Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Obesity-associated Airway Hyperresponsiveness: Mechanisms Underlying Inflammatory Markers and Possible Pharmacological Interventions

Author(s): Manash Pratim Pathak*, Pompy Patowary, Pronobesh Chattopadhyay, Pervej Alom Barbhuiyan, Johirul Islam, Jyotchna Gogoi and Wankupar Wankhar

Volume 24, Issue 9, 2024

Published on: 10 November, 2023

Page: [1053 - 1068] Pages: 16

DOI: 10.2174/0118715303256440231028072049

Price: $65

conference banner
Abstract

Obesity is rapidly becoming a global health problem affecting about 13% of the world’s population affecting women and children the most. Recent studies have stated that obese asthmatic subjects suffer from an increased risk of asthma, encounter severe symptoms, respond poorly to anti-asthmatic drugs, and ultimately their quality-of-life decreases. Although, the association between airway hyperresponsiveness (AHR) and obesity is a growing concern among the public due to lifestyle and environmental etiologies, however, the precise mechanism underlying this association is yet to establish. Apart from aiming at the conventional antiasthmatic targets, treatment should be directed towards ameliorating obesity pathogenesis too. Understanding the pathogenesis underlying the association between obesity and AHR is limited, however, a plethora of obesity pathologies have been reported viz., increased pro-inflammatory and decreased anti-inflammatory adipokines, depletion of ROS controller Nrf2/HO-1 axis, NLRP3 associated macrophage polarization, hypertrophy of WAT, and down-regulation of UCP1 in BAT following down-regulated AMPKα and melanocortin pathway that may be correlated with AHR. Increased waist circumference (WC) or central obesity was thought to be related to severe AHR, however, some recent reports suggest body mass index (BMI), not WC tends to exaggerate airway closure in AHR due to some unknown mechanisms. This review aims to co-relate the above-mentioned mechanisms that may explain the copious relation underlying obesity and AHR with the help of published reports. A proper understanding of these mechanisms discussed in this review will ensure an appropriate treatment plan for patients through advanced pharmacological interventions.

Keywords: Obesity, co-morbidities, airway hyperresponsiveness, adiponectin, macrophage polarization, NLRP3, UCP1.

Graphical Abstract
[1]
WHO. World Obesity Day 2022 – Accelerating action to stop obesity. 2022. Available From: https://www.who.int/news/item/04-03-2022-world-obesity-day-20 22-accelerating-action-to-stop-obesity
[2]
Shailesh, H.; Janahi, I.A. Role of obesity in inflammation and remodeling of asthmatic airway. Life (Basel), 2022, 12(7), 948.
[http://dx.doi.org/10.3390/life12070948] [PMID: 35888038]
[3]
Akinbami, L.J.; Fryar, C.D. Current asthma prevalence by weight status among adults: United States, 2001-2014. NCHS Data Brief, 2016, 239(239), 1-8.
[PMID: 27019018]
[4]
Chen, Y.; Dales, R.; Tang, M.; Krewski, D. Obesity may increase the incidence of asthma in women but not in men: Longitudinal observations from the Canadian National Population Health Surveys. Am. J. Epidemiol., 2002, 155(3), 191-197.
[http://dx.doi.org/10.1093/aje/155.3.191] [PMID: 11821241]
[5]
Farzan, S.; Coyle, T.; Coscia, G.; Rebaza, A.; Santiago, M. Clinical characteristics and management strategies for adult obese asthma patients. J. Asthma Allergy, 2022, 15, 673-689.
[http://dx.doi.org/10.2147/JAA.S285738] [PMID: 35611328]
[6]
Chapman, D.G.; Irvin, C.G. Mechanisms of airway hyper-responsiveness in asthma: The past, present and yet to come. Clin. Exp. Allergy, 2015, 45(4), 706-719.
[http://dx.doi.org/10.1111/cea.12506] [PMID: 25651937]
[7]
Umetsu, D.T. Mechanisms by which obesity impacts upon asthma. Thorax, 2017, 72(2), 174-177.
[http://dx.doi.org/10.1136/thoraxjnl-2016-209130] [PMID: 27672120]
[8]
Chesné, J.; Braza, F.; Mahay, G.; Brouard, S.; Aronica, M.; Magnan, A. IL-17 in severe asthma. Where do we stand? Am. J. Respir. Crit. Care Med., 2014, 190(10), 1094-1101.
[http://dx.doi.org/10.1164/rccm.201405-0859PP] [PMID: 25162311]
[9]
Shore, S.A.; Cho, Y. Obesity and asthma: Microbiome-metabolome interactions. Am. J. Respir. Cell Mol. Biol., 2016, 54(5), 609-617.
[http://dx.doi.org/10.1165/rcmb.2016-0052PS] [PMID: 26949916]
[10]
Pathak, M.P.; Patowary, P.; Goyary, D.; Das, A.; Chattopadhyay, P. β-caryophyllene ameliorated obesity-associated airway hyperresponsiveness through some non-conventional targets. Phytomedicine, 2021, 89, 153610.
[http://dx.doi.org/10.1016/j.phymed.2021.153610] [PMID: 34175589]
[11]
Postma, D.S.; Kerstjens, H.A.M. Characteristics of airway hyperresponsiveness in asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 1998, 158(5 Pt 3)(Suppl. 2), S187-S192.
[http://dx.doi.org/10.1164/ajrccm.158.supplement_2.13tac170] [PMID: 9817744]
[12]
Simpson, J.L.; Phipps, S.; Baines, K.J.; Oreo, K.M.; Gunawardhana, L.; Gibson, P.G. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. Eur. Respir. J., 2014, 43(4), 1067-1076.
[http://dx.doi.org/10.1183/09031936.00105013] [PMID: 24136334]
[13]
Wilson, R.H.; Whitehead, G.S.; Nakano, H.; Free, M.E.; Kolls, J.K.; Cook, D.N. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med., 2009, 180(8), 720-730.
[http://dx.doi.org/10.1164/rccm.200904-0573OC] [PMID: 19661246]
[14]
Gao, J.; Wu, F. Association between fractional exhaled nitric oxide, sputum induction and peripheral blood eosinophil in uncontrolled asthma. Allergy Asthma Clin. Immunol., 2018, 14(1), 21.
[http://dx.doi.org/10.1186/s13223-018-0248-7] [PMID: 29796021]
[15]
Porsbjerg, C.M.; Gibson, P.G.; Pretto, J.J.; Salome, C.M.; Brown, N.J.; Berend, N.; King, G.G. Relationship between airway pathophysiology and airway inflammation in older asthmatics. Respirology, 2013, 18(7), 1128-1134.
[http://dx.doi.org/10.1111/resp.12142] [PMID: 23734667]
[16]
Leckie, M.J.; Brinke, A.; Khan, J.; Diamant, Z.; O’Connor, B.J.; Walls, C.M.; Mathur, A.K.; Cowley, H.C.; Chung, K.F.; Djukanovic, R.; Hansel, T.T.; Holgate, S.T.; Sterk, P.J.; Barnes, P.J. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsìveness, and the late asthmatic response. Lancet, 2000, 356(9248), 2144-2148.
[http://dx.doi.org/10.1016/S0140-6736(00)03496-6] [PMID: 11191542]
[17]
Salem, A.M. Th1/Th2 cytokines profile in overweight/obese young adults and their correlation with airways inflammation. J. Taibah Univ. Med. Sci., 2022, 17(1), 38-44.
[http://dx.doi.org/10.1016/j.jtumed.2021.09.006] [PMID: 35140563]
[18]
Yick, C.Y.; Zwinderman, A.H.; Kunst, P.W.; Grünberg, K.; Mauad, T.; Chowdhury, S.; Bel, E.H.; Baas, F.; Lutter, R.; Sterk, P.J. Gene expression profiling of laser microdissected airway smooth muscle tissue in asthma and atopy. Allergy, 2014, 69(9), 1233-1240.
[http://dx.doi.org/10.1111/all.12452] [PMID: 24888725]
[19]
Slats, A.M.; Janssen, K.; van Schadewijk, A.; van der Plas, D.T.; Schot, R.; van den Aardweg, J.G.; de Jongste, J.C.; Hiemstra, P.S.; Mauad, T.; Rabe, K.F.; Sterk, P.J. Expression of smooth muscle and extracellular matrix proteins in relation to airway function in asthma. J. Allergy Clin. Immunol., 2008, 121(5), 1196-1202.
[http://dx.doi.org/10.1016/j.jaci.2008.02.017] [PMID: 18405955]
[20]
Sieck, G.C.; White, T.A.; Thompson, M.A.; Pabelick, C.M.; Wylam, M.E.; Prakash, Y.S. Regulation of store-operated Ca 2+ entry by CD38 in human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 294(2), L378-L385.
[http://dx.doi.org/10.1152/ajplung.00394.2007] [PMID: 18178673]
[21]
Vanhoutte, P.M. Epithelium-derived relaxing factor(s) and bronchial reactivity. J. Allergy Clin. Immunol., 1989, 83(5), 855-861.
[http://dx.doi.org/10.1016/0091-6749(89)90095-X] [PMID: 2654253]
[22]
Xu, S.; Karmacharya, N.; Cao, G.; Guo, C.; Gow, A.; Panettieri, R.A., Jr; Jude, J.A. Obesity elicits a unique metabolomic signature in human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2022, 323(3), L297-L307.
[http://dx.doi.org/10.1152/ajplung.00132.2022] [PMID: 35787188]
[23]
Ingram, J.L. Give me some room to breathe! can targeting SPHK2 reduce airway smooth muscle thickening in asthma? Am. J. Respir. Cell Mol. Biol., 2020, 62(1), 1-2.
[http://dx.doi.org/10.1165/rcmb.2019-0240ED] [PMID: 31298926]
[24]
Pascoe, C.D.; Seow, C.Y.; Hackett, T.L.; Paré, P.D.; Donovan, G.M. Heterogeneity of airway wall dimensions in humans: A critical determinant of lung function in asthmatics and nonasthmatics. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 312(3), L425-L431.
[http://dx.doi.org/10.1152/ajplung.00421.2016] [PMID: 28062484]
[25]
Elliot, J.G.; Donovan, G.M.; Wang, K.C.W.; Green, F.H.Y.; James, A.L.; Noble, P.B. Fatty airways: Implications for obstructive disease. Eur. Respir. J., 2019, 54(6), 1900857.
[http://dx.doi.org/10.1183/13993003.00857-2019] [PMID: 31624112]
[26]
Suzukawa, M.; Koketsu, R.; Baba, S.; Igarashi, S.; Nagase, H.; Yamaguchi, M.; Matsutani, N.; Kawamura, M.; Shoji, S.; Hebisawa, A.; Ohta, K. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 309(8), L801-L811.
[http://dx.doi.org/10.1152/ajplung.00365.2014] [PMID: 26276826]
[27]
Shore, S.; Fredberg, J. Obesity, smooth muscle, and airway hyperresponsiveness. J. Allergy Clin. Immunol., 2005, 115(5), 925-927.
[http://dx.doi.org/10.1016/j.jaci.2005.01.064] [PMID: 15867846]
[28]
Camargo, C.A., Jr; Weiss, S.T.; Zhang, S.; Willett, W.C.; Speizer, F.E. Prospective study of body mass index, weight change, and risk of adult-onset asthma in women. Arch. Intern. Med., 1999, 159(21), 2582-2588.
[http://dx.doi.org/10.1001/archinte.159.21.2582] [PMID: 10573048]
[29]
Peters, U.; Subramanian, M.; Chapman, D.G.; Kaminsky, D.A.; Irvin, C.G.; Wise, R.A.; Skloot, G.S.; Bates, J.H.T.; Dixon, A.E. BMI but not central obesity predisposes to airway closure during bronchoconstriction. Respirology, 2019, 24(6), 543-550.
[http://dx.doi.org/10.1111/resp.13478] [PMID: 30694011]
[30]
Pakhale, S.; Baron, J.; Dent, R.; Vandemheen, K.; Aaron, S.D. Effects of weight loss on airway responsiveness in obese adults with asthma: Does weight loss lead to reversibility of asthma? Chest, 2015, 147(6), 1582-1590.
[http://dx.doi.org/10.1378/chest.14-3105] [PMID: 25763936]
[31]
Dias-Júnior, S.A.; Reis, M.; de Carvalho-Pinto, R.M.; Stelmach, R.; Halpern, A.; Cukier, A. Effects of weight loss on asthma control in obese patients with severe asthma. Eur. Respir. J., 2014, 43(5), 1368-1377.
[http://dx.doi.org/10.1183/09031936.00053413] [PMID: 24232701]
[32]
van der Wiel, E.; ten Hacken, N.H.T.; van den Berge, M.; Timens, W.; Reddel, H.K.; Postma, D.S. Eosinophilic inflammation in subjects with mild-to-moderate asthma with and without obesity: Disparity between sputum and biopsies. Am. J. Respir. Crit. Care Med., 2014, 189(10), 1281-1284.
[http://dx.doi.org/10.1164/rccm.201310-1841LE] [PMID: 24832748]
[33]
Desai, D.; Newby, C.; Symon, F.A.; Haldar, P.; Shah, S.; Gupta, S.; Bafadhel, M.; Singapuri, A.; Siddiqui, S.; Woods, J.; Herath, A.; Anderson, I.K.; Bradding, P.; Green, R.; Kulkarni, N.; Pavord, I.; Marshall, R.P.; Sousa, A.R.; May, R.D.; Wardlaw, A.J.; Brightling, C.E. Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am. J. Respir. Crit. Care Med., 2013, 188(6), 657-663.
[http://dx.doi.org/10.1164/rccm.201208-1470OC] [PMID: 23590263]
[34]
Rosenwald, M.; Wolfrum, C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte, 2014, 3(1), 4-9.
[http://dx.doi.org/10.4161/adip.26232] [PMID: 24575363]
[35]
Hill, A.A.; Reid Bolus, W.; Hasty, A.H. A decade of progress in adipose tissue macrophage biology. Immunol. Rev., 2014, 262(1), 134-152.
[http://dx.doi.org/10.1111/imr.12216] [PMID: 25319332]
[36]
Arteaga-Solis, E.; Zee, T.; Emala, C.W.; Vinson, C.; Wess, J.; Karsenty, G. Inhibition of leptin regulation of parasympathetic signaling as a cause of extreme body weight-associated asthma. Cell Metab., 2013, 17(1), 35-48.
[http://dx.doi.org/10.1016/j.cmet.2012.12.004] [PMID: 23312282]
[37]
Qi, Y.; Takahashi, N.; Hileman, S.M.; Patel, H.R.; Berg, A.H.; Pajvani, U.B.; Scherer, P.E.; Ahima, R.S. Adiponectin acts in the brain to decrease body weight. Nat. Med., 2004, 10(5), 524-529.
[http://dx.doi.org/10.1038/nm1029] [PMID: 15077108]
[38]
Shore, S.A.; Terry, R.D.; Flynt, L.; Xu, A.; Hug, C. Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J. Allergy Clin. Immunol., 2006, 118(2), 389-395.
[http://dx.doi.org/10.1016/j.jaci.2006.04.021] [PMID: 16890763]
[39]
Shore, S.A. Obesity and asthma: Possible mechanisms. J. Allergy Clin. Immunol., 2008, 121(5), 1087-1093.
[http://dx.doi.org/10.1016/j.jaci.2008.03.004] [PMID: 18405959]
[40]
Zhu, L.; Chen, X.; Chong, L.; Kong, L.; Wen, S.; Zhang, H.; Zhang, W.; Li, C. Adiponectin alleviates exacerbation of airway inflammation and oxidative stress in obesity-related asthma mice partly through AMPK signaling pathway. Int. Immunopharmacol., 2019, 67, 396-407.
[http://dx.doi.org/10.1016/j.intimp.2018.12.030] [PMID: 30584969]
[41]
Ahima, R.S.; Flier, J.S. Adipose tissue as an endocrine organ. Trends Endocrinol. Metab., 2000, 11(8), 327-332.
[http://dx.doi.org/10.1016/S1043-2760(00)00301-5] [PMID: 10996528]
[42]
Morisset, A.S.; Huot, C.; Légaré, D.; Tchernof, A. Circulating IL-6 concentrations and abdominal adipocyte isoproterenol-stimulated lipolysis in women. Obesity (Silver Spring), 2008, 16(7), 1487-1492.
[http://dx.doi.org/10.1038/oby.2008.242] [PMID: 18451782]
[43]
Saely, C.H.; Geiger, K.; Drexel, H. Brown versus white adipose tissue: A mini-review. Gerontology, 2012, 58(1), 15-23.
[http://dx.doi.org/10.1159/000321319] [PMID: 21135534]
[44]
Virtanen, K.A.; Lidell, M.E.; Orava, J.; Heglind, M.; Westergren, R.; Niemi, T.; Taittonen, M.; Laine, J.; Savisto, N.J.; Enerbäck, S.; Nuutila, P. Functional brown adipose tissue in healthy adults. N. Engl. J. Med., 2009, 360(15), 1518-1525.
[http://dx.doi.org/10.1056/NEJMoa0808949] [PMID: 19357407]
[45]
Zingaretti, M.C.; Crosta, F.; Vitali, A.; Guerrieri, M.; Frontini, A.; Cannon, B.; Nedergaard, J.; Cinti, S. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J., 2009, 23(9), 3113-3120.
[http://dx.doi.org/10.1096/fj.09-133546] [PMID: 19417078]
[46]
Cypess, A.M.; Weiner, L.S.; Roberts-Toler, C.; Elía, E.F.; Kessler, S.H.; Kahn, P.A.; English, J.; Chatman, K.; Trauger, S.A.; Doria, A.; Kolodny, G.M. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab., 2015, 21(1), 33-38.
[http://dx.doi.org/10.1016/j.cmet.2014.12.009] [PMID: 25565203]
[47]
Gaudry, M.J.; Campbell, K.L.; Jastroch, M. Evolution of UCP1.Brown Adipose Tissue; Springer: Cham, 2018, pp. 127-141.
[http://dx.doi.org/10.1007/164_2018_116]
[48]
Lazar, M.A. Developmental biology. How now, brown fat? Science, 2008, 321(5892), 1048-1049.
[http://dx.doi.org/10.1126/science.1164094] [PMID: 18719271]
[49]
Shabalina, I.G.; Petrovic, N.; de Jong, J.M.A.; Kalinovich, A.V.; Cannon, B.; Nedergaard, J. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep., 2013, 5(5), 1196-1203.
[http://dx.doi.org/10.1016/j.celrep.2013.10.044] [PMID: 24290753]
[50]
Kozik, A.J.; Holguin, F.; Segal, L.N.; Chatila, T.A.; Dixon, A.E.; Gern, J.E.; Lozupone, C.; Lukacs, N.; Lumeng, C.; Molyneaux, P.L.; Reisdorph, N.; Vujkovic-Cvijin, I.; Togias, A.; Huang, Y.J. Microbiome, metabolism, and immunoregulation of asthma: An american thoracic society and national institute of allergy and infectious diseases workshop report. Am. J. Respir. Cell Mol. Biol., 2022, 67(2), 155-163.
[http://dx.doi.org/10.1165/rcmb.2022-0216ST] [PMID: 35914321]
[51]
Fukuda, D.; Aikawa, E.; Swirski, F.K.; Novobrantseva, T.I.; Kotelianski, V.; Gorgun, C.Z.; Chudnovskiy, A.; Yamazaki, H.; Croce, K.; Weissleder, R.; Aster, J.C.; Hotamisligil, G.S.; Yagita, H.; Aikawa, M. Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc. Natl. Acad. Sci. USA, 2012, 109(27), E1868-E1877.
[http://dx.doi.org/10.1073/pnas.1116889109] [PMID: 22699504]
[52]
Fukuda, D.; Aikawa, M. Expanding role of delta-like 4 mediated notch signaling in cardiovascular and metabolic diseases. Circ. J., 2013, 77(10), 2462-2468.
[http://dx.doi.org/10.1253/circj.CJ-13-0873] [PMID: 24025398]
[53]
Bi, P.; Shan, T.; Liu, W.; Yue, F.; Yang, X.; Liang, X.R.; Wang, J.; Li, J.; Carlesso, N.; Liu, X.; Kuang, S. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat. Med., 2014, 20(8), 911-918.
[http://dx.doi.org/10.1038/nm.3615] [PMID: 25038826]
[54]
Zeng, Z.; Wang, L.; Ma, W.; Zheng, R.; Zhang, H.; Zeng, X.; Zhang, H.; Zhang, W. Inhibiting the Notch signaling pathway suppresses Th17-associated airway hyperresponsiveness in obese asthmatic mice. Lab. Invest., 2019, 99(12), 1784-1794.
[http://dx.doi.org/10.1038/s41374-019-0294-x] [PMID: 31409887]
[55]
Thomas, D.; Apovian, C. Macrophage functions in lean and obese adipose tissue. Metabolism, 2017, 72, 120-143.
[http://dx.doi.org/10.1016/j.metabol.2017.04.005] [PMID: 28641779]
[56]
Okamoto, Y.; Higashiyama, H.; Rong, J.X.; McVey, M.J.; Kinoshita, M.; Asano, S.; Hansen, M.K. Comparison of mitochondrial and macrophage content between subcutaneous and visceral fat in db/db mice. Exp. Mol. Pathol., 2007, 83(1), 73-83.
[http://dx.doi.org/10.1016/j.yexmp.2007.02.007] [PMID: 17434481]
[57]
Murano, I.; Barbatelli, G.; Parisani, V.; Latini, C.; Muzzonigro, G.; Castellucci, M.; Cinti, S. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res., 2008, 49(7), 1562-1568.
[http://dx.doi.org/10.1194/jlr.M800019-JLR200] [PMID: 18390487]
[58]
Zhu, M.; Belkina, A.C.; DeFuria, J.; Carr, J.D.; Van Dyke, T.E.; Gyurko, R.; Nikolajczyk, B.S. B cells promote obesity-associated periodontitis and oral pathogen-associated inflammation. J. Leukoc. Biol., 2014, 96(2), 349-357.
[http://dx.doi.org/10.1189/jlb.4A0214-095R] [PMID: 24782490]
[59]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[60]
Wentworth, J.M.; Naselli, G.; Brown, W.A.; Doyle, L.; Phipson, B.; Smyth, G.K.; Wabitsch, M.; O’Brien, P.E.; Harrison, L.C. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes, 2010, 59(7), 1648-1656.
[http://dx.doi.org/10.2337/db09-0287] [PMID: 20357360]
[61]
Zeyda, M.; Gollinger, K.; Kriehuber, E.; Kiefer, F.W.; Neuhofer, A.; Stulnig, T.M. Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression. Int. J. Obes., 2010, 34(12), 1684-1694.
[http://dx.doi.org/10.1038/ijo.2010.103] [PMID: 20514049]
[62]
Periyalil, H.A.; Wood, L.G.; Wright, T.A.; Karihaloo, C.; Starkey, M.R.; Miu, A.S.; Baines, K.J.; Hansbro, P.M.; Gibson, P.G. Obese asthmatics are characterized by altered adipose tissue macrophage activation. Clin. Exp. Allergy, 2018, 48(6), 641-649.
[http://dx.doi.org/10.1111/cea.13109] [PMID: 29383778]
[63]
Fernandez-Boyanapalli, R.; Goleva, E.; Kolakowski, C.; Min, E.; Day, B.; Leung, D.Y.M.; Riches, D.W.H.; Bratton, D.L.; Sutherland, E.R. Obesity impairs apoptotic cell clearance in asthma. J. Allergy Clin. Immunol., 2013, 131(4), 1041-1047.e3.
[http://dx.doi.org/10.1016/j.jaci.2012.09.028] [PMID: 23154082]
[64]
Youssef, D.M.; Elbehidy, R.M.; Shokry, D.M.; Elbehidy, E.M. The influence of leptin on Th1/Th2 balance in obese children with asthma. J. Bras. Pneumol., 2013, 39(5), 562-568.
[http://dx.doi.org/10.1590/S1806-37132013000500006] [PMID: 24310629]
[65]
Dixon, A.E.; Nakeda, E.; Korwin-Mihavics, B.; van der Vliet, A.; Poynter, M.E.; Suratt, B.T.; Irvin, C.C.; Black, K.E.; Janssen-Heininger, Y.M.W.; Anathy, V. Mitochondrial reactive oxygen species (mROS) signaling contributes to obese allergic airway disease. In C101. Asthma Clin Mechanistic Studies, 2018, A5947-A5947. Amer J Respirat Crit Care Med, 2018, 197, A5947.
[66]
Xu, X.; Yavar, Z.; Verdin, M.; Ying, Z.; Mihai, G.; Kampfrath, T.; Wang, A.; Zhong, M.; Lippmann, M.; Chen, L.C.; Rajagopalan, S.; Sun, Q. Effect of early particulate air pollution exposure on obesity in mice: Role of p47phox. Arterioscler. Thromb. Vasc. Biol., 2010, 30(12), 2518-2527.
[http://dx.doi.org/10.1161/ATVBAHA.110.215350] [PMID: 20864666]
[67]
André, D.M.; Calixto, M.C.; Sollon, C.; Alexandre, E.C.; Leiria, L.O.; Tobar, N.; Anhê, G.F.; Antunes, E. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice. Int. Immunopharmacol., 2016, 38, 298-305.
[http://dx.doi.org/10.1016/j.intimp.2016.06.017] [PMID: 27344038]
[68]
Fantuzzi, G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol., 2005, 115(5), 911-919.
[http://dx.doi.org/10.1016/j.jaci.2005.02.023] [PMID: 15867843]
[69]
Sideleva, O.; Suratt, B.T.; Black, K.E.; Tharp, W.G.; Pratley, R.E.; Forgione, P.; Dienz, O.; Irvin, C.G.; Dixon, A.E. Obesity and Asthma. Am. J. Respir. Crit. Care Med., 2012, 186(7), 598-605.
[http://dx.doi.org/10.1164/rccm.201203-0573OC] [PMID: 22837379]
[70]
Ballantyne, D.; Scott, H.; MacDonald-Wicks, L.; Gibson, P.G.; Wood, L.G. Resistin is a predictor of asthma risk and resistin:adiponectin ratio is a negative predictor of lung function in asthma. Clin. Exp. Allergy, 2016, 46(8), 1056-1065.
[http://dx.doi.org/10.1111/cea.12742] [PMID: 27079485]
[71]
Keyhanmanesh, R.; Alipour, M.R.; Ebrahimi, H.; Aslani, M.R. Effects of diet-induced obesity on tracheal responsiveness to methacholine, tracheal visfatin level, and lung histological changes in ovalbumin-sensitized female wistar rats. Inflammation, 2018, 41(3), 846-858.
[http://dx.doi.org/10.1007/s10753-018-0738-2] [PMID: 29380115]
[72]
Besnard, A.G.; Guillou, N.; Tschopp, J.; Erard, F.; Couillin, I.; Iwakura, Y.; Quesniaux, V.; Ryffel, B.; Togbe, D. NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Allergy, 2011, 66(8), 1047-1057.
[http://dx.doi.org/10.1111/j.1398-9995.2011.02586.x] [PMID: 21443539]
[73]
Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov., 2018, 17(8), 588-606.
[http://dx.doi.org/10.1038/nrd.2018.97] [PMID: 30026524]
[74]
Fritz, J.H.; Ferrero, R.L.; Philpott, D.J.; Girardin, S.E. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol., 2006, 7(12), 1250-1257.
[http://dx.doi.org/10.1038/ni1412] [PMID: 17110941]
[75]
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol., 1994, 12(1), 991-1045.
[http://dx.doi.org/10.1146/annurev.iy.12.040194.005015] [PMID: 8011301]
[76]
Matzinger, P. The danger model: A renewed sense of self. Science, 2002, 296(5566), 301-305.
[http://dx.doi.org/10.1126/science.1071059] [PMID: 11951032]
[77]
Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 2002, 418(6894), 191-195.
[http://dx.doi.org/10.1038/nature00858] [PMID: 12110890]
[78]
Cohen, I.; Rider, P.; Carmi, Y.; Braiman, A.; Dotan, S.; White, M.R.; Voronov, E.; Martin, M.U.; Dinarello, C.A.; Apte, R.N. Differential release of chromatin-bound IL-1α discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2574-2579.
[http://dx.doi.org/10.1073/pnas.0915018107] [PMID: 20133797]
[79]
Carriere, V.; Roussel, L.; Ortega, N.; Lacorre, D.A.; Americh, L.; Aguilar, L.; Bouche, G.; Girard, J.P. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl. Acad. Sci. USA, 2007, 104(1), 282-287.
[http://dx.doi.org/10.1073/pnas.0606854104] [PMID: 17185418]
[80]
Moussion, C.; Ortega, N.; Girard, J.P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: A novel ‘alarmin’? PLoS One, 2008, 3(10), e3331.
[http://dx.doi.org/10.1371/journal.pone.0003331] [PMID: 18836528]
[81]
Rider, P.; Voronov, E.; Dinarello, C.A.; Apte, R.N.; Cohen, I. Alarmins: Feel the Stress. J. Immunol., 2017, 198(4), 1395-1402.
[http://dx.doi.org/10.4049/jimmunol.1601342] [PMID: 28167650]
[82]
Kubes, P.; Mehal, W.Z. Sterile inflammation in the liver. Gastroenterology, 2012, 143(5), 1158-1172.
[http://dx.doi.org/10.1053/j.gastro.2012.09.008] [PMID: 22982943]
[83]
Malhi, H.; Guicciardi, M.E.; Gores, G.J. Hepatocyte death: A clear and present danger. Physiol. Rev., 2010, 90(3), 1165-1194.
[http://dx.doi.org/10.1152/physrev.00061.2009] [PMID: 20664081]
[84]
Shi, Y.; Evans, J.E.; Rock, K.L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature, 2003, 425(6957), 516-521.
[http://dx.doi.org/10.1038/nature01991] [PMID: 14520412]
[85]
Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[86]
Wani, K.; AlHarthi, H.; Alghamdi, A.; Sabico, S.; Al-Daghri, N.M. Role of NLRP3 inflammasome activation in obesity-mediated metabolic disorders. Int. J. Environ. Res. Public Health, 2021, 18(2), 511.
[http://dx.doi.org/10.3390/ijerph18020511] [PMID: 33435142]
[87]
Wozniak, S.E.; Gee, L.L.; Wachtel, M.S.; Frezza, E.E. Adipose tissue: The new endocrine organ? A review article. Dig. Dis. Sci., 2009, 54(9), 1847-1856.
[http://dx.doi.org/10.1007/s10620-008-0585-3] [PMID: 19052866]
[88]
Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol., 2011, 11(2), 85-97.
[http://dx.doi.org/10.1038/nri2921] [PMID: 21252989]
[89]
Castoldi, A.; Naffah de Souza, C.; Câmara, N.O.S.; Moraes-Vieira, P.M. The macrophage switch in obesity development. Front. Immunol., 2016, 6, 637.
[http://dx.doi.org/10.3389/fimmu.2015.00637] [PMID: 26779183]
[90]
Alenezi, S.A.; Khan, R.; Snell, L.; Aboeldalyl, S.; Amer, S. The Role of NLRP3 Inflammasome in Obesity and PCOS—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci., 2023, 24(13), 10976.
[http://dx.doi.org/10.3390/ijms241310976] [PMID: 37446154]
[91]
Huang, D.; Kidd, J.M.; Zou, Y.; Wu, X.; Gehr, T.W.B.; Li, P.L.; Li, G. Regulation of NLRP3 inflammasome activation and inflammatory exosome release in podocytes by acid sphingomyelinase during obesity. Inflammation, 2023, 46(5), 2037-2054.
[http://dx.doi.org/10.1007/s10753-023-01861-y] [PMID: 37477734]
[92]
Javaid, H.M.A.; Ko, E.; Joo, E.J.; Kwon, S.H.; Park, J.H.; Shin, S.; Cho, K.W.; Huh, J.Y. TNFα-induced NLRP3 inflammasome mediates adipocyte dysfunction and activates macrophages through adipocyte-derived lipocalin 2. Metabolism, 2023, 142, 155527.
[http://dx.doi.org/10.1016/j.metabol.2023.155527] [PMID: 36870601]
[93]
Wood, L.G.; Li, Q.; Scott, H.A.; Rutting, S.; Berthon, B.S.; Gibson, P.G.; Hansbro, P.M.; Williams, E.; Horvat, J.; Simpson, J.L.; Young, P.; Oliver, B.G.; Baines, K.J. Saturated fatty acids, obesity, and the nucleotide oligomerization domain–like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. J. Allergy Clin. Immunol., 2019, 143(1), 305-315.
[http://dx.doi.org/10.1016/j.jaci.2018.04.037] [PMID: 29857009]
[94]
Kim, H.Y.; Lee, H.J.; Chang, Y.J.; Pichavant, M.; Shore, S.A.; Fitzgerald, K.A.; Iwakura, Y.; Israel, E.; Bolger, K.; Faul, J.; DeKruyff, R.H.; Umetsu, D.T. Interleukin-17–producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med., 2014, 20(1), 54-61.
[http://dx.doi.org/10.1038/nm.3423] [PMID: 24336249]
[95]
Umetsu, D.T.; Kim, H.Y.; Chang, Y.J. S-25: A role for ILC2s, ILC3s and the NLRP3 inflammasome in different forms of asthma. Cytokine, 2014, 70(1), 26.
[http://dx.doi.org/10.1016/j.cyto.2014.07.245]
[96]
Telenga, E.D.; Tideman, S.W.; Kerstjens, H.A.M.; Hacken, N.H.T.; Timens, W.; Postma, D.S.; van den Berge, M. Obesity in asthma: More neutrophilic inflammation as a possible explanation for a reduced treatment response. Allergy, 2012, 67(8), 1060-1068.
[http://dx.doi.org/10.1111/j.1398-9995.2012.02855.x] [PMID: 22686834]
[97]
Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Gibson, P.G. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J. Allergy Clin. Immunol., 2011, 127(1), 153.
[http://dx.doi.org/10.1016/j.jaci.2010.10.024] [PMID: 21211650]
[98]
Wu, Y.; Di, X.; Zhao, M.; Li, H.; Bai, L.; Wang, K. The role of the NLRP3 inflammasome in chronic inflammation in asthma and chronic obstructive pulmonary disease. Immun. Inflamm. Dis., 2022, 10(12), e750.
[http://dx.doi.org/10.1002/iid3.750] [PMID: 36444628]
[99]
Pinkerton, J.W.; Kim, R.Y.; Brown, A.C.; Rae, B.E.; Donovan, C.; Mayall, J.R.; Carroll, O.R.; Khadem Ali, M.; Scott, H.A.; Berthon, B.S.; Baines, K.J.; Starkey, M.R.; Kermani, N.Z.; Guo, Y.K.; Robertson, A.A.B.; O’Neill, L.A.J.; Adcock, I.M.; Cooper, M.A.; Gibson, P.G.; Wood, L.G.; Hansbro, P.M.; Horvat, J.C. Relationship between type 2 cytokine and inflammasome responses in obesity-associated asthma. J. Allergy Clin. Immunol., 2022, 149(4), 1270-1280.
[http://dx.doi.org/10.1016/j.jaci.2021.10.003] [PMID: 34678326]
[100]
Gowdy, K.M.; Fessler, M.B. Emerging roles for cholesterol and lipoproteins in lung disease. Pulm. Pharmacol. Ther., 2013, 26(4), 430-437.
[http://dx.doi.org/10.1016/j.pupt.2012.06.002] [PMID: 22706330]
[101]
Li, Y.; Schwabe, R.F.; DeVries-Seimon, T.; Yao, P.M.; Gerbod-Giannone, M.C.; Tall, A.R.; Davis, R.J.; Flavell, R.; Brenner, D.A.; Tabas, I. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6: Model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem., 2005, 280(23), 21763-21772.
[http://dx.doi.org/10.1074/jbc.M501759200] [PMID: 15826936]
[102]
Freigang, S.; Ampenberger, F.; Spohn, G.; Heer, S.; Shamshiev, A.T.; Kisielow, J.; Hersberger, M.; Yamamoto, M.; Bachmann, M.F.; Kopf, M. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur. J. Immunol., 2011, 41(7), 2040-2051.
[http://dx.doi.org/10.1002/eji.201041316] [PMID: 21484785]
[103]
Rajamäki, K.; Lappalainen, J.; Öörni, K.; Välimäki, E.; Matikainen, S.; Kovanen, P.T.; Eklund, K.K. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: A novel link between cholesterol metabolism and inflammation. PLoS One, 2010, 5(7), e11765.
[http://dx.doi.org/10.1371/journal.pone.0011765] [PMID: 20668705]
[104]
Baritussio, A.; Enzi, G.; Inelmen, E.M.; Schiavon, M.; de Biasi, F.; Allegra, L.; Ursini, F.; Baldo, G. Altered surfactant synthesis and function in rats with diet-induced hyperlipidemia. Metabolism, 1980, 29(6), 503-510.
[http://dx.doi.org/10.1016/0026-0495(80)90075-X] [PMID: 6892941]
[105]
Kuronuma, K.; Mitsuzawa, H.; Takeda, K.; Nishitani, C.; Chan, E.D.; Kuroki, Y.; Nakamura, M.; Voelker, D.R. Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. J. Biol. Chem., 2009, 284(38), 25488-25500.
[http://dx.doi.org/10.1074/jbc.M109.040832] [PMID: 19584052]
[106]
Ortega, F.J.; Pueyo, N.; Moreno-Navarrete, J.M.; Sabater, M.; Rodriguez-Hermosa, J.I.; Ricart, W.; Tinahones, F.J.; Fernández-Real, J.M. The lung innate immune gene surfactant protein-D is expressed in adipose tissue and linked to obesity status. Int. J. Obes., 2013, 37(12), 1532-1538.
[http://dx.doi.org/10.1038/ijo.2013.23] [PMID: 23478426]
[107]
Vockeroth, D.; Gunasekara, L.; Amrein, M.; Possmayer, F.; Lewis, J.F.; Veldhuizen, R.A.W. Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2010, 298(1), L117-L125.
[http://dx.doi.org/10.1152/ajplung.00218.2009] [PMID: 19897745]
[108]
Delvecchio, C.J.; Bilan, P.; Nair, P.; Capone, J.P. LXR-induced reverse cholesterol transport in human airway smooth muscle is mediated exclusively by ABCA1. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 295(5), L949-L957.
[http://dx.doi.org/10.1152/ajplung.90394.2008] [PMID: 18820007]
[109]
Madenspacher, J.; Stapleton, R.D.; Suratt, B.T.; Dixon, A.E.; Lih, F.B.; Tomer, K.B.; Wurfel, M.M.; Garantziotis, S.; Fessler, M.B. Cholestenoic acid is a prognostic biomarker in acute respiratory distress syndrome. J. Allergy Clin. Immunol., 2019, 143(1), 440-442.
[110]
Babiker, A.; Andersson, O.; Lindblom, D.; van der Linden, J.; Wiklund, B.; Lütjohann, D.; Diczfalusy, U.; Björkhem, I. Elimination of cholesterol as cholestenoic acid in human lung by sterol 27-hydroxylase: Evidence that most of this steroid in the circulation is of pulmonary origin. J. Lipid Res., 1999, 40(8), 1417-1425.
[http://dx.doi.org/10.1016/S0022-2275(20)33383-6] [PMID: 10428977]
[111]
Tilg, H.; Moschen, A.R.; Szabo, G. Interleukin‐1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology, 2016, 64(3), 955-965.
[http://dx.doi.org/10.1002/hep.28456] [PMID: 26773297]
[112]
Holland, W.L.; Bikman, B.T.; Wang, L.P.; Yuguang, G.; Sargent, K.M.; Bulchand, S.; Knotts, T.A.; Shui, G.; Clegg, D.J.; Wenk, M.R.; Pagliassotti, M.J.; Scherer, P.E.; Summers, S.A. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid–induced ceramide biosynthesis in mice. J. Clin. Invest., 2011, 121(5), 1858-1870.
[http://dx.doi.org/10.1172/JCI43378] [PMID: 21490391]
[113]
Zhang, C.; Wang, K.; Yang, L.; Liu, R.; Chu, Y.; Qin, X.; Yang, P.; Yu, H. Lipid metabolism in inflammation-related diseases. Analyst (Lond.), 2018, 143(19), 4526-4536.
[http://dx.doi.org/10.1039/C8AN01046C] [PMID: 30128447]
[114]
Showalter, M.R.; Nonnecke, E.B.; Linderholm, A.L.; Cajka, T.; Sa, M.R.; Lönnerdal, B.; Kenyon, N.J.; Fiehn, O. Obesogenic diets alter metabolism in mice. PLoS One, 2018, 13(1), e0190632.
[http://dx.doi.org/10.1371/journal.pone.0190632] [PMID: 29324762]
[115]
Corriden, R.; Hollands, A.; Olson, J.; Derieux, J.; Lopez, J.; Chang, J.T.; Gonzalez, D.J.; Nizet, V. Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide. Nat. Commun., 2015, 6(1), 8369.
[http://dx.doi.org/10.1038/ncomms9369] [PMID: 26458291]
[116]
Shah, D.; Romero, F.; Guo, Z.; Sun, J.; Li, J.; Kallen, C.B.; Naik, U.P.; Summer, R. Obesity-induced endoplasmic reticulum stress causes lung endothelial dysfunction and promotes acute lung injury. Am. J. Respir. Cell Mol. Biol., 2017, 57(2), 204-215.
[http://dx.doi.org/10.1165/rcmb.2016-0310OC] [PMID: 28277743]
[117]
Scaduto, F.; Giglio, R.V.; Benfante, A.; Nikolic, D.; Montalto, G.; Rizzo, M.; Scichilone, N. Serum lipoproteins are not associated with the severity of asthma. Pulm. Pharmacol. Ther., 2018, 50, 57-61.
[http://dx.doi.org/10.1016/j.pupt.2018.04.001] [PMID: 29626633]
[118]
Barochia, A.V.; Gordon, E.M.; Kaler, M.; Cuento, R.A.; Theard, P.; Figueroa, D.M.; Yao, X.; Weir, N.A.; Sampson, M.L.; Stylianou, M.; Choy, D.F.; Holweg, C.T.J.; Remaley, A.T.; Levine, S.J. High density lipoproteins and type 2 inflammatory biomarkers are negatively correlated in atopic asthmatics. J. Lipid Res., 2017, 58(8), 1713-1721.
[http://dx.doi.org/10.1194/jlr.P077776] [PMID: 28655726]
[119]
Silva, D.; Couto, M.; Delgado, L.; Moreira, A. A systematic review of statin efficacy in asthma. J. Asthma, 2012, 49(9), 885-894.
[http://dx.doi.org/10.3109/02770903.2012.721433] [PMID: 23034069]
[120]
Sutherland, E.R.; Goleva, E.; Strand, M.; Beuther, D.A.; Leung, D.Y.M. Body mass and glucocorticoid response in asthma. Am. J. Respir. Crit. Care Med., 2008, 178(7), 682-687.
[http://dx.doi.org/10.1164/rccm.200801-076OC] [PMID: 18635892]
[121]
Yeganeh, B.; Wiechec, E.; Ande, S.R.; Sharma, P.; Moghadam, A.R.; Post, M.; Freed, D.H.; Hashemi, M.; Shojaei, S.; Zeki, A.A.; Ghavami, S. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol. Ther., 2014, 143(1), 87-110.
[http://dx.doi.org/10.1016/j.pharmthera.2014.02.007] [PMID: 24582968]
[122]
OlgunYildizeli. S.; Kocakaya, D.; Balcan, B. Influence of rosuvastatin treatment on airway inflammatory markers and health related quality of life domains in asthmatic patients. Marmara Med J., 2017, 30, 73-81.
[123]
McCarthy, C.; Lee, E.; Bridges, J.P.; Sallese, A.; Suzuki, T.; Woods, J.C.; Bartholmai, B.J.; Wang, T.; Chalk, C.; Carey, B.C.; Arumugam, P.; Shima, K.; Tarling, E.J.; Trapnell, B.C. Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis. Nat. Commun., 2018, 9(1), 3127.
[http://dx.doi.org/10.1038/s41467-018-05491-z] [PMID: 30087322]
[124]
Han, W.; Li, J.; Tang, H.; Sun, L. Treatment of obese asthma in a mouse model by simvastatin is associated with improving dyslipidemia and decreasing leptin level. Biochem. Biophys. Res. Commun., 2017, 484(2), 396-402.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.135] [PMID: 28131832]
[125]
Liou, C.J.; Cheng, P.Y.; Huang, W.C.; Chan, C.C.; Chen, M.C.; Kuo, M.L.; Shen, J.J. Oral lovastatin attenuates airway inflammation and mucus secretion in ovalbumin-induced murine model of asthma. Allergy Asthma Immunol. Res., 2014, 6(6), 548-557.
[http://dx.doi.org/10.4168/aair.2014.6.6.548] [PMID: 25374755]
[126]
Singh, M.; Madan, T.; Waters, P.; Parida, S.K.; Sarma, P.U.; Kishore, U. Protective effects of a recombinant fragment of human surfactant protein D in a murine model of pulmonary hypersensitivity induced by dust mite allergens. Immunol. Lett., 2003, 86(3), 299-307.
[http://dx.doi.org/10.1016/S0165-2478(03)00033-6] [PMID: 12706535]
[127]
Djiadeu, P.; Farmakovski, N.; Azzouz, D.; Kotra, L.P.; Sweezey, N.; Palaniyar, N. Surfactant protein D regulates caspase-8-mediated cascade of the intrinsic pathway of apoptosis while promoting bleb formation. Mol. Immunol., 2017, 92, 190-198.
[http://dx.doi.org/10.1016/j.molimm.2017.10.016] [PMID: 29107869]
[128]
Antonopoulos, C.; Russo, H.M.; El Sanadi, C.; Martin, B.N.; Li, X.; Kaiser, W.J.; Mocarski, E.S.; Dubyak, G.R. Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling. J. Biol. Chem., 2015, 290(33), 20167-20184.
[http://dx.doi.org/10.1074/jbc.M115.652321] [PMID: 26100631]
[129]
Fujii, U.; Miyahara, N.; Taniguchi, A.; Oda, N.; Morichika, D.; Murakami, E.; Nakayama, H.; Waseda, K.; Kataoka, M.; Kakuta, H.; Tanimoto, M.; Kanehiro, A. Effect of a retinoid X receptor partial agonist on airway inflammation and hyperresponsiveness in a murine model of asthma. Respir. Res., 2017, 18(1), 23.
[http://dx.doi.org/10.1186/s12931-017-0507-z] [PMID: 28114934]
[130]
Zhong, Z.; Umemura, A.; Sanchez-Lopez, E.; Liang, S.; Shalapour, S.; Wong, J.; He, F.; Boassa, D.; Perkins, G.; Ali, S.R.; McGeough, M.D.; Ellisman, M.H.; Seki, E.; Gustafsson, A.B.; Hoffman, H.M.; Diaz-Meco, M.T.; Moscat, J.; Karin, M. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell, 2016, 164(5), 896-910.
[http://dx.doi.org/10.1016/j.cell.2015.12.057] [PMID: 26919428]
[131]
Afonina, I.S.; Zhong, Z.; Karin, M.; Beyaert, R. Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome. Nat. Immunol., 2017, 18(8), 861-869.
[http://dx.doi.org/10.1038/ni.3772] [PMID: 28722711]
[132]
Ma, Z.; Deng, C.; Hu, W.; Zhou, J.; Fan, C.; Di, S.; Liu, D.; Yang, Y.; Wang, D. Liver X receptors and their agonists: Targeting for cholesterol homeostasis and cardiovascular diseases. Curr. Issues Mol. Biol., 2017, 22, 41-64.
[http://dx.doi.org/10.21775/cimb.022.041] [PMID: 27669666]
[133]
Edling, A.E.; Mahan, A.; Leonard, J.; Williams, J.; Kaplan, J.; Perricone, M. Effect of the sphingolipid synthesis inhibitor, myriocin, in a murine pulmonary inflammation model (94.19). J. Immunol., 2009, 182(1_Supplement), 94-19.
[http://dx.doi.org/10.4049/jimmunol.182.Supp.94.19]
[134]
Edukulla, R.; Rehn, K.L.; Liu, B.; McAlees, J.W.; Hershey, G.K.; Wang, Y.H.; Lewkowich, I.; Lindsley, A.W. Intratracheal myriocin enhances allergen‐induced Th2 inflammation and airway hyper‐responsiveness. Immun. Inflamm. Dis., 2016, 4(3), 248-262.
[http://dx.doi.org/10.1002/iid3.110] [PMID: 27621809]
[135]
Yao, X.; Remaley, A.T.; Levine, S.J. New kids on the block: The emerging role of apolipoproteins in the pathogenesis and treatment of asthma. Chest, 2011, 140(4), 1048-1054.
[http://dx.doi.org/10.1378/chest.11-0158] [PMID: 21972383]
[136]
Nandedkar, S.D.; Weihrauch, D.; Xu, H.; Shi, Y.; Feroah, T.; Hutchins, W.; Rickaby, D.A.; Duzgunes, N.; Hillery, C.A.; Konduri, K.S.; Pritchard, J.K.A., Jr D-4F, an apoA-1 mimetic, decreases airway hyperresponsiveness, inflammation, and oxidative stress in a murine model of asthma. J. Lipid Res., 2011, 52(3), 499-508.
[http://dx.doi.org/10.1194/jlr.M012724] [PMID: 21131532]
[137]
Yao, X.; Gordon, E.M.; Figueroa, D.M.; Barochia, A.V.; Levine, S.J. Emerging roles of apolipoprotein E and apolipoprotein AI in the pathogenesis and treatment of lung disease. Am. J. Respir. Cell Mol. Biol., 2016, 55(2), 159-169.
[http://dx.doi.org/10.1165/rcmb.2016-0060TR] [PMID: 27073971]
[138]
Bloedon, L.T.; Dunbar, R.; Duffy, D.; Pinell-Salles, P.; Norris, R.; DeGroot, B.J.; Movva, R.; Navab, M.; Fogelman, A.M.; Rader, D.J. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J. Lipid Res., 2008, 49(6), 1344-1352.
[http://dx.doi.org/10.1194/jlr.P800003-JLR200] [PMID: 18323573]
[139]
Chandrasekaran, R.; Mark, Z.; Bruno, S.; Caffry, S.; Chamberlain, N.; Kumar, A.; Briley, B.; Black, K.; Duchene, B.; Dixon, A.E.; Anathy, V. The Role of Mitochondrial ROS in Lean and Obese Allergic Airway Disease. Am. J. Respir. Crit. Care Med., 2020, 201, A2958.
[140]
Feng, S.; Wang, Y. Citrus phytochemicals and their potential effects on the prevention and treatment of obesity: Review and progress of the past 10 years. J. Food Bioact., 2018, 4, 99-106.
[http://dx.doi.org/10.31665/JFB.2018.4165]
[141]
Fu, J.; Zeng, C.; Zeng, Z.; Wang, B.; Wen, X.; Yu, P.; Gong, D. Cinnamomum camphora seed kernel oil improves lipid metabolism and enhances β3-adrenergic receptor expression in diet-induced obese rats. Lipids, 2016, 51(6), 693-702.
[http://dx.doi.org/10.1007/s11745-016-4147-8] [PMID: 27068065]
[142]
Pajvani, U.B.; Du, X.; Combs, T.P.; Berg, A.H.; Rajala, M.W.; Schulthess, T.; Engel, J.; Brownlee, M.; Scherer, P.E. Structure-function studies of the adipocyte-secreted hormone Acrp30/] adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem., 2003, 278(11), 9073-9085.
[http://dx.doi.org/10.1074/jbc.M207198200] [PMID: 12496257]
[143]
Pathak, M.P.; Das, A.; Patowary, P.; Chattopadhyay, P. Contentious role of ‘Good Adiponectin’ in pulmonary and cardiovascular diseases: Is adiponectin directed therapy a boon or a bane? Biochimie, 2020, 175, 106-119.
[http://dx.doi.org/10.1016/j.biochi.2020.05.008] [PMID: 32473183]
[144]
Otvos, L., Jr; Haspinger, E.; La Russa, F.; Maspero, F.; Graziano, P.; Kovalszky, I.; Lovas, S.; Nama, K.; Hoffmann, R.; Knappe, D.; Cassone, M.; Wade, J.; Surmacz, E. Design and development of a peptide-based adiponectin receptor agonist for cancer treatment. BMC Biotechnol., 2011, 11(1), 90.
[http://dx.doi.org/10.1186/1472-6750-11-90] [PMID: 21974986]
[145]
Sun, Y.; Zang, Z.; Zhong, L.; Wu, M.; Su, Q.; Gao, X.; Zan, W.; Lin, D.; Zhao, Y.; Zhang, Z. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay. PLoS One, 2013, 8(5), e63354.
[http://dx.doi.org/10.1371/journal.pone.0063354] [PMID: 23691032]
[146]
Okada-Iwabu, M.; Yamauchi, T.; Iwabu, M.; Honma, T.; Hamagami, K.; Matsuda, K.; Yamaguchi, M.; Tanabe, H.; Kimura-Someya, T.; Shirouzu, M.; Ogata, H.; Tokuyama, K.; Ueki, K.; Nagano, T.; Tanaka, A.; Yokoyama, S.; Kadowaki, T. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature, 2013, 503(7477), 493-499.
[http://dx.doi.org/10.1038/nature12656] [PMID: 24172895]
[147]
Mirmiran, P.; Hosseinpour-Niazi, S.; Azizi, F. Therapeutic lifestyle change diet enriched in legumes reduces oxidative stress in overweight type 2 diabetic patients: A crossover randomised clinical trial. Eur. J. Clin. Nutr., 2018, 72(1), 174-176.
[http://dx.doi.org/10.1038/ejcn.2017.113] [PMID: 28722030]
[148]
Dewi, L.; Sulchan, M. Kisdjamiatun, Potency of cape gooseberry (Physalis Peruviana) juice in improving antioxidant and adiponectin level of high fat diet streptozotocin rat model. Rom. J. Diabetes Nutr. Metab. Dis., 2018, 25(3), 253-260.
[http://dx.doi.org/10.2478/rjdnmd-2018-0029]
[149]
Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2022. Available From: https://www.ginasthma.org
[150]
MacRedmond, R.; Singhera, G.; Attridge, S.; Bahzad, M.; Fava, C.; Lai, Y.; Hallstrand, T.S.; Dorscheid, D.R. Conjugated linoleic acid improves airway hyper-reactivity in overweight mild asthmatics. Clin. Exp. Allergy, 2010, 40(7), 1071-1078.
[http://dx.doi.org/10.1111/j.1365-2222.2010.03531.x] [PMID: 20642580]
[151]
Gu, C.; Loube, J.; Lee, R.; Bevans-Fonti, S.; Wu, T.D.; Barmine, J.H.; Jun, J.C.; McCormack, M.C.; Hansel, N.N.; Mitzner, W.; Polotsky, V.Y. Metformin alleviates airway hyperresponsiveness in a mouse model of diet-induced obesity. Front. Physiol., 2022, 13, 883275.
[http://dx.doi.org/10.3389/fphys.2022.883275] [PMID: 35574481]
[152]
Manni, M.L.; Heinrich, V.A.; Uvalle, C.E.; Manuel, A.; Ellgass, M.R.; Mullett, S.J.; Normann, M.C.; Koziel, C.; Fajt, M.L.; Wenzel, S.E.; Holguin, F.; Freeman, B.A.; Wendell, S.L. Systemic bile acids potentiate airway hyperresponsiveness and modulate Th17 cell function in obesity-associated asthma. J. Immunol., 2022, 208(1_Supplement), 109-10.
[http://dx.doi.org/10.4049/jimmunol.208.Supp.109.10]
[153]
Lin, X.; Wang, L.; Lu, X.; Zhang, Y.; Zheng, R.; Chen, R.; Zhang, W. Targeting of G-protein coupled receptor 40 alleviates airway hyperresponsiveness through RhoA/ROCK1 signaling pathway in obese asthmatic mice. Respir. Res., 2023, 24(1), 56.
[http://dx.doi.org/10.1186/s12931-023-02361-1] [PMID: 36803977]
[154]
Shim, J.S.; Lee, H.S.; Kwon, H.; Kim, M.H.; Cho, Y.J.; Park, H.W. Inhibition of glutaminase 1 activity reverses airway hyperresponsiveness and decreases IL-1β + M1s and IL-17 producing ILC3s in high-fat diet-fed obese mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2023, 324(5), L625-L638.
[http://dx.doi.org/10.1152/ajplung.00181.2022] [PMID: 36920218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy