Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles and Transdermal Drug Delivery: An Overview

Author(s): Lalit Kumar*, Gauree Kukreti, Ritesh Rana, Himanshu Chaurasia, Anchal Sharma, Neelam Sharma and Komal

Volume 29, Issue 37, 2023

Published on: 21 November, 2023

Page: [2940 - 2953] Pages: 14

DOI: 10.2174/0113816128275385231027054743

Price: $65

conference banner
Abstract

Background: Biodegradable polymeric nanoparticles have garnered pharmaceutical industry attention throughout the past decade. PLGA [Poly(lactic-co-glycolic acid)] is an excellent biodegradable polymer explored for the preparation of nanoparticles that are administered through various routes like intravenous and transdermal. PLGA's versatility makes it a good choice for the preparation of nanoparticles.

Objective: The main objective of this review paper was to summarize methods of preparation and characterization of PLGA nanoparticles along with their role in the transdermal delivery of various therapeutic agents.

Methods: A literature survey for the present review paper was done using various search engines like Pubmed, Google Scholar, and Science Direct.

Results: In comparison to traditional transdermal administration systems, PLGA nanoparticles have demonstrated several benefits in preclinical investigations, including fewer side effects, low dosage frequency, high skin permeability, and simplicity of application.

Conclusion: PLGA nanoparticles can be considered efficient nanocarriers for the transdermal delivery of drugs. Nevertheless, the clinical investigation of PLGA nanoparticles for the transdermal administration of therapeutic agents remains a formidable obstacle.

Keywords: Biodegradable, dosage frequency, nanoparticles, preclinical, PLGA, transdermal.

[1]
Peptu C, Rotaru R, Ignat L, et al. Nanotechnology approaches for pain therapy through transdermal drug delivery. Curr Pharm Des 2015; 21(42): 6125-39.
[http://dx.doi.org/10.2174/1381612821666151027152752] [PMID: 26503147]
[2]
Al Hanbali OA, Khan HMS, Sarfraz M, Arafat M, Ijaz S, Hameed A. Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharm 2019; 69(2): 197-215.
[http://dx.doi.org/10.2478/acph-2019-0016] [PMID: 31259729]
[3]
Quijia Quezada C, Azevedo CS, Charneau S, et al. Advances in nanocarriers as drug delivery systems in Chagas disease. Int J Nanomed 2019; 14: 6407-24.
[http://dx.doi.org/10.2147/IJN.S206109] [PMID: 31496694]
[4]
Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target 2016; 24(3): 179-91.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[5]
Khan N, Harun M, Nawaz A, Harjoh N, Wong T. Nanocarriers and their actions to improve skin permeability and transdermal drug delivery. Curr Pharm Des 2015; 21(20): 2848-66.
[http://dx.doi.org/10.2174/1381612821666150428145216] [PMID: 25925113]
[6]
Zhang H, Zhai Y, Yang X, Zhai G. Breaking the skin barrier: Achievements and future directions. Curr Pharm Des 2015; 21(20): 2713-24.
[http://dx.doi.org/10.2174/1381612821666150428124406] [PMID: 25925124]
[7]
Vitorino C, Sousa J, Pais A. Overcoming the skin permeation barrier: Challenges and opportunities. Curr Pharm Des 2015; 21(20): 2698-712.
[http://dx.doi.org/10.2174/1381612821666150428124053] [PMID: 25925125]
[8]
Jiménez-Rodríguez A, Guardado-Félix D, Antunes-Ricardo M. Challenges and strategies for topical and transdermal delivery of bioactive peptides. Crit Rev Ther Drug Carrier Syst 2022; 39(1): 1-31.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2021038141] [PMID: 34936316]
[9]
Kumar L, Utreja P. Transcending the cutaneous barrier through nanocarrier exploration for passive delivery of anti-hypertensive drugs: A critical review. Recent Pat Nanotechnol 2020; 14(3): 193-209.
[http://dx.doi.org/10.2174/1872210514666200519071734] [PMID: 32427090]
[10]
Rizwan M, Aqil M, Talegaonkar S, Azeem A, Sultana Y, Ali A. Enhanced transdermal drug delivery techniques: An extensive review of patents. Recent Pat Drug Deliv Formul 2009; 3(2): 105-24.
[http://dx.doi.org/10.2174/187221109788452285] [PMID: 19519571]
[11]
Tiwary A, Sapra B, Jain S. Innovations in transdermal drug delivery: Formulations and techniques. Recent Pat Drug Deliv Formul 2007; 1(1): 23-36.
[http://dx.doi.org/10.2174/187221107779814087] [PMID: 19075872]
[12]
El-Zaafarany GM, Nasr M. Insightful exploring of advanced nanocarriers for the topical/transdermal treatment of skin diseases. Pharm Dev Technol 2021; 26(10): 1136-57.
[http://dx.doi.org/10.1080/10837450.2021.2004606] [PMID: 34751091]
[13]
Chacko IA, Ghate VM, Dsouza L, Lewis SA. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B Biointerfaces 2020; 195: 111262.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111262] [PMID: 32736123]
[14]
Singh D, Pradhan M, Nag M, Singh MR. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif Cells Nanomed Biotechnol 2015; 43(4): 282-90.
[http://dx.doi.org/10.3109/21691401.2014.883401] [PMID: 24564350]
[15]
Cross S, Roberts M. Physical enhancement of transdermal drug application: Is delivery technology keeping up with pharmaceutical development? Curr Drug Deliv 2004; 1(1): 81-92.
[http://dx.doi.org/10.2174/1567201043480045] [PMID: 16305373]
[16]
Patzelt A, Lademann J. Drug delivery to hair follicles. Expert Opin Drug Deliv 2013; 10(6): 787-97.
[http://dx.doi.org/10.1517/17425247.2013.776038] [PMID: 23530745]
[17]
Patzelt A, Lademann J. Recent advances in follicular drug delivery of nanoparticles. Expert Opin Drug Deliv 2020; 17(1): 49-60.
[http://dx.doi.org/10.1080/17425247.2020.1700226] [PMID: 31829758]
[18]
Li J, Xu W, Liang Y, Wang H. The application of skin metabolomics in the context of transdermal drug delivery. Pharmacol Rep 2017; 69(2): 252-9.
[http://dx.doi.org/10.1016/j.pharep.2016.10.011] [PMID: 28126641]
[19]
Lademann J, Richter H, Schanzer S, et al. Bedeutung des follikulären Penetrationswegs für den Wirkstofftransport mittels Nanocarriern. Hautarzt 2019; 70(3): 185-92.
[http://dx.doi.org/10.1007/s00105-018-4343-y] [PMID: 30627746]
[20]
Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C 2018; 92: 1041-60.
[http://dx.doi.org/10.1016/j.msec.2017.12.036] [PMID: 30184728]
[21]
Guo X, Zuo X, Zhou Z, et al. PLGA-based micro/nanoparticles: An overview of their applications in respiratory diseases. Int J Mol Sci 2023; 24(5): 4333.
[http://dx.doi.org/10.3390/ijms24054333] [PMID: 36901762]
[22]
Feltrin FS, Agner T, Sayer C, Lona LMF. Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Adv Colloid Interface Sci 2022; 300: 102582.
[http://dx.doi.org/10.1016/j.cis.2021.102582] [PMID: 34953375]
[23]
Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: A unique polymer for drug delivery. Ther Deliv 2015; 6(1): 41-58.
[http://dx.doi.org/10.4155/tde.14.91] [PMID: 25565440]
[24]
Rocha CV, Gonçalves V, da Silva MC, Bañobre-López M, Gallo J. PLGA-based composites for various biomedical applications. Int J Mol Sci 2022; 23(4): 2034.
[http://dx.doi.org/10.3390/ijms23042034] [PMID: 35216149]
[25]
Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater 2018; 73: 38-51.
[http://dx.doi.org/10.1016/j.actbio.2018.04.006] [PMID: 29653217]
[26]
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[27]
Zhi K, Raji B, Nookala AR, et al. PLGA nanoparticle-based formulations to cross the blood-brain barrier for drug delivery: From R&D to cGMP. Pharmaceutics 2021; 13(4): 500.
[http://dx.doi.org/10.3390/pharmaceutics13040500] [PMID: 33917577]
[28]
Md S, Alhakamy NA, Neamatallah T, et al. Development, characterization, and evaluation of α-mangostin-loaded polymeric nanoparticle gel for topical therapy in skin cancer. Gels 2021; 7(4): 230.
[http://dx.doi.org/10.3390/gels7040230] [PMID: 34842729]
[29]
Jin S, Xia X, Huang J, et al. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021; 127: 56-79.
[http://dx.doi.org/10.1016/j.actbio.2021.03.067] [PMID: 33831569]
[30]
Khan I, Gothwal A, Sharma AK, et al. PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit Rev Ther Drug Carrier Syst 2016; 33(2): 159-93.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015273] [PMID: 27651101]
[31]
Dinarvand R, Sepehri N, Manouchehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anti-cancer agents. Int J Nanomedicine 2011; 6: 877-95.
[http://dx.doi.org/10.2147/IJN.S18905] [PMID: 21720501]
[32]
Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: A new paradigm in biomedical applications. Trends Analyt Chem 2016; 80: 30-40.
[http://dx.doi.org/10.1016/j.trac.2015.06.014]
[33]
Operti MC, Bernhardt A, Grimm S, Engel A, Figdor CG, Tagit O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int J Pharm 2021; 605: 120807.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120807] [PMID: 34144133]
[34]
Mir M, Ahmed N, Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 2017; 159: 217-31.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.038] [PMID: 28797972]
[35]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[36]
Bala I, Hariharan S, Kumar MNVR. PLGA nanoparticles in drug delivery: The state of the art. Crit Rev Ther Drug Carrier Syst 2004; 21(5): 387-422.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20] [PMID: 15719481]
[37]
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9(4): 153-74.
[http://dx.doi.org/10.1007/s40204-020-00139-y] [PMID: 33058072]
[38]
Qi F, Wu J, Li H, Ma G. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects. Front Chem Sci Eng 2019; 13(1): 14-27.
[http://dx.doi.org/10.1007/s11705-018-1729-4]
[39]
Sah E, Sah H. Recent trends in preparation of poly (lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with anti-solvent. J Nanomater 2015; 2015(1): 1-22.
[http://dx.doi.org/10.1155/2015/794601]
[40]
Lancheros R, Guerrero CA, Godoy-Silva RD. Improvement of N-acetylcysteine loaded in PLGA nanoparticles by nanoprecipitation method. J Nanotechnol 2018; 2018: 3620373.
[http://dx.doi.org/10.1155/2018/3620373]
[41]
Huang W, Zhang C. Tuning the size of poly(lactic‐co‐glycolic Acid) (PLGA) nanoparticles fabricated by nanoprecipitation. Biotechnol J 2018; 13(1): 1700203.
[http://dx.doi.org/10.1002/biot.201700203] [PMID: 28941234]
[42]
Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA, et al. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Advances 2020; 10(8): 4218-31.
[http://dx.doi.org/10.1039/C9RA10857B] [PMID: 35495261]
[43]
Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res 2004; 21(8): 1428-39.
[http://dx.doi.org/10.1023/B:PHAM.0000036917.75634.be] [PMID: 15359578]
[44]
Tao J, Chow SF, Zheng Y. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Acta Pharm Sin B 2019; 9(1): 4-18.
[http://dx.doi.org/10.1016/j.apsb.2018.11.001] [PMID: 30766774]
[45]
Todaro B, Moscardini A, Luin S. Pioglitazone-loaded PLGA nanoparticles: Towards the most reliable synthesis method. Int J Mol Sci 2022; 23(5): 2522.
[http://dx.doi.org/10.3390/ijms23052522] [PMID: 35269665]
[46]
Li W, Chen Q, Baby T, et al. Insight into drug encapsulation in polymeric nanoparticles using microfluidic nanoprecipitation. Chem Eng Sci 2021; 235: 116468.
[http://dx.doi.org/10.1016/j.ces.2021.116468]
[47]
Arpagaus C. PLA/PLGA nanoparticles prepared by nano spray drying. J Pharm Investig 2019; 49(4): 405-26.
[http://dx.doi.org/10.1007/s40005-019-00441-3]
[48]
Wan F, Yang M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 2016; 498(1-2): 82-95.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.025] [PMID: 26688034]
[49]
Anwer MK, Al-Mansoor MA, Jamil S, Al-Shdefat R, Ansari MN, Shakeel F. Development and evaluation of PLGA polymer based nano-particles of quercetin. Int J Biol Macromol 2016; 92: 213-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.002] [PMID: 27381585]
[50]
Fawzy AS, Priyadarshini BM, Selvan ST, Lu TB, Neo J. Proanthocyanidins-loaded nanoparticles enhance dentin degradation resistance. J Dent Res 2017; 96(7): 780-9.
[http://dx.doi.org/10.1177/0022034517691757] [PMID: 28182862]
[51]
Chelopo MP, Kalombo L, Wesley-Smith J, Grobler A, Hayeshi R. The fabrication and characterization of a PLGA nanoparticle–Pheroid® combined drug delivery system. J Mater Sci 2017; 52(6): 3133-45.
[http://dx.doi.org/10.1007/s10853-016-0602-4]
[52]
Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med 2015; 8(10): 19670-81.
[PMID: 26770631]
[53]
Xiao Y, Yao W, Lin M, et al. Icaritin-loaded PLGA nanoparticles activate immunogenic cell death and facilitate tumor recruitment in mice with gastric cancer. Drug Deliv 2022; 29(1): 1712-25.
[http://dx.doi.org/10.1080/10717544.2022.2079769] [PMID: 35635307]
[54]
Konan Y, Cerny R, Favet J, Berton M, Gurny R, Allémann E. Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm 2003; 55(1): 115-24.
[http://dx.doi.org/10.1016/S0939-6411(02)00128-5] [PMID: 12551712]
[55]
Konan YN, Berton M, Gurny R, Allémann E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci 2003; 18(3-4): 241-9.
[http://dx.doi.org/10.1016/S0928-0987(03)00017-4] [PMID: 12659935]
[56]
Landfester K. Preparation of polymer and hybrid colloids by miniemulsion for biomedical applications. Colloidal polymers. CRC Press 2003; pp. 235-54.
[http://dx.doi.org/10.1201/9780203911488.ch9]
[57]
Deng C, Chen Y, Zhang L, et al. Delivery of FK506-loaded PLGA nanoparticles prolongs cardiac allograft survival. Int J Pharm 2020; 575: 118951.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118951] [PMID: 31843550]
[58]
Yadav K, Sawant K. Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation. Curr Drug Deliv 2010; 7(1): 51-64.
[http://dx.doi.org/10.2174/156720110790396517] [PMID: 20044908]
[59]
Ray S, Ghosh Ray S, Mandal S. Development of bicalutamide-loaded PLGA nanoparticles: Preparation, characterization and in-vitro evaluation for the treatment of prostate cancer. Artif Cells Nanomed Biotechnol 2017; 45(5): 944-54.
[http://dx.doi.org/10.1080/21691401.2016.1196457] [PMID: 27327352]
[60]
Agel MR, Baghdan E, Pinnapireddy SR, Lehmann J, Schäfer J, Bakowsky U. Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids Surf B Biointerfaces 2019; 178: 460-8.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.027] [PMID: 30921681]
[61]
Rao DA, Forrest ML, Alani AWG, Kwon GS, Robinson JR. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J Pharm Sci 2010; 99(4): 2018-31.
[http://dx.doi.org/10.1002/jps.21970] [PMID: 19902520]
[62]
Abd El Hady WE, El-Emam GA, Saleh NE, Hamouda MM, Motawea A. The idiosyncratic efficacy of spironolactone-loaded PLGA nanoparticles against murine intestinal schistosomiasis. Int J Nanomedicine 2023; 18: 987-1005.
[http://dx.doi.org/10.2147/IJN.S389449] [PMID: 36860210]
[63]
Posadowska U, Brzychczy-Włoch M, Pamuła E. Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng Biomech 2015; 17(3): 41-8.
[PMID: 26687562]
[64]
Zhang Y, Zhang J, Chen M, et al. A bioadhesive nanoparticle-hydrogel hybrid system for localized antimicrobial drug delivery. ACS Appl Mater Interfaces 2016; 8(28): 18367-74.
[http://dx.doi.org/10.1021/acsami.6b04858] [PMID: 27352845]
[65]
Valizadeh H, Mohammadi G, Ehyaei R, et al. Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Pharmazie 2012; 67(1): 63-8.
[PMID: 22393833]
[66]
Ucak S, Sudagidan M, Borsa BA, Mansuroglu B, Ozalp VC. Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nano-particles for Staphylococcus aureus strains. World J Microbiol Biotechnol 2020; 36(5): 69.
[http://dx.doi.org/10.1007/s11274-020-02845-y] [PMID: 32333113]
[67]
Booysen E, Bezuidenhout M, van Staden ADP, Dimitrov D, Deane SM, Dicks LMT. Antibacterial activity of vancomycin encapsulated in poly(dl-lactide-co-glycolide) nanoparticles using electrospraying. Probiotics Antimicrob Proteins 2019; 11(1): 310-6.
[http://dx.doi.org/10.1007/s12602-018-9437-4] [PMID: 29961212]
[68]
Darvishi B, Manoochehri S, Kamalinia G, et al. Preparation and antibacterial activity evaluation of 18-β-glycyrrhetinic acid loaded PLGA nanoparticles. Iran J Pharm Res 2015; 14(2): 373-83.
[PMID: 25901144]
[69]
Lengert EV, Talnikova EE, Tuchin VV, Svenskaya YI. Prospective nanotechnology-based strategies for enhanced intra- and transdermal delivery of antifungal drugs. Skin Pharmacol Physiol 2020; 33(5): 261-9.
[http://dx.doi.org/10.1159/000511038] [PMID: 33091913]
[70]
Akhtar N, Verma A, Pathak K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr Pharm Des 2015; 21(20): 2892-913.
[http://dx.doi.org/10.2174/1381612821666150428150456] [PMID: 25925110]
[71]
Santos RS, Loureiro KC, Rezende PS, et al. Innovative nanocompounds for cutaneous administration of classical antifungal drugs: A systematic review. J Dermatolog Treat 2019; 30(6): 617-26.
[http://dx.doi.org/10.1080/09546634.2018.1479726] [PMID: 29856232]
[72]
Sadozai SK, Khan SA, Karim N, et al. Ketoconazole-loaded PLGA nanoparticles and their synergism against Candida albicans when combined with silver nanoparticles. J Drug Deliv Sci Technol 2020; 56: 101574.
[http://dx.doi.org/10.1016/j.jddst.2020.101574]
[73]
Yenice Gürsu B. Potential antibiofilm activity of farnesol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans. J Anal Sci Technol 2020; 11: 1-10.
[http://dx.doi.org/10.1186/s40543-020-00241-7]
[74]
Gursu BY, Dag İ, Dikmen G. Antifungal and antibiofilm efficacy of cinnamaldehyde-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans. Int Microbiol 2022; 25(2): 245-58.
[http://dx.doi.org/10.1007/s10123-021-00210-z] [PMID: 34528147]
[75]
Mohammadi G, Namadi E, Mikaeili A, Mohammadi P, Adibkia K. Preparation, physicochemical characterization and anti-fungal evaluation of the Nystatin-loaded Eudragit RS100/PLGA nanoparticles. J Drug Deliv Sci Technol 2017; 38: 90-6.
[http://dx.doi.org/10.1016/j.jddst.2017.02.004]
[76]
Alhowyan AA, Altamimi MA, Kalam MA, et al. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies. J Microbiol Methods 2019; 161: 87-95.
[http://dx.doi.org/10.1016/j.mimet.2019.01.020] [PMID: 30738109]
[77]
Iadnut A, Mamoon K, Thammasit P, et al. In vitro antifungal and antivirulence activities of biologically synthesized ethanolic extract of propolis-loaded plga nanoparticles against Candida albicans. Evid Based Complement Alternat Med 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/3715481] [PMID: 31871479]
[78]
Bernal-Chávez S, Nava-Arzaluz MG, Quiroz-Segoviano RIY, Ganem-Rondero A. Nanocarrier-based systems for wound healing. Drug Dev Ind Pharm 2019; 45(9): 1389-402.
[http://dx.doi.org/10.1080/03639045.2019.1620270] [PMID: 31099263]
[79]
Chakrabarti S, Chattopadhyay P, Islam J, Ray S, Raju PS, Mazumder B. Aspects of nanomaterials in wound healing. Curr Drug Deliv 2018; 16(1): 26-41.
[http://dx.doi.org/10.2174/1567201815666180918110134] [PMID: 30227817]
[80]
Wang W, Lu K, Yu C, Huang Q, Du YZ. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology 2019; 17(1): 82.
[http://dx.doi.org/10.1186/s12951-019-0514-y] [PMID: 31291960]
[81]
Chereddy KK, Her CH, Comune M, et al. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release 2014; 194: 138-47.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.016] [PMID: 25173841]
[82]
Azzazy HMES, Fahmy SA, Mahdy NK, Meselhy MR, Bakowsky U. Chitosan-Coated PLGA nanoparticles loaded with Peganum harmala alkaloids with promising antibacterial and wound healing activities. Nanomaterials 2021; 11(9): 2438.
[http://dx.doi.org/10.3390/nano11092438] [PMID: 34578755]
[83]
Abdelkader DH, Tambuwala MM, Mitchell CA, et al. Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly(vinyl alcohol)-borate hydrogels. Drug Deliv Transl Res 2018; 8(5): 1053-65.
[http://dx.doi.org/10.1007/s13346-018-0554-0] [PMID: 29971752]
[84]
Bairagi U, Mittal P, Singh J, Mishra B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev Ind Pharm 2018; 44(11): 1783-96.
[http://dx.doi.org/10.1080/03639045.2018.1496448] [PMID: 29973105]
[85]
Akolpoğlu Başaran DD, Gündüz U, Tezcaner A, Keskin D. Topical delivery of heparin from PLGA nanoparticles entrapped in nano-fibers of sericin/gelatin scaffolds for wound healing. Int J Pharm 2021; 597: 120207.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120207] [PMID: 33524526]
[86]
Losi P, Briganti E, Errico C, et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 2013; 9(8): 7814-21.
[http://dx.doi.org/10.1016/j.actbio.2013.04.019] [PMID: 23603001]
[87]
Ramezanpour S, Tavatoni P, Akrami M, Navaei-Nigjeh M, Shiri P. Potential wound healing of plga nanoparticles containing a novel l-carnitine-ghk peptide conjugate. J Nanomater 2022; 2022.
[88]
Benbow T, Campbell J. Microemulsions as transdermal drug delivery systems for nonsteroidal anti-inflammatory drugs (NSAIDs): A literature review. Drug Dev Ind Pharm 2019; 45(12): 1849-55.
[http://dx.doi.org/10.1080/03639045.2019.1680996] [PMID: 31617433]
[89]
Shang H, Younas A, Zhang N. Recent advances on transdermal delivery systems for the treatment of arthritic injuries: From classical treatment to nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022; 14(3): e1778.
[http://dx.doi.org/10.1002/wnan.1778] [PMID: 35112483]
[90]
Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int J Pharm 2019; 555: 49-62.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.032] [PMID: 30448309]
[91]
Javadzadeh Y, Ahadi F, Davaran S, Mohammadi G, Sabzevari A, Adibkia K. Preparation and physicochemical characterization of naproxen-PLGA nanoparticles. Colloids Surf B Biointerfaces 2010; 81(2): 498-502.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.047] [PMID: 20719477]
[92]
Luengo J, Schneider M, Schneider AM, Lehr CM, Schaefer UF. Human skin permeation enhancement using PLGa nanoparticles is mediated by local pH changes. Pharmaceutics 2021; 13(10): 1608.
[http://dx.doi.org/10.3390/pharmaceutics13101608] [PMID: 34683901]
[93]
Parra A, Clares B, Rosselló A, et al. Ex vivo permeation of carprofen from nanoparticles: A comprehensive study through human, porcine and bovine skin as anti-inflammatory agent. Int J Pharm 2016; 501(1-2): 10-7.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.056] [PMID: 26826569]
[94]
Abrego G, Alvarado H, Souto EB, et al. Biopharmaceutical profile of hydrogels containing pranoprofen-loaded PLGA nanoparticles for skin administration: In vitro, ex vivo and in vivo characterization. Int J Pharm 2016; 501(1-2): 350-61.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.071] [PMID: 26844786]
[95]
Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H, Makino K. Enhanced transdermal delivery of indomethacin-loaded PLGA nano-particles by iontophoresis. Colloids Surf B Biointerfaces 2011; 88(2): 706-10.
[http://dx.doi.org/10.1016/j.colsurfb.2011.08.004] [PMID: 21885261]
[96]
Turk CTS, Oz UC, Serim TM, Hascicek C. Formulation and optimization of nonionic surfactants emulsified nimesulide-loaded PLGA-based nanoparticles by design of experiments. AAPS PharmSciTech 2014; 15(1): 161-76.
[http://dx.doi.org/10.1208/s12249-013-0048-9] [PMID: 24222270]
[97]
Dilawar N, Ur-Rehman T, Shah KU, Fatima H, Alhodaib A. Development and evaluation of plga nanoparticle-loaded organogel for the transdermal delivery of risperidone. Gels 2022; 8(11): 709.
[http://dx.doi.org/10.3390/gels8110709] [PMID: 36354616]
[98]
Kim HG, Gater DL, Kim YC. Development of transdermal vitamin D3 (VD3) delivery system using combinations of PLGA nanoparticles and microneedles. Drug Deliv Transl Res 2018; 8(1): 281-90.
[http://dx.doi.org/10.1007/s13346-017-0460-x] [PMID: 29247316]
[99]
Han S, Jang HS, Shim JH, et al. Development of minoxidil-loaded double emulsion PLGA nanoparticles for the treatment of hair loss. J Ind Eng Chem 2022; 113: 161-9.
[http://dx.doi.org/10.1016/j.jiec.2022.05.040]
[100]
Iannitelli A, Grande R, Stefano AD, et al. Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nano-particles against microbial biofilm. Int J Mol Sci 2011; 12(8): 5039-51.
[http://dx.doi.org/10.3390/ijms12085039] [PMID: 21954343]
[101]
Jain S, Mittal AK, Jain A. Enhanced topical delivery of cyclosporin-A using PLGA nanoparticles as carrier. Curr Nanosci 2011; 7(4): 524-30.
[http://dx.doi.org/10.2174/157341311796196835]
[102]
Sun L, Liu Z, Wang L, et al. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release 2017; 254: 44-54.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.385] [PMID: 28344018]
[103]
Takeuchi I, Fukuda K, Kobayashi S, Makino K. Transdermal delivery of estradiol-loaded PLGA nanoparticles using iontophoresis for treatment of osteoporosis. Biomed Mater Eng 2016; 27(5): 475-83.
[http://dx.doi.org/10.3233/BME-161601] [PMID: 27885995]
[104]
Simon B, Taherkallah N, Amit B. Nanoparticles for skin and systemic delivery of drugs. Japanese Patent JP6112615B2, 2017.
[105]
Simon B, Taher N, Nour K, Amit B. Nanoparticles for cosmetic applications. WIPO Patent WO2012101638A2, 2012.
[106]
Junfeng B, Baohua L, Pinghui Y, Feihong L, Liqi L. Nanoparticle-loaded soluble microneedle and preparation method and application thereof. Chinese Patent CN116036004A, 2023.
[107]
Simon B, Taher N, Nour K, Amit B. Nanoparticles for dermal and systemic delivery of drugs. US Patent US20150374627A1, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy