Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anticancer Potential of Novel Cinnamoyl Derivatives against U87MG and SHSY-5Y Cell Lines

Author(s): Niki Gouleni, Annalisa Di Rienzo, Sena Oner, Ceren Karagöz, Mehmet Enes Arslan, Adil Mardinoglu, Hasan Turkez, Antonio Di Stefano, Stamatia Vassiliou* and Ivana Cacciatore*

Volume 24, Issue 1, 2024

Published on: 10 November, 2023

Page: [39 - 49] Pages: 11

DOI: 10.2174/0118715206266917231106064937

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Glioblastoma multiforme (GBM) is probably the most malignant and aggressive brain tumor belonging to the class of astrocytomas. The considerable aggressiveness and high malignancy of GBM make it a tumor that is difficult to treat. Here, we report the synthesis and biological evaluation of eighteen novel cinnamoyl derivatives (3a-i and 4a-i) to obtain more effective antitumor agents against GBM.

Methods: The chemical structures of novel cinnamoyl derivatives (3a-i and 4a-i) were confirmed by NMR and MS analyses. The physicochemical properties and evaluation of the ADME profile of 3a-i and 4a-i were performed by the preADMETlab2.0 web program. Cinnamoyl derivatives 3a-i and 4a-i were tested in vitro for their cytotoxicity against the human healthy fibroblast (HDFa) cells using an MTT cell viability assay. Derivatives with no toxicity on HDFa cells were tested both on human glioblastoma (U87MG) and neuroblastoma (SHSY- 5Y) cells, chosen as an experimental model of brain tumors. Cell death mechanisms were analyzed by performing flow cytometry analyses.

Results: Cinnamoyl derivatives 3a-i and 4a-i showed good physicochemical and ADME properties suggesting that these compounds could be developed as oral drugs endowed with a high capability to cross the blood-brain barrier. Compounds (E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene (2c) and (E)-N-benzyl-N-(2- (cyclohexylamino)-2-oxoethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide (3e) did not show cytotoxicity on healthy human fibroblast cells up to 100 μg/mL. The most anticarcinogenic molecule, compound 3e, emerged as the most potent anticancer candidate in this study. Flow cytometry results showed that compound 3e (25 μg/mL) application resulted in nearly 86% and 84% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Compound 2c (25 μg/mL) resulted in 81% and 82% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively.

Conclusion: Cinnamoyl derivative 3e inhibits the proliferation of cultured U87MG and SHSY-5Y cells by inducing apoptosis. Further detailed research will be conducted to confirm these data in in vivo experimental animal models.

Keywords: Anticancer drugs, cinnamic acid, glioblastoma, SHSY-5Y cells, U87MG cells, cinnamoyl derivatives.

Graphical Abstract
[1]
Husain, A.; Pandey, N.; Singh, D.; Ahmad, F.; Sharma, R.; Siddiqui, M.H. Drug discovery in glioblastoma: Current status and future perspectives. Biointerface Res. Appl. Chem., 2023, 13, 27.
[http://dx.doi.org/10.33263/BRIAC136.559]
[2]
Mohammed, S. M, D.; T, A. Survival and quality of life analysis in glioblastoma multiforme with adjuvant chemoradiotherapy: A retrospective study. Rep. Pract. Oncol. Radiother., 2022, 27(6), 1026-1036.
[http://dx.doi.org/10.5603/RPOR.a2022.0113] [PMID: 36632307]
[3]
Mitusova, K.; Peltek, O.O.; Karpov, T.E.; Muslimov, A.R.; Zyuzin, M.V.; Timin, A.S. Overcoming the blood–brain barrier for the therapy of malignant brain tumor: Current status and prospects of drug delivery approaches. J. Nanobiotechnol., 2022, 20(1), 412.
[http://dx.doi.org/10.1186/s12951-022-01610-7] [PMID: 36109754]
[4]
Zhai, K.; Siddiqui, M.; Abdellatif, B.; Liskova, A.; Kubatka, P.; Büsselberg, D. Natural compounds in glioblastoma therapy: Preclinical insights, mechanistic pathways, and outlook. Cancers, 2021, 13(10), 2317.
[http://dx.doi.org/10.3390/cancers13102317] [PMID: 34065960]
[5]
Datta, S.; Luthra, R.; Bharadvaja, N. Medicinal plants for glioblastoma treatment. Anticancer. Agents Med. Chem., 2022, 22(13), 2367-2384.
[http://dx.doi.org/10.2174/1871520622666211221144739] [PMID: 34939551]
[6]
Almatroodi, S.A.; Alsahli, M.A.; Rahmani, A.H. Berberine: an important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules, 2022, 27(18), 5889.
[http://dx.doi.org/10.3390/molecules27185889] [PMID: 36144625]
[7]
Chen, W.L.; Barszczyk, A.; Turlova, E.; Deurloo, M.; Liu, B.; Yang, B.B.; Rutka, J.T.; Feng, Z.P.; Sun, H.S. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget, 2015, 6(18), 16321-16340.
[http://dx.doi.org/10.18632/oncotarget.3872] [PMID: 25965832]
[8]
Yazici, A.; Marinelli, L.; Cacciatore, I.; Emsen, B.; Eusepi, P.; Di Biase, G.; Di Stefano, A. Mardinoğlu, A.; Türkez, H. Potential anticancer effect of carvacrol codrugs on human glioblastoma cells. Curr. Drug Deliv., 2021, 18(3), 350-356.
[http://dx.doi.org/10.2174/18755704MTEw8OTQw5] [PMID: 33109049]
[9]
Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer mechanism of curcumin on human glioblastoma. Nutrients, 2021, 13(3), 950.
[http://dx.doi.org/10.3390/nu13030950] [PMID: 33809462]
[10]
Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules, 2020, 10(2), 221.
[http://dx.doi.org/10.3390/biom10020221] [PMID: 32028623]
[11]
Niero, E.L.O.; Machado-Santelli, G.M. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. J. Exp. Clin. Cancer Res., 2013, 32(1), 31.
[http://dx.doi.org/10.1186/1756-9966-32-31] [PMID: 23701745]
[12]
Zhu, B.; Shang, B.; Li, Y.; Zhen, Y. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice. Mol. Med. Rep., 2016, 13(5), 4159-4166.
[http://dx.doi.org/10.3892/mmr.2016.5041] [PMID: 27035417]
[13]
Malacrida, A.; Deschamps-Wright, M.; Rigolio, R.; Cavaletti, G.; Miloso, M. Another brick to confirm the efficacy of Rigosertib as anticancer agent. Int. J. Mol. Sci., 2023, 24(2), 1721.
[http://dx.doi.org/10.3390/ijms24021721] [PMID: 36675237]
[14]
Tang, L.; Chen, T.; Yang, H.; Wen, X.; Sun, Y.; Liu, S.; Peng, T.; Zhang, S.; Wang, L. Synthesis and antitumor effects of novel benzyl naphthyl sulfoxide/sulfone derivatives derived from Rigosertib. RSC Adv., 2021, 11(59), 37462-37471.
[http://dx.doi.org/10.1039/D1RA05226H] [PMID: 35496445]
[15]
Chen, J.; Mao, J.; Zheng, Y.; Liu, D.; Rong, G.; Yan, H.; Zhang, C.; Shi, D. Iodine-promoted decarboxylative C–S cross-coupling of cinnamic acids with sodium benzene sulfinates. Tetrahedron, 2015, 71(31), 5059-5063.
[http://dx.doi.org/10.1016/j.tet.2015.05.115]
[16]
Paul, S.; Guin, J. Radical C(sp 3)–H alkenylation, alkynylation and allylation of ethers and amides enabled by photocatalysis. Green Chem., 2017, 19(11), 2530-2534.
[http://dx.doi.org/10.1039/C7GC00840F]
[17]
Song, C.; Chen, P.; Tang, Y. Carboxylation of styrenes with CBr 4 and DMSO via cooperative photoredox and cobalt catalysis. RSC Advances, 2017, 7(19), 11233-11243.
[http://dx.doi.org/10.1039/C6RA28744A]
[18]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[19]
Cacciatore, I.; Fornasari, E.; Marinelli, L.; Eusepi, P.; Ciulla, M.; Ozdemir, O.; Tatar, A.; Turkez, H.; Di Stefano, A. Memantine-derived drugs as potential antitumor agents for the treatment of glioblastoma. Eur. J. Pharm. Sci., 2017, 109, 402-411.
[http://dx.doi.org/10.1016/j.ejps.2017.08.030] [PMID: 28860082]
[20]
Alak, G.; Parlak, V.; Aslan, M.E.; Ucar, A.; Atamanalp, M.; Turkez, H. Borax supplementation alleviates hematotoxicity and DNA damage in rainbow trout (Oncorhynchus mykiss) exposed to copper. Biol. Trace Elem. Res., 2019, 187(2), 536-542.
[http://dx.doi.org/10.1007/s12011-018-1399-6] [PMID: 29926392]
[21]
Küçükdoğru, R.; Türkez, H.; Arslan, M.E.; Tozlu, Ö.Ö.; Sönmez, E.; Mardinoğlu, A.; Cacciatore, I.; Di Stefano, A. Neuroprotective effects of boron nitride nanoparticles in the experimental Parkinson’s disease model against MPP+ induced apoptosis. Metab. Brain Dis., 2020, 35(6), 947-957.
[http://dx.doi.org/10.1007/s11011-020-00559-6] [PMID: 32215836]
[22]
Nenajdenko, V.G. α-Acidic Isocyanides in Multicomponent Chemistry. In: Isocyanide Chemistry: Applications in Synthesis and Material Science; Wiley, 2012.
[http://dx.doi.org/10.1002/9783527652532]
[23]
Jha, V.; Bhosale, A.; Kapadia, P.; Bhargava, A.; Marick, A.; Charania, Z.; Parulekar, O.; Shaikh, M.; Madaye, B. Multitargeted molecular docking study of phytochemicals on hepatocellular carcinoma. J. Appl. Biol. Biotechnol., 2022, 11, 116-130.
[http://dx.doi.org/10.7324/JABB.2023.110117]
[24]
Oja, M.; Sild, S.; Maran, U. Logistic classification models for pH-permeability profile: Predicting permeability classes for the biopharmaceutical classification system. J. Chem. Inf. Model., 2019, 59(5), 2442-2455.
[http://dx.doi.org/10.1021/acs.jcim.8b00833] [PMID: 30790522]
[25]
Pham-The, H.; Cabrera-Pérez, M.Á.; Nam, N.H.; Castillo-Garit, J.A.; Rasulev, B.; Le-Thi-Thu, H.; Casañola-Martin, G.M. In silico assessment of ADME properties: Advances in Caco-2 cell monolayer permeability modeling. Curr. Top. Med. Chem., 2019, 18(26), 2209-2229.
[http://dx.doi.org/10.2174/1568026619666181130140350] [PMID: 30499410]
[26]
Yoshitomo, A.; Asano, S.; Hozuki, S.; Tamemoto, Y.; Shibata, Y.; Hashimoto, N.; Takahashi, K.; Sasaki, Y.; Ozawa, N.; Kageyama, M.; Iijima, T.; Kazuki, Y.; Sato, H.; Hisaka, A. Significance of basal membrane permeability of epithelial cells in predicting intestinal drug absorption. Drug Metab. Dispos., 2023, 51(3), 318-328.
[http://dx.doi.org/10.1124/dmd.122.000907] [PMID: 36810197]
[27]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[28]
Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[29]
Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; Sawyers, C.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 2001, 344(14), 1031-1037.
[http://dx.doi.org/10.1056/NEJM200104053441401] [PMID: 11287972]
[30]
Jordan, V.C. Tamoxifen: A most unlikely pioneering medicine. Nat. Rev. Drug Discov., 2003, 2(3), 205-213.
[http://dx.doi.org/10.1038/nrd1031] [PMID: 12612646]
[31]
Hirose, Y.; Berger, M.S.; Pieper, R.O. Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res., 2001, 61(15), 5843-5849.
[PMID: 11479224]
[32]
Rappa, G.; Fodstad, O.; Lorico, A. The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells, 2008, 26(12), 3008-3017.
[http://dx.doi.org/10.1634/stemcells.2008-0601] [PMID: 18802032]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy