NEJMra072367] [PMID: 18234754]
[12]
Krug U, Ganser A, Koeffler HP. Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 2002; 21(21): 3475-95.
[http://dx.doi.org/10.1038/sj.onc.1205322] [PMID: 12032783]
[13]
Park BH, Vogelstein B. Tumor-suppressor genes. In: Kufe DW, Pollock RE, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, Eds. Holland 1780 Frei Cancer Medicine, sixth ed. BC Decker Inc 2003; pp. 86-102.
[14]
Chabner BA, Roberts TG Jr. Chemotherapy and the war on cancer. Nat Rev Cancer 2005; 5(1): 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[15]
Papac RJ. Origins of cancer therapy. Yale J Biol Med 2001; 74(6): 391-8.
[PMID: 11922186]
[16]
Li MC, Hertz R, Bergenstal DM. Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists. N Engl J Med 1958; 259(2): 66-74.
[http://dx.doi.org/10.1056/NEJM195807102590204] [PMID: 13566422]
[17]
Devita VT Jr, Serpick AA, Carbone PP. Combination chemotherapy in the 1788 treatment of advanced Hodgkin’s disease. Ann Intern Med 1970; 73: 881-95.
[18]
Jaffe N, Frei E 3rd, Traggis D, Bishop Y. Adjuvant methotrexate and 1791 citrovorum-factor treatment of osteogenic sarcoma. N Engl J Med 1974; 291: 994-7.
[19]
Boulikas T, Pantos A, Bellis E, Christofis P. Designing platinum compounds 1794 in cancer: Structures and mechanisms. Cancer Ther 2007; 5: 537-83.
[20]
Goodman J, Walsh V. The Story of Taxol: Nature and Politics in the Pursuit of 1796 an Anti-cancer Drug. Cambridge: Cambridge University 2001.
[21]
Wu H-C, Chang D-K, Huang C-T. Targeted therapy for cancer. J Cancer Mol 2006; 1803(2): 57-66.
[22]
Abbas Z, Rehman S. An overview of cancer treatment modalities. Neoplasm 2018; 1: 139-57.
[23]
El-Hussein A, Manoto SL, Ombinda-Lemboumba S, Alrowaili ZA, Mthunzi-Kufa P. A review of chemotherapy and photodynamic therapy for lung cancer treatment. Anticancer Agents Med Chem 2021; 21(2): 149-61.
[http://dx.doi.org/10.2174/18715206MTA1uNjQp3] [PMID: 32242788]
[24]
Ghanghoria R, Kesharwani P, Tekade RK, Jain NK. Targeting luteinizing hormone-releasing hormone: A potential therapeutics to treat gynecological and other cancers. J Control Release 2018; 269: 277-301.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.002] [PMID: 27840168]
[25]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti- cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[26]
Oh DY, Bang YJ. HER2-targeted therapies - A role beyond breast cancer. Nat Rev Clin Oncol 2020; 17(1): 33-48.
[http://dx.doi.org/10.1038/s41571-019-0268-3] [PMID: 31548601]
[27]
Ferguson FM, Gray NS. Kinase inhibitors: The road ahead. Nat Rev Drug Discov 2018; 17(5): 353-77.
[http://dx.doi.org/10.1038/nrd.2018.21] [PMID: 29545548]
[28]
Tariman JD. Changes in cancer treatment. Nurs Clin North Am 2017; 52(1): 65-81.
[http://dx.doi.org/10.1016/j.cnur.2016.10.004] [PMID: 28189167]
[29]
Cohen P. The development and therapeutic potential of protein kinase inhibitors. Curr Opin Chem Biol 1999; 3(4): 459-65.
[http://dx.doi.org/10.1016/S1367-5931(99)80067-2] [PMID: 10419844]
[30]
Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer 2012; 12(4): 278-87.
[http://dx.doi.org/10.1038/nrc3236] [PMID: 22437872]
[31]
Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies for cancer immunotherapy. Lancet 2009; 373(9668): 1033-40.
[http://dx.doi.org/10.1016/S0140-6736(09)60251-8] [PMID: 19304016]
[32]
Druker BJ, Talpaz M, Resta DJ, et al. 1826 H. Kantarjian, R. Capdeville, S. Ohno-Jones, C.L. Sawyers, Efficacy and safety of 1827 a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid 1828 leukemia. N Engl J Med 2001; 344: 1031-7.
[http://dx.doi.org/10.1056/NEJM200104053441401] [PMID: 11287972]
[33]
Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 2002; 1(7): 493-502.
[http://dx.doi.org/10.1038/nrd839] [PMID: 12120256]
[34]
Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. JAMA 2003; 290(16): 2149-58.
[http://dx.doi.org/10.1001/jama.290.16.2149] [PMID: 14570950]
[35]
Zogakis TG, Libutti SK. General aspects of anti-angiogenesis and cancer therapy. Expert Opin Biol Ther 2001; 1(2): 253-75.
[http://dx.doi.org/10.1517/14712598.1.2.253] [PMID: 11727534]
[36]
Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med 2008; 358(11): 1160-74.
[http://dx.doi.org/10.1056/NEJMra0707704] [PMID: 18337605]
[37]
Chong CR, Jänne PA. The quest to overcome resistance to EGFR- targeted therapies in cancer. Nat Med 2013; 19(11): 1389-400.
[http://dx.doi.org/10.1038/nm.3388] [PMID: 24202392]
[38]
Yar Saglam AS, Alp E, Elmazoglu Z, Menevse S. Treatment with cucurbitacin B alone and in combination with gefitinib induces cell cycle inhibition and apoptosis via EGFR and JAK/STAT pathway in human colorectal cancer cell lines. Hum Exp Toxicol 2016; 35(5): 526-43.
[http://dx.doi.org/10.1177/0960327115595686] [PMID: 26183715]
[39]
Li Q, Zhang D, Chen X, et al. Nuclear PKM2 contributes to gefitinib resistance via upregulation of STAT3 activation in colorectal cancer. Sci Rep 2015; 5(1): 16082.
[http://dx.doi.org/10.1038/srep16082] [PMID: 26542452]
[40]
Mahmood MQ, Shukla SD, Dua K, Shastri MD. The role of epidermal growth factor receptor in the management of gastrointestinal carcinomas: Present status and future perspectives. Curr Pharm Des 2017; 23(16): 2314-20.
[PMID: 28120720]
[41]
Wild CP, Hardie LJ. Reflux, Barrett’s oesophagus and adenocarcinoma: Burning questions. Nat Rev Cancer 2003; 3(9): 676-84.
[http://dx.doi.org/10.1038/nrc1166] [PMID: 12951586]
[42]
Almhanna K, Rosa M, Henderson-Jackson E, et al. Her-2 expression in gastroesophageal intestinal metaplasia, dysplasia, and adenocarcinoma. Appl Immunohistochem Mol Morphol 2016; 24(9): 633-8.
[http://dx.doi.org/10.1097/PAI.0000000000000243] [PMID: 26186253]
[43]
Schottenfeld D, Beebe-Dimmer J. Chronic inflammation: A common and important factor in the pathogenesis of neoplasia. CA Cancer J Clin 2006; 56(2): 69-83.
[http://dx.doi.org/10.3322/canjclin.56.2.69] [PMID: 16514135]
[44]
Yokota J, Toyoshima K, Sugimura T, et al. Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. Lancet 1986; 327(8484): 765-7.
[http://dx.doi.org/10.1016/S0140-6736(86)91782-4] [PMID: 2870269]
[45]
Gerson JN, Skariah S, Denlinger CS, Astsaturov I. Perspectives of HER2-targeting in gastric and esophageal cancer. Expert Opin Investig Drugs 2017; 26(5): 531-40.
[http://dx.doi.org/10.1080/13543784.2017.1315406] [PMID: 28387541]
[46]
Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 2007; 62(3): 179-213.
[http://dx.doi.org/10.1016/j.critrevonc.2007.01.006] [PMID: 17324579]
[47]
Ferrara N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev 2004; 25(4): 581-611.
[http://dx.doi.org/10.1210/er.2003-0027] [PMID: 15294883]
[48]
Chrzanowska-Wodnicka M, Kraus AE, Gale D, White GC II, VanSluys J. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood 2008; 111(5): 2647-56.
[http://dx.doi.org/10.1182/blood-2007-08-109710] [PMID: 17993608]
[49]
Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling? In control of vascular function. Nat Rev Mol Cell Biol 2006; 7(5): 359-71.
[http://dx.doi.org/10.1038/nrm1911] [PMID: 16633338]
[50]
Xu WW, Li B, Cheung AL. The potential of targeted antiangiogenesis therapies in the treatment of esophageal cancer. Gastrointest Cancer 2015; 5: 79-88.
[51]
Kozlowski M, Kowalczuk O, Milewski R, Chyczewski L, Niklinski J, Laudański J. Serum vascular endothelial growth factors C and D in patients with oesophageal cancer. Eur J Cardiothorac Surg 2010; 38(3): 260-7.
[http://dx.doi.org/10.1016/j.ejcts.2010.01.061] [PMID: 20226684]
[52]
McDonnell CO, Harmey JH, Bouchier-Hayes DJ, Walsh TN. Effect of multimodality therapy on circulating vascular endothelial growth factor levels in patients with oesophageal cancer. Br J Surg 2002; 88(8): 1105-9.
[http://dx.doi.org/10.1046/j.0007-1323.2001.01838.x] [PMID: 11488797]
[53]
Creemers A, Ebbing EA, Pelgrim TC, et al. A systematic review and meta-analysis of prognostic biomarkers in resectable esophageal adenocarcinomas. Sci Rep 2018; 8(1): 13281.
[http://dx.doi.org/10.1038/s41598-018-31548-6] [PMID: 30185893]
[54]
Chen Y, Song XP, Tang XH, Ye B. Study on the relationship between C-met protein expression and the clinical characteristics of esophageal cancer. Oncol Progress 2018; 16: 472-4.
[55]
Shi X, Wang J, Lei Y, Cong C, Tan D, Zhou X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep 2019; 19(6): 4529-35.
[http://dx.doi.org/10.3892/mmr.2019.10121] [PMID: 30942405]
[56]
Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 2019; 12(1): 134.
[http://dx.doi.org/10.1186/s13045-019-0818-2] [PMID: 31815659]
[57]
Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol 2020; 13(1): 165.
[http://dx.doi.org/10.1186/s13045-020-00990-3] [PMID: 33276800]
[58]
Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 2004; 101(52): 18030-5.
[http://dx.doi.org/10.1073/pnas.0408345102] [PMID: 15596714]
[59]
Sabatini DM. mTOR and cancer: Insights into a complex relationship. Nat Rev Cancer 2006; 6(9): 729-34.
[http://dx.doi.org/10.1038/nrc1974] [PMID: 16915295]
[60]
Hirashima K, Baba Y, Watanabe M, et al. Phosphorylated mTOR expression is associated with poor prognosis for patients with esophageal squamous cell carcinoma. Ann Surg Oncol 2010; 17(9): 2486-93.
[http://dx.doi.org/10.1245/s10434-010-1040-1] [PMID: 20339946]
[61]
Hirashima K, Baba Y, Watanabe M, et al. Aberrant activation of the mTOR pathway and anti-tumour effect of everolimus on oesophageal squamous cell carcinoma. Br J Cancer 2012; 106(5): 876-82.
[http://dx.doi.org/10.1038/bjc.2012.36] [PMID: 22333597]
[62]
Van Cutsem E, Köhne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009; 360(14): 1408-17.
[http://dx.doi.org/10.1056/NEJMoa0805019] [PMID: 19339720]
[63]
Seymour MT, Brown SR, Middleton G, et al. Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild- type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): A prospectively stratified randomised trial. Lancet Oncol 2013; 14(8): 749-59.
[http://dx.doi.org/10.1016/S1470-2045(13)70163-3] [PMID: 23725851]
[64]
Kopetz S, McDonough SL, Morris VK, et al. Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF- mutant metastatic colorectal cancer (SWOG 1406). J Clin Oncol 2017; 35(4_suppl): 520.
[http://dx.doi.org/10.1200/JCO.2017.35.4_suppl.520]
[65]
Meric-Bernstam F, Hurwitz H, Raghav KPS, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): An updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2019; 20(4): 518-30.
[http://dx.doi.org/10.1016/S1470-2045(18)30904-5] [PMID: 30857956]
[66]
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5(1): 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[67]
Catenacci DVT, Tebbutt NC, Davidenko I, et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2017; 18(11): 1467-82.
[http://dx.doi.org/10.1016/S1470-2045(17)30566-1] [PMID: 28958504]
[68]
Cunningham D, Stenning SP, Smyth EC, et al. Peri-operative chemotherapy with or without bevacizumab in operable oesophagogastric adenocarcinoma (UK Medical Research Council ST03): Primary analysis results of a multicentre, open-label, randomised phase 2–3 trial. Lancet Oncol 2017; 18(3): 357-70.
[http://dx.doi.org/10.1016/S1470-2045(17)30043-8] [PMID: 28163000]
[69]
Wilke H, Muro K, Van Cutsem E, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol 2014; 15(11): 1224-35.
[http://dx.doi.org/10.1016/S1470-2045(14)70420-6] [PMID: 25240821]
[70]
Schneider BJ, Shah MA, Klute K, et al. Phase I study of epigenetic priming with azacitidine prior to standard neoadjuvant chemotherapy for patients with resectable gastric and esophageal adenocarcinoma: Evidence of tumor hypomethylation as an indicator of major histopathologic response. Clin Cancer Res 2017; 23(11): 2673-80.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1896] [PMID: 27836862]
[71]
Wong M, Tee AEL, Milazzo G, et al. The histone methyltransferase DOT1L promotes neuroblastoma by regulating gene transcription. Cancer Res 2017; 77(9): 2522-33.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1663] [PMID: 28209620]
[72]
Hirukawa A, Smith HW, Zuo D, et al. Targeting EZH2 reactivates a breast cancer subtype-specific anti-metastatic transcriptional program. Nat Commun 2018; 9(1): 2547.
[http://dx.doi.org/10.1038/s41467-018-04864-8] [PMID: 29959321]
[73]
Ahrens TD, Timme S, Hoeppner J, et al. Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine. Epigenetics 2015; 10(5): 431-45.
[http://dx.doi.org/10.1080/15592294.2015.1039216] [PMID: 25923331]
[74]
Wang B, Zhao B, Pang LP, et al. LPE-1, an orally active pyrimidine derivative, inhibits growth and mobility of human esophageal cancers by targeting LSD1. Pharmacol Res 2017; 122: 66-77.
[http://dx.doi.org/10.1016/j.phrs.2017.05.025] [PMID: 28571892]
[75]
Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: State of the art. Signal Transduct Target Ther 2020; 5(1): 101.
[http://dx.doi.org/10.1038/s41392-020-0207-x] [PMID: 32561705]
[76]
McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy. Cancer Med 2013; 2(5): 662-73.
[http://dx.doi.org/10.1002/cam4.106] [PMID: 24403232]
[77]
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26(1): 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[78]
Shah MA, Kojima T, Hochhauser D, et al. Efficacy and safety of pembrolizumab for heavily pretreated patients with advanced, metastatic adenocarcinoma or squamous cell carcinoma of the esophagus: The phase 2 KEYNOTE-180 study. JAMA Oncol 2019; 5(4): 546-50.
[http://dx.doi.org/10.1001/jamaoncol.2018.5441] [PMID: 30570649]
[79]
Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 1990; 171(5): 1393-405.
[http://dx.doi.org/10.1084/jem.171.5.1393] [PMID: 1692078]
[80]
Kisielow M, Kisielow J, Capoferri-Sollami G, Karjalainen K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur J Immunol 2005; 35(7): 2081-8.
[http://dx.doi.org/10.1002/eji.200526090] [PMID: 15971272]
[81]
Zhang Y, Liu Y, Luo Y, et al. Prognostic value of lymphocyte activation gene-3 (LAG-3) expression in esophageal squamous cell carcinoma. J Cancer 2018; 9(22): 4287-93.
[http://dx.doi.org/10.7150/jca.26949] [PMID: 30519331]
[82]
Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT and CD 96: New checkpoint receptor targets for cancer immunotherapy. Immunol Rev 2017; 276(1): 112-20.
[http://dx.doi.org/10.1111/imr.12518] [PMID: 28258695]
[83]
Yu X, Harden K, C Gonzalez L, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 2009; 10(1): 48-57.
[http://dx.doi.org/10.1038/ni.1674] [PMID: 19011627]
[84]
Northfelt DW, Martin FJ, Working P, et al. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: Pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol 1996; 36(1): 55-63.
[http://dx.doi.org/10.1002/j.1552-4604.1996.tb04152.x] [PMID: 8932544]
[85]
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11: 812-8.
[86]
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[87]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[88]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[89]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[90]
Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res 2020; 24(1): 3.
[http://dx.doi.org/10.1186/s40824-020-0184-8] [PMID: 31969986]
[91]
Rehman AU, Akram S, Seralin A, Vandamme T, Anton N. Lipid nanocarriers: Formulation, properties, and applications. Smart Nanocontainers. Amsterdam, The Netherlands: Elsevier 2020; pp. 355-82.
[http://dx.doi.org/10.1016/B978-0-12-816770-0.00021-6]
[92]
Asasutjarit R, Managit C, Phanaksri T, Treesuppharat W, Fuongfuchat A. Formulation development and in vitro evaluation of transferrin-conjugated liposomes as a carrier of ganciclovir targeting the retina. Int J Pharm 2020; 577: 119084.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119084] [PMID: 31988033]
[93]
Zalipsky S, Saad M, Kiwan R, Ber E, Yu N, Minko T. Antitumor activity of new liposomal prodrug of mitomycin C in multidrug resistant solid tumor: Insights of the mechanism of action. J Drug Target 2007; 2430: 518-30.
[94]
Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003; 42(6): 463-78.
[http://dx.doi.org/10.1016/S0163-7827(03)00033-X] [PMID: 14559067]
[95]
Brown S, Khan DR. The treatment of breast cancer using liposome technology. J Drug Deliv 2012; 2012: 1-6.
[http://dx.doi.org/10.1155/2012/212965] [PMID: 22506119]
[96]
Infante J, Keedy V, Jones S, et al. S. 2437 Ikeda, H. Kodaira, M. Rothenberg, H. Burris Iii, Phase I and pharmacokinetic 2438 study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors. Cancer Chemother Pharmacol 2012; 70: 699-705.
[http://dx.doi.org/10.1007/s00280-012-1960-5] [PMID: 22941375]
[97]
Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev 2451 Cancer 2001; 118-29.
[98]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[99]
Huwyler J, Drewe J, Krähenbuhl S. Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine 2008; 3(1): 21-9.
[http://dx.doi.org/10.2147/IJN.S1253] [PMID: 18488413]
[100]
Kontermann RE. Immunoliposomes for cancer therapy. Curr Opin Mol Ther 2006; 8(1): 39-45.
[PMID: 16506524]
[101]
Drummond DC, Noble CO, Guo Z, et al. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J Control Release 2010; 141(1): 13-21.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.006] [PMID: 19686789]
[102]
Torchilin VP, Levchenko TS, Lukyanov AN, et al. P-nitrophenylcarbonyl-PEG-PEliposomes: Fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups, Biochim. Biophys. Acta (BBA). Biomembr 2001; 1511: 397-411.
[http://dx.doi.org/10.1016/S0005-2728(01)00165-7] [PMID: 11286983]
[103]
Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007; 9(2): E128-47.
[http://dx.doi.org/10.1208/aapsj0902015] [PMID: 17614355]
[104]
Dicko A, Mayer LD, Tardi PG. Use of nanoscale delivery systems to maintain synergistic drug ratios in vivo. Expert Opin Drug Deliv 2010; 7(12): 1329-41.
[http://dx.doi.org/10.1517/17425247.2010.538678] [PMID: 21118030]
[105]
May JP, Li SD. Hyperthermia-induced drug targeting. Expert Opin Drug Deliv 2013; 10(4): 511-27.
[http://dx.doi.org/10.1517/17425247.2013.758631] [PMID: 23289519]
[106]
Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment – Where do we stand? A state-of-the-art review. Cancer Treat Rev 2013; 27: 00259-4.
[PMID: 24345772]
[107]
Zalba S, Garrido MJ. Liposomes, a promising strategy for clinical application of platinum derivatives. Expert Opin Drug Deliv 2013; 10(6): 829-44.
[http://dx.doi.org/10.1517/17425247.2013.778240] [PMID: 23470129]
[108]
Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm 2011; 8(6): 2101-41.
[http://dx.doi.org/10.1021/mp200394t] [PMID: 21974749]
[109]
Gelmon K, Hirte H, Fisher B, et al. A phase 1 study of OSI-211 given as an intravenous infusion days 1, 2, and 3 every three weeks in patients with solid cancers. Invest New Drugs 2004; 22(3): 263-75.
[http://dx.doi.org/10.1023/B:DRUG.0000026252.86842.e2] [PMID: 15122073]
[110]
Gaillard PJ, Gladdines W, Apperldorn CC, et al. Development of glutathione pegylated liposomal doxorubicin (2B3-101) for the treatment of brain cancer, in: AACR 103rd Annual Meeting. American Association for Cancer Research. Chicago, IL, USA 2012.
[111]
Pal A, Khan S, Wang YF, et al. Preclinical safety, pharmacokinetics and antitumor efficacy profile of liposome-entrapped SN-38 formulation. Anticancer Res 2005; 25(1A): 331-41.
[PMID: 15816556]
[112]
Taléns-Visconti R, Díez-Sales O, de Julián-Ortiz JV, Nácher A. Nanoliposomes in cancer therapy: Marketed products and current clinical trials. Int J Mol Sci 2022; 23(8): 4249.
[http://dx.doi.org/10.3390/ijms23084249] [PMID: 35457065]
[113]
Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 2011; 6(1): 555.
[http://dx.doi.org/10.1186/1556-276X-6-555] [PMID: 21995320]
[114]
Cui D, Zhang H, Sheng J, et al. Effects of CdSe/ZnS quantum dots covered multi-walled carbon nanotubes on murine embryonicstem cells. Nano Biomed Eng 2010; 2(4): 236-44.
[http://dx.doi.org/10.5101/nbe.v2i4.p236-244]
[115]
Huang P, Zhang C, Xu C, Bao L, Li Z. Preparation and characterization of near-infrared region absorption enhancer carbon nanotubes hybridmaterials. Nano Biomed Eng 2010; 2(4): 225-30.
[http://dx.doi.org/10.5101/nbe.v2i4.p225-230]
[116]
Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomedicine 2008; 4(3): 173-82.
[http://dx.doi.org/10.1016/j.nano.2008.04.002]
[117]
Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine 2008; 4(3): 183-200.
[http://dx.doi.org/10.1016/j.nano.2008.04.003] [PMID: 18550450]
[118]
Bao C, Tian F, Estrada G. Improved visualisation of internalised carbon nanotubes by maximising cell spreading on nanostructured substrates. Nano Biomed Eng 2010; 2(4): 201-7.
[http://dx.doi.org/10.5101/nbe.v2i4.p201-207]
[119]
Chen D, Wu X, Wang J, Han B, et al. Morphological observation of interaction between PAMAM dendrimer modified single walled carbon nanotubes and pancreatic cancer cells. Nano Biomed Eng 2010; 2(4): 60-5.
[120]
Ajima K, Murakami T, Mizoguchi Y, et al. Enhancement of in vivo anticancer effects of cisplatin by 2742 incorporation inside single-wall carbon nanohorns. ACS Nano 2008; 2743: 2057-64.
[121]
Hampel S, Kunze D, Haase D, Krämer K, Rauschenbach M, Ritschel M. A. 2745 Leonhardt, J. Thomas, S. Oswald, V. Hoffmann, B. Büchner, Carbon nanotubes 2746 filled with a chemotherapeutic agent: A nanocarrier mediates inhibition of tumor cell growth. Nanomedicine (Lond) 2008; 3: 175-82.
[http://dx.doi.org/10.2217/17435889.3.2.175] [PMID: 18373424]
[122]
Wu W, Li R, Bian X, et al. Covalently combining carbon nanotubes with anticancer agent: Preparation and antitumor activity. ACS Nano 2009; 3(9): 2740-50.
[http://dx.doi.org/10.1021/nn9005686] [PMID: 19702292]
[123]
Wang L, Zhang M, Zhang N, et al. Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int J Nanomedicine 2011; 6: 2641-52.
[http://dx.doi.org/10.2147/IJN.S24167] [PMID: 22114495]
[124]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[125]
Panyam J, Dali MM, Sahoo SK, et al. Polymer degradation and in vitro release of a model 2860 protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J 2861 Control Release 2003; 92: 173-87.
[126]
Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2006; 24(1): 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[127]
Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 2003; 20(5): 357-403.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i5.20] [PMID: 14959789]
[128]
Tong R, Cheng J. Anticancer polymeric nanomedicines. Polym Rev 2007; 47(3): 345-81.
[http://dx.doi.org/10.1080/15583720701455079]
[129]
Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 1995; 16(2-3): 295-309.
[http://dx.doi.org/10.1016/0169-409X(95)00031-2]
[130]
Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 2011; 6(12): 815-23.
[http://dx.doi.org/10.1038/nnano.2011.166] [PMID: 22020122]
[131]
Wolinsky J, Grinstaff M. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 2008; 60(9): 1037-55.
[http://dx.doi.org/10.1016/j.addr.2008.02.012] [PMID: 18448187]
[132]
Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 2000; 11(6): 910-7.
[http://dx.doi.org/10.1021/bc0000583] [PMID: 11087341]
[133]
Morgan MT, Carnahan MA, Immoos CE, et al. Dendritic molecular capsules for hydrophobic compounds. J Am Chem Soc 2003; 125(50): 15485-9.
[http://dx.doi.org/10.1021/ja0347383] [PMID: 14664594]
[134]
Padilla De Jesús OL, Ihre HR, Gagne L, Fréchet JMJ, Szoka FC Jr. Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation. Bioconjug Chem 2002; 13(3): 453-61.
[http://dx.doi.org/10.1021/bc010103m] [PMID: 12009933]
[135]
Wang L, Xu X, Zhang Y, et al. Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells. J Mater Sci Mater Med 2013; 24(9): 2137-44.
[http://dx.doi.org/10.1007/s10856-013-4969-3] [PMID: 23779153]
[136]
Ly TU, Tran NQ, Hoang TKD, Phan KN, Truong HN, Nguyen CK. Pegylated dendrimer and its effect in fluorouracil loading and release for enhancing antitumor activity. J Biomed Nanotechnol 2013; 9(2): 213-20.
[http://dx.doi.org/10.1166/jbn.2013.1479] [PMID: 23627047]
[137]
Malik N, Evagorou EG, Duncan R. Dendrimer-platinate. Anticancer Drugs 1999; 10(8): 767-76.
[http://dx.doi.org/10.1097/00001813-199909000-00010] [PMID: 10573209]
[138]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[139]
Zhang D, Zhang J, Li Q, et al. pH- and enzyme-sensitive IR820– paclitaxel conjugate self-assembled nanovehicles for near-infrared fluorescence imaging-guided chemo–photothermal therapy. ACS Appl Mater Interfaces 2018; 10(36): 30092-102.
[http://dx.doi.org/10.1021/acsami.8b09098] [PMID: 30118198]
[140]
A G, Kydd J, Piel B, Rai P. Targeting cancer using polymeric nanoparticle mediated combination chemotherapy. Int J Nanomed Nanosurg 2016; 2(3)
[http://dx.doi.org/10.16966/2470-3206.116] [PMID: 28042613]
[141]
Wang X, Wang Y, Chen ZG, Shin DM. Advances of cancer therapy by nanotechnology. Cancer Res Treat 2009; 41(1): 1-11.
[http://dx.doi.org/10.4143/crt.2009.41.1.1] [PMID: 19688065]
[142]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[143]
Wei QY, Xu YM, Lau ATY. Recent progress of nanocarrier-based therapy for solid malignancies. Cancers 2020; 12: 2783.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy