Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Short-term Administration of Naringin Improves Renal Function in Renal Ischemia-reperfusion by Increasing Aquaporin-1 and Aquaporin-2 Levels

Author(s): Zubeyde Demir, Gozde Acar, Dervis Dasdelen, Rasim Mogulkoc* and Abdulkerim Kasim Baltaci

Volume 21, Issue 15, 2024

Published on: 23 November, 2023

Page: [3221 - 3228] Pages: 8

DOI: 10.2174/0115701808271000231120094951

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Since renal ischemia-reperfusion (I/R) can lead to a serious health problem, aquaporins have important roles in preventing negative changes in electrolyte-water balance. This study aimed to determine the effect of naringin treatment on renal function and AQP1 and AQP2 levels in the kidney cortex and medulla tissues in experimental renal I/R in rats.

Materials and Methods: The study was carried out on 40 male Wistar-type rats, 8-12 weeks old. Experimental groups were formed as follows: 1) Control, 2) Sham+vehicle, 3) Renal (I/R)+vehicle, 4) Renal I/R+ Naringin (50 mg/kg/day) (3 days of administration), and 5) Renal I/R+ Naringin (100 mg/kg/day) (3 days supplementation) group. First, the left kidney was removed by nephrectomy under general anesthesia, and then the right kidney was subjected to 45 minutes of ischemia and then 72 hours of reperfusion. Naringin was given to the experimental animals by an intraperitoneal route at the beginning of the reperfusion, after 24 and 48 hours. At the end of the experiments, first of all, blood samples were taken from the heart in animals under general anesthesia, and then the animals were killed by cervical dislocation, and kidney tissue samples were taken. Osmolarity in plasma and urine and plasma creatinine levels were evaluated. AQP1 and AQP2 levels were analyzed in the kidney cortex and medulla tissues by ELISA and PCR methods.

Results: In kidney tissues, I/R led to a decrease in plasma and urinary osmolarity, AQP1 and AQP2 levels in the cortex and medulla, and an increase in urea and creatinine levels (p < 0.001). However, naringin supplementation corrected the deterioration to a certain extent.

Conclusion: The results of the study show that naringin supplementation at different doses, such as 50 or 100 mg/kg, may have protective effects on the deterioration of renal function caused by unilateral nephrectomy and I/R in rats.

Keywords: AQP1, AQP2, kidney I/R, naringin, rat, creatinine.

Graphical Abstract
[1]
Lerink, L.J.S.; de Kok, M.J.C.; Mulvey, J.F.; Le Dévédec, S.E.; Markovski, A.A.; Wüst, R.C.I.; Alwayn, I.P.J.; Ploeg, R.J.; Schaapherder, A.F.M.; Bakker, J.A.; Lindeman, J.H.N. Preclinical models versus clinical renal ischemia reperfusion injury: A systematic review based on metabolic signatures. Am. J. Transplant., 2022, 22(2), 344-370.
[http://dx.doi.org/10.1111/ajt.16868] [PMID: 34657378]
[2]
Wei, J.; Zhang, J.; Wang, L.; Jiang, S.; Fu, L.; Buggs, J.; Liu, R. New mouse model of chronic kidney disease transitioned from ischemic acute kidney injury. Am. J. Physiol. Renal Physiol., 2019, 317(2), F286-F295.
[http://dx.doi.org/10.1152/ajprenal.00021.2019] [PMID: 31116604]
[3]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[4]
Sener, G.; Sehirli, A.Ö.; Keyer-Uysal, M.; Arbak, S.; Ersoy, Y.; Yeğen, B.Ç. The protective effect of melatonin on renal ischemia-reperfusion injury in the rat. J. Pineal Res., 2002, 32(2), 120-126.
[http://dx.doi.org/10.1034/j.1600-079x.2002.1848.x] [PMID: 12071469]
[5]
Beker, B.M.; Corleto, M.G.; Fieiras, C.; Musso, C.G. Novel acute kidney injury biomarkers: Their characteristics, utility and concerns. Int. Urol. Nephrol., 2018, 50(4), 705-713.
[http://dx.doi.org/10.1007/s11255-017-1781-x] [PMID: 29307055]
[6]
Shiva, N.; Sharma, N.; Kulkarni, Y.A.; Mulay, S.R.; Gaikwad, A.B. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci., 2020, 256, 117860.
[http://dx.doi.org/10.1016/j.lfs.2020.117860] [PMID: 32534037]
[7]
Verkman, A.S. Aquaporin water channels and endothelial cell function. J. Anat., 2002, 200(6), 617-627.
[http://dx.doi.org/10.1046/j.1469-7580.2002.00058.x] [PMID: 12162729]
[8]
Takata, K.; Matsuzaki, T.; Tajika, Y. Aquaporins: water channel proteins of the cell membrane. Prog. Histochem. Cytochem., 2004, 39(1), 1-83.
[http://dx.doi.org/10.1016/j.proghi.2004.03.001] [PMID: 15242101]
[9]
Nielsen, S.; Smith, B.L.; Christensen, E.I.; Knepper, M.A.; Agre, P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J. Cell Biol., 1993, 120(2), 371-383.
[http://dx.doi.org/10.1083/jcb.120.2.371] [PMID: 7678419]
[10]
Sabolić, I.; Valenti, G.; Verbavatz, J.M.; Van Hoek, A.N.; Verkman, A.S.; Ausiello, D.A.; Brown, D. Localization of the CHIP28 water channel in rat kidney. Am. J. Physiol. Cell Physiol., 1992, 263(6), C1225-C1233.
[http://dx.doi.org/10.1152/ajpcell.1992.263.6.C1225] [PMID: 1282299]
[11]
Shin, S.; Lee, Y.J.; Kim, E.J.; Lee, A.S.; Kang, D.G.; Lee, H.S. Effect of Cuscuta chinensis on renal function in ischemia/reperfusion-induced acute renal failure rats. Am. J. Chin. Med., 2011, 39(5), 889-902.
[http://dx.doi.org/10.1142/S0192415X11009287] [PMID: 21905280]
[12]
Han, M.; Li, S.; Xie, H.; Liu, Q.; Wang, A.; Hu, S.; Zhao, X.; Kong, Y.; Wang, W.; Li, C. Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol., 2021, 320(3), F308-F321.
[http://dx.doi.org/10.1152/ajprenal.00577.2020] [PMID: 33427060]
[13]
Park, J.H.; Kho, M.C.; Oh, H.C.; Kim, Y.C.; Yoon, J.J.; Lee, Y.J.; Kang, D.G.; Lee, H.S. 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose from Galla rhois Ameliorates renal tubular injury and microvascular inflammation in acute kidney injury rats. Am. J. Chin. Med., 2018, 46(4), 785-800.
[http://dx.doi.org/10.1142/S0192415X18500416] [PMID: 29754505]
[14]
Chtourou, Y.; Gargouri, B.; Kebieche, M.; Fetoui, H. Naringin abrogates cisplatin-induced cognitive deficits and cholinergic dysfunction through the down-regulation of AChE expression and iNOS signaling pathways in hippocampus of aged rats. J. Mol. Neurosci., 2015, 56(2), 349-362.
[http://dx.doi.org/10.1007/s12031-015-0547-0] [PMID: 25896911]
[15]
Wang, L.; Zhang, Z.; Wang, H. Naringin attenuates cerebral ischemia-reperfusion injury in rats by inhibiting endoplasmic reticulum stress. Transl. Neurosci., 2021, 12(1), 190-197.
[http://dx.doi.org/10.1515/tnsci-2020-0170] [PMID: 34046215]
[16]
Asvapromtada, S.; Sonoda, H.; Kinouchi, M.; Oshikawa, S.; Takahashi, S.; Hoshino, Y.; Sinlapadeelerdkul, T.; Yokota-Ikeda, N.; Matsuzaki, T.; Ikeda, M. Characterization of urinary exosomal release of aquaporin-1 and -2 after renal ischemia-reperfusion in rats. Am. J. Physiol. Renal Physiol., 2018, 314(4), F584-F601.
[http://dx.doi.org/10.1152/ajprenal.00184.2017] [PMID: 29357442]
[17]
Kim, E.J.; Lee, Y.J.; Ahn, Y.M.; Lee, H.; Kang, D.G.; Lee, H.S. Renoprotective effect of Alpiniae oxyphyllae Fructus on ischemia/reperfusion-induced acute renal failure. Arch. Pharm. Res., 2013, 36(8), 1004-1012.
[http://dx.doi.org/10.1007/s12272-013-0117-3] [PMID: 23645527]
[18]
Ohkita, M.; Nakajima, A.; Ueda, K.; Takaoka, M.; Kiso, Y.; Matsumura, Y. Preventive effect of flavangenol on ischemia/reperfusion-induced acute renal failure in rats. Biol. Pharm. Bull., 2005, 28(9), 1655-1657.
[http://dx.doi.org/10.1248/bpb.28.1655] [PMID: 16141534]
[19]
Ashtiyani, S.C.; Najafi, H.; Firouzifar, M.R.; Shafaat, O. Grape seed extract for reduction of renal disturbances following reperfusion in rats. Iran. J. Kidney Dis., 2013, 7(1), 28-35.
[PMID: 23314139]
[20]
Ashtiyani, S.C.; Najafi, H.; Kabirinia, K.; Vahedi, E.; Jamebozorky, L. Oral omega-3 fatty acid for reduction of kidney dysfunction induced by reperfusion injury in rats. Iran. J. Kidney Dis., 2012, 6(4), 275-283.
[PMID: 22797097]
[21]
Kang, D.G.; Sohn, E.J.; Moon, M.K.; Mun, Y.J.; Woo, W.H.; Kim, M.K.; Lee, H.S. Yukmijihwang-tang ameliorates ischemia/reperfusion-induced renal injury in rats. J. Ethnopharmacol., 2006, 104(1-2), 47-53.
[http://dx.doi.org/10.1016/j.jep.2005.08.044] [PMID: 16183223]
[22]
Owji, S.M.; Nikeghbal, E.; Moosavi, S.M. Comparison of ischaemia–reperfusion‐induced acute kidney injury by clamping renal arteries, veins or pedicles in anaesthetized rats. Exp. Physiol., 2018, 103(10), 1390-1402.
[http://dx.doi.org/10.1113/EP087140] [PMID: 30091805]
[23]
Amini, N.; Maleki, M.; Badavi, M. Nephroprotective activity of naringin against chemical-induced toxicity and renal ischemia/reperfusion injury: A review. Avicenna J. Phytomed., 2022, 12(4), 357-370.
[http://dx.doi.org/10.22038/ajp.2022.19620] [PMID: 35782769]
[24]
Huang, H.; van Dullemen, L.F.A.; Akhtar, M.Z.; Faro, M.L.L.; Yu, Z.; Valli, A.; Dona, A.; Thézénas, M.L.; Charles, P.D.; Fischer, R.; Kaisar, M.; Leuvenink, H.G.D.; Ploeg, R.J.; Kessler, B.M. Proteo-metabolomics reveals compensation between ischemic and non-injured contralateral kidneys after reperfusion. Sci. Rep., 2018, 8(1), 8539.
[http://dx.doi.org/10.1038/s41598-018-26804-8] [PMID: 29867102]
[25]
Andrianova, N.V.; Popkov, V.A.; Klimenko, N.S.; Tyakht, A.V.; Baydakova, G.V.; Frolova, O.Y.; Zorova, L.D.; Pevzner, I.B.; Zorov, D.B.; Plotnikov, E.Y. Microbiome-metabolome signature of acute kidney injury. Metabolites, 2020, 10(4), 142.
[http://dx.doi.org/10.3390/metabo10040142] [PMID: 32260384]
[26]
Pan, P.L.; Song, W.; Yang, J.; Huang, R.; Chen, K.; Gong, Q.Y.; Zhong, J.G.; Shi, H.C.; Shang, H.F. Gray matter atrophy in behavioral variant frontotemporal dementia: A meta-analysis of voxel-based morphometry studies. Dement. Geriatr. Cogn. Disord., 2012, 33(2-3), 141-148.
[http://dx.doi.org/10.1159/000338176] [PMID: 22722668]
[27]
Chihanga, T.; Ma, Q.; Nicholson, J.D.; Ruby, H.N.; Edelmann, R.E.; Devarajan, P.; Kennedy, M.A. NMR spectroscopy and electron microscopy identification of metabolic and ultrastructural changes to the kidney following ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol., 2018, 314(2), F154-F166.
[http://dx.doi.org/10.1152/ajprenal.00363.2017] [PMID: 28978534]
[28]
Lei, L.; Wang, W.; Jia, Y.; Su, L.; Zhou, H.; Verkman, A.S.; Yang, B. Aquaporin-3 deletion in mice results in renal collecting duct abnormalities and worsens ischemia-reperfusion injury. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(6), 1231-1241.
[http://dx.doi.org/10.1016/j.bbadis.2017.03.012] [PMID: 28344130]
[29]
Lai, H.J.; Zhan, Y.Q.; Qiu, Y.X.; Ling, Y.H.; Zhang, X.Y.; Chang, Z.N.; Zhang, Y.N.; Liu, Z.M.; Wen, S.H. HMGB1 signaling-regulated endoplasmic reticulum stress mediates intestinal ischemia/reperfusion-induced acute renal damage. Surgery, 2021, 170(1), 239-248.
[http://dx.doi.org/10.1016/j.surg.2021.01.042] [PMID: 33745733]
[30]
Ren, C.C.; Zhu, W.; Wang, Q.W.; Lu, Y.T.; Wang, Y.; Zhang, G.X.; Xie, J.F.; Wu, J.W.; Jia, Z.M.; Zhang, T.; Su, Z.Q.; Wen, J.G. The renal protect function of erythropoietin after release of bilateral ureteral obstruction in a rat model. Clin. Sci., 2018, 132(18), 2071-2085.
[http://dx.doi.org/10.1042/CS20180178] [PMID: 29959186]
[31]
Changizi Ashtiyani, S.; Najafi, H.; Jalalvandi, S.; Hosseinei, F. Protective effects of Rosa canina L fruit extracts on renal disturbances induced by reperfusion injury in rats. Iran. J. Kidney Dis., 2013, 7(4), 290-298.
[PMID: 23880806]
[32]
Takaoka, M.; Ohkita, M.; Kobayashi, Y.; Yuba, M.; Matsumura, Y. Protective effect of alpha-lipoic acid against ischaemic acute renal failure in rats. Clin. Exp. Pharmacol. Physiol., 2002, 29(3), 189-194.
[http://dx.doi.org/10.1046/j.1440-1681.2002.03624.x] [PMID: 11906481]
[33]
Caglayan, C.; Kandemir, F.M.; Yildirim, S.; Kucukler, S.; Eser, G. Rutin protects mercuric chloride‐induced nephrotoxicity via targeting of aquaporin 1 level, oxidative stress, apoptosis and inflammation in rats. J. Trace Elem. Med. Biol., 2019, 54, 69-78.
[http://dx.doi.org/10.1016/j.jtemb.2019.04.007] [PMID: 31109623]
[34]
Singh, D.; Chopra, K. The effect of naringin, a bioflavonoid on ischemia-reperfusion induced renal injury in rats. Pharmacol. Res., 2004, 50(2), 187-193.
[http://dx.doi.org/10.1016/j.phrs.2004.01.007] [PMID: 15177308]
[35]
Oshikawa, S.; Sonoda, H.; Ikeda, M. Aquaporins in urinary extracellular vesicles (Exosomes). Int. J. Mol. Sci., 2016, 17(6), 957.
[http://dx.doi.org/10.3390/ijms17060957] [PMID: 27322253]
[36]
Agre, P. Aquaporin water channels (Nobel Lecture). Angew. Chem. Int. Ed., 2004, 43(33), 4278-4290.
[http://dx.doi.org/10.1002/anie.200460804] [PMID: 15368374]
[37]
Sonoda, H.; Yokota-Ikeda, N.; Oshikawa, S.; Kanno, Y.; Yoshinaga, K.; Uchida, K.; Ueda, Y.; Kimiya, K.; Uezono, S.; Ueda, A.; Ito, K.; Ikeda, M. Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol., 2009, 297(4), F1006-F1016.
[http://dx.doi.org/10.1152/ajprenal.00200.2009] [PMID: 19640902]
[38]
Pasten, C.; Alvarado, C.; Rocco, J.; Contreras, L.; Aracena, P.; Liberona, J.; Suazo, C.; Michea, L.; Irarrázabal, C.E. L -NIL prevents the ischemia and reperfusion injury involving TLR-4, GST, clusterin, and NFAT-5 in mice. Am. J. Physiol. Renal Physiol., 2019, 316(4), F624-F634.
[http://dx.doi.org/10.1152/ajprenal.00398.2018] [PMID: 30516425]
[39]
Jung, J.S.; Lee, R.H.; Koh, S.H.; Kim, Y.K. Changes in expression of sodium cotransporters and aquaporin-2 during ischemia-reperfusion injury in rabbit kidney. Ren. Fail., 2000, 22(4), 407-421.
[http://dx.doi.org/10.1081/JDI-100100883] [PMID: 10901179]
[40]
Kristensen, M.L.V.; Kierulf-Lassen, C.; Nielsen, P.M.; Krag, S.; Birn, H.; Nejsum, L.N.; Nørregaard, R. Remote ischemic perconditioning attenuates ischemia/reperfusion-induced downregulation of AQP2 in rat kidney. Physiol. Rep., 2016, 4(13), e12865.
[http://dx.doi.org/10.14814/phy2.12865] [PMID: 27405971]
[41]
Bae, E.H.; Lee, K.S.; Lee, J.; Ma, S.K.; Kim, N.H.; Choi, K.C.; Frøkiær, J.; Nielsen, S.; Kim, S.Y.; Kim, S.Z.; Kim, S.H.; Kim, S.W. Effects of α-lipoic acid on ischemia-reperfusion-induced renal dysfunction in rats. Am. J. Physiol. Renal Physiol., 2008, 294(1), F272-F280.
[http://dx.doi.org/10.1152/ajprenal.00352.2007] [PMID: 18032550]
[42]
Shen, S.; Jin, Y.; Li, W.; Liu, X.; Zhang, T.; Xia, W.; Wang, Y.; Ma, K. Recombinant human erythropoietin pretreatment attenuates acute renal tubular injury against ischemia-reperfusion by restoring transient receptor potential channel-6 expression and function in collecting ducts. Crit. Care Med., 2014, 42(10), e663-e672.
[http://dx.doi.org/10.1097/CCM.0000000000000542] [PMID: 25072760]
[43]
Amini, N.; Sarkaki, A.; Dianat, M.; Mard, S.A.; Ahangarpour, A.; Badavi, M. The renoprotective effects of naringin and trimetazidine on renal ischemia/reperfusion injury in rats through inhibition of apoptosis and downregulation of micoRNA-10a. Biomed. Pharmacother., 2019, 112, 108568.
[http://dx.doi.org/10.1016/j.biopha.2019.01.029]
[44]
Amini, N.; Sarkaki, A.; Dianat, M.; Mard, S.A.; Ahangarpour, A.; Badavi, M. Protective effects of naringin and trimetazidine on remote effect of acute renal injury on oxidative stress and myocardial injury through Nrf-2 regulation. Pharmacol. Rep., 2019, 71(6), 1059-1066.
[http://dx.doi.org/10.1016/j.pharep.2019.06.007] [PMID: 31604166]
[45]
Zhang, H.; Zhou, X.; Zhong, Y.; Ji, L.; Yu, W.; Fang, J.; Ying, H.; Li, C. Naringin suppressed airway inflammation and ameliorated pulmonary endothelial hyperpermeability by upregulating Aquaporin1 in lipopolysaccharide/cigarette smoke-induced mice. Biomed. Pharmacother., 2022, 150, 113035.
[http://dx.doi.org/10.1016/j.biopha.2022.113035] [PMID: 35658207]
[46]
Shi, R.; Su, W.W.; Zhu, Z.T.; Guan, M.Y.; Cheng, K.L.; Fan, W.Y.; Wei, G.Y.; Li, P.B.; Yang, Z.Y.; Yao, H.L. Regulation effects of naringin on diesel particulate matter-induced abnormal airway surface liquid secretion. Phytomedicine, 2019, 63, 153004.
[http://dx.doi.org/10.1016/j.phymed.2019.153004] [PMID: 31301536]
[47]
Gu, L.; Wang, F.; Wang, Y.; Sun, D.; Sun, Y.; Tian, T.; Meng, Q.; Yin, L.; Xu, L.; Lu, X.; Peng, J.; Lin, Y.; Sun, P. Naringin protects against inflammation and apoptosis induced by intestinal ischemia–reperfusion injury through deactivation of CGAS‐STING signaling pathway. Phytother. Res., 2023, 37(8), 3495-3507.
[http://dx.doi.org/10.1002/ptr.7824] [PMID: 37125528]

© 2024 Bentham Science Publishers | Privacy Policy