Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Inflammation and Mental Health Disorders: Immunomodulation as a Potential Therapy for Psychiatric Conditions

Author(s): Hanieh Safari* and Shohreh Mashayekhan

Volume 29, Issue 36, 2023

Published on: 08 November, 2023

Page: [2841 - 2852] Pages: 12

DOI: 10.2174/0113816128251883231031054700

Price: $65

Open Access Journals Promotions 2
Abstract

Mood disorders are the leading cause of disability worldwide and their incidence has significantly increased after the COVID-19 pandemic. Despite the continuous surge in the number of people diagnosed with psychiatric disorders, the treatment methods for these conditions remain limited. A significant number of people either do not respond to therapy or discontinue the drugs due to their severe side effects. Therefore, alternative therapeutic interventions are needed. Previous studies have shown a correlation between immunological alterations and the occurrence of mental health disorders, yet immunomodulatory therapies have been barely investigated for combating psychiatric conditions. In this article, we have reviewed the immunological alterations that occur during the onset of mental health disorders, including microglial activation, an increased number of circulating innate immune cells, reduced activity of natural killer cells, altered T cell morphology and functionality, and an increased secretion of pro-inflammatory cytokines. This article also examines key studies that demonstrate the therapeutic efficacy of anti-inflammatory medications in mental health disorders. These studies suggest that immunomodulation can potentially be used as a complementary therapy for controlling psychiatric conditions after careful screening of candidate drugs and consideration of their efficacy and side effects in clinical trials.

Keywords: Immunomodulation, schizophrenia, anxiety, depression, bipolar disorder, mental health disorders.

Next »
[1]
Friedrich MJ. Depression is the leading cause of disability around the world. JAMA 2017; 317(15): 1517-7.
[http://dx.doi.org/10.1001/jama.2017.3826] [PMID: 28418490]
[2]
Wu T, Jia X, Shi H, et al. Prevalence of mental health problems during the COVID-19 pandemic: A systematic review and meta- analysis. J Affect Disord 2021; 281: 91-8.
[http://dx.doi.org/10.1016/j.jad.2020.11.117] [PMID: 33310451]
[3]
Mazza MG, De Lorenzo R, Conte C, et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 2020; 89: 594-600.
[http://dx.doi.org/10.1016/j.bbi.2020.07.037] [PMID: 32738287]
[4]
Hashmi AM, Butt Z, Umair M. Is depression an inflammatory condition? A review of available evidence. J Pak Med Assoc 2013; 63(7): 899-906.
[PMID: 23901717]
[5]
Thase ME. Effectiveness of antidepressants: Comparative remission rates. J Clin Psychiatry 2003; 64(1) (Suppl. 2): 3-7.
[PMID: 12625792]
[6]
McManis PG, Talley NJ. Nausea and vomiting associated with selective serotonin reuptake inhibitors: Incidence, mechanisms and management. CNS Drugs 1997; 8(5): 394-401.
[http://dx.doi.org/10.2165/00023210-199708050-00005]
[7]
Masand P, Gupta S. Long-term side effects of newer-generation antidepressants: SSRIS, venlafaxine, nefazodone, bupropion, and mirtazapine. Ann Clin Psychiatry 2002; 14(3): 175-82.
[http://dx.doi.org/10.3109/10401230209147454] [PMID: 12585567]
[8]
Lima L, Urbina M. Serotonin transporter modulation in blood lymphocytes from patients with major depression. Cell Mol Neurobiol 2002; 22(5/6): 797-804.
[http://dx.doi.org/10.1023/A:1021869310702] [PMID: 12585696]
[9]
Ramirez K, Fornaguera-Trias J, Sheridan JF. Sheridan, stress-induced microglia activation and monocyte trafficking to the brain underlie the development of anxiety and depression. Inflammation-Assoc Depression Evidence Mech Implic 2017; 155-72.
[10]
Pandey GN, Ren X, Rizavi HS, Zhang H. Proinflammatory cytokines and their membrane-bound receptors are altered in the lymphocytes of schizophrenia patients. Schizophr Res 2015; 164: 1-3.
[http://dx.doi.org/10.1016/j.schres.2015.02.004]
[11]
Beumer W, Gibney SM, Drexhage RC, et al. The immune theory of psychiatric diseases: A key role for activated microglia and circulating monocytes. J Leukoc Biol 2012; 92(5): 959-75.
[http://dx.doi.org/10.1189/jlb.0212100] [PMID: 22875882]
[12]
Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B. Glial cells as key players in schizophrenia pathology: Recent insights and concepts of therapy. Schizophr Res 2015; 161(1): 4-18.
[http://dx.doi.org/10.1016/j.schres.2014.03.035] [PMID: 24948484]
[13]
Busse S, Busse M, Schiltz K, et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: Further evidence for disease course-related immune alterations? Brain Behav Immun 2012; 26(8): 1273-9.
[http://dx.doi.org/10.1016/j.bbi.2012.08.005] [PMID: 22917959]
[14]
Müller N, Myint AM, Schwarz MJ. Inflammatory biomarkers and depression. Neurotox Res 2011; 19(2): 308-18.
[http://dx.doi.org/10.1007/s12640-010-9210-2] [PMID: 20658274]
[15]
Maes M, Van Der Planken M, Stevens WJ, et al. Leukocytosis, monocytosis and neutrophilia: Hallmarks of severe depression. J Psychiatr Res 1992; 26(2): 125-34.
[http://dx.doi.org/10.1016/0022-3956(92)90004-8] [PMID: 1613679]
[16]
Özyurt G, Binici NC. The neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in adolescent obsessive-compulsive disorder: Does comorbid anxiety disorder affect inflammatory response? Psychiatry Res 2019; 272: 311-5.
[http://dx.doi.org/10.1016/j.psychres.2018.12.131] [PMID: 30597382]
[17]
Al-Hussain F, Alfallaj MM, Alahmari AN, et al. Relationship between neutrophiltolymphocyte ratio and stress in multiple sclerosis patients. J Clin Diagn Res 2017; 11(5): CC01-4.
[http://dx.doi.org/10.7860/JCDR/2017/24388.9764] [PMID: 28658752]
[18]
Orum M. Comparison of complete blood count parameters of panic attack and panic disorder. Med Sci 2021; 10(1): 125-31.
[http://dx.doi.org/10.5455/medscience.2020.09.201]
[19]
Zhang M, Yao A, Liu L, et al. Relationship between neutrophil to lymphocyte ratio and post-traumatic stress disorder in early stage after acute trauma. Zhonghua Jizhen Yixue Zazhi 2021; 12: 479-84.
[http://dx.doi.org/10.3760/cma.j.issn.1671-0282.2021.04.019]
[20]
Sağlam Aykut D, Civil Arslan F, Özkorumak Karagüzel E, Aral G, Karakullukçu S. The relationship between neutrophil-lymphocyte, platelet-lymphocyte ratio and cognitive functions in bipolar disorder. Nord J Psychiatry 2018; 72(2): 119-23.
[http://dx.doi.org/10.1080/08039488.2017.1397192] [PMID: 29108448]
[21]
Jackson AJ, Miller BJ. Meta-analysis of total and differential white blood cell counts in schizophrenia. Acta Psychiatr Scand 2020; 142(1): 18-26.
[http://dx.doi.org/10.1111/acps.13140] [PMID: 31850530]
[22]
Irwin M, Smith TL, Gillin JC. Low natural killer cytotoxicity in major depression. Life Sci 1987; 41(18): 2127-33.
[http://dx.doi.org/10.1016/0024-3205(87)90531-5] [PMID: 3669915]
[23]
Jung W, Irwin M. Reduction of natural killer cytotoxic activity in major depression: interaction between depression and cigarette smoking. Psychosom Med 1999; 61(3): 263-70.
[http://dx.doi.org/10.1097/00006842-199905000-00002] [PMID: 10367603]
[24]
Arranz L, Guayerbas N, Siboni L, De la Fuente M. Effect of acupuncture treatment on the immune function impairment found in anxious women. Am J Chin Med 2007; 35(1): 35-51.
[http://dx.doi.org/10.1142/S0192415X07004606] [PMID: 17265549]
[25]
Lee MS, Huh HJ, Hong SS, et al. Psychoneuroimmunological effects of Qi-therapy: Preliminary study on the changes of level of anxiety, mood, cortisol and melatonin and cellular function of neutrophil and natural killer cells. Stress Health 2001; 17(1): 17-24.
[http://dx.doi.org/10.1002/1532-2998(200101)17:1<17::AID-SMI878>3.0.CO;2-3]
[26]
Karpiński P, Frydecka D, Sąsiadek MM, Misiak B. Reduced number of peripheral natural killer cells in schizophrenia but not in bipolar disorder. Brain Behav Immun 2016; 54: 194-200.
[http://dx.doi.org/10.1016/j.bbi.2016.02.005] [PMID: 26872421]
[27]
Tarantino N, Leboyer M, Bouleau A, et al. Natural killer cells in first-episode psychosis: An innate immune signature? Mol Psychiatry 2021; 26(9): 5297-306.
[http://dx.doi.org/10.1038/s41380-020-01008-7] [PMID: 33456051]
[28]
Karpiński P, Samochowiec J, Frydecka D, Sąsiadek MM, Misiak B. Further evidence for depletion of peripheral blood natural killer cells in patients with schizophrenia: A computational deconvolution study. Schizophr Res 2018; 201: 243-8.
[http://dx.doi.org/10.1016/j.schres.2018.04.026] [PMID: 29681501]
[29]
Oliveira J, Oliveira-Maia AJ, Tamouza R, Brown AS, Leboyer M. Infectious and immunogenetic factors in bipolar disorder. Acta Psychiatr Scand 2017; 136(4): 409-23.
[http://dx.doi.org/10.1111/acps.12791] [PMID: 28832904]
[30]
Steiner J, Frodl T, Schiltz K, et al. Innate immune cells and c-reactive protein in acute first-episode psychosis and schizophrenia: Relationship to psychopathology and treatment. Schizophr Bull 2019; 46(2): sbz068.
[http://dx.doi.org/10.1093/schbul/sbz068] [PMID: 31504969]
[31]
van Kesteren C F MG, Gremmels H, de Witte LD, et al. Immune involvement in the pathogenesis of schizophrenia: A meta-analysis on postmortem brain studies. Transl Psychiatry 2017; 7(3): e1075-1.
[http://dx.doi.org/10.1038/tp.2017.4] [PMID: 28350400]
[32]
Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inflamed moods: A review of the interactions between inflammation and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53: 23-34.
[http://dx.doi.org/10.1016/j.pnpbp.2014.01.013] [PMID: 24468642]
[33]
Drexhage RC, van der Heul-Nieuwenhuijsen L, Padmos RC, et al. Inflammatory gene expression in monocytes of patients with schizophrenia: overlap and difference with bipolar disorder. A study in naturalistically treated patients. Int J Neuropsychopharmacol 2010; 13(10): 1369-81.
[http://dx.doi.org/10.1017/S1461145710000799] [PMID: 20633309]
[34]
Khairova RA, Machado-Vieira R, Du J, Manji HK. A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. Int J Neuropsychopharmacol 2009; 12(4): 561-78.
[http://dx.doi.org/10.1017/S1461145709009924] [PMID: 19224657]
[35]
Xia Z, Depierre JW, Nässberger L. Tricyclic antidepressants inhibit IL-6, IL-1β and TNF-α release in human blood monocytes and IL-2 and interferon-γ in T cells. Immunopharmacology 1996; 34(1): 27-37.
[http://dx.doi.org/10.1016/0162-3109(96)00111-7] [PMID: 8880223]
[36]
Kubera M, Maes M, Holan V, Basta-Kaim A, Roman A, Shani J. Prolonged desipramine treatment increases the production of interleukin-10, an anti-inflammatory cytokine, in C57BL/6 mice subjected to the chronic mild stress model of depression. J Affect Disord 2001; 63: 171-8.
[http://dx.doi.org/10.1016/S0165-0327(00)00182-8]
[37]
Wittenberg GM, Stylianou A, Zhang Y, et al. Effects of immunomodulatory drugs on depressive symptoms: A mega-analysis of randomized, placebo-controlled clinical trials in inflammatory disorders. Mol Psychiatry 2020; 25(6): 1275-85.
[http://dx.doi.org/10.1038/s41380-019-0471-8] [PMID: 31427751]
[38]
Monji A, Kato TA, Mizoguchi Y, et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42: 115-21.
[http://dx.doi.org/10.1016/j.pnpbp.2011.12.002] [PMID: 22192886]
[39]
Li J, Wang Y, Yuan X, Kang Y, Song X. New insight in the cross-talk between microglia and schizophrenia: From the perspective of neurodevelopment. Front Psychiatry 2023; 14: 1126632.
[http://dx.doi.org/10.3389/fpsyt.2023.1126632] [PMID: 36873215]
[40]
Gober R, Ardalan M, Shiadeh SMJ, et al. Microglia activation in postmortem brains with schizophrenia demonstrates distinct morphological changes between brain regions. Brain Pathol 2022; 32(1): e13003.
[http://dx.doi.org/10.1111/bpa.13003]
[41]
Wang C, Yue H, Hu Z, et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science 2020; 367(6478): 688-94.
[http://dx.doi.org/10.1126/science.aaz2288] [PMID: 32029629]
[42]
Zhou H, Wang J, Zhang Y, Shao F, Wang W. The role of microglial CX3CR1 in schizophrenia-related behaviors induced by social isolation. Front Integr Nuerosci 2020; 14: 551676.
[http://dx.doi.org/10.3389/fnint.2020.551676] [PMID: 33013335]
[43]
Sellgren CM, Gracias J, Watmuff B, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 2019; 22(3): 374-85.
[http://dx.doi.org/10.1038/s41593-018-0334-7] [PMID: 30718903]
[44]
Vikhreva OV, Uranova NA. Microglial reactivity in the prefrontal cortex in schizophrenia with different types of course. Neurosci Behav Physiol 2022; 52(5): 639-44.
[http://dx.doi.org/10.1007/s11055-022-01289-1]
[45]
Kato TA, Monji A, Mizoguchi Y, et al. Anti-Inflammatory properties of antipsychotics via microglia modulations: Are antipsychotics a ‘fire extinguisher’ in the brain of schizophrenia? Mini Rev Med Chem 2011; 11(7): 565-74.
[http://dx.doi.org/10.2174/138955711795906941] [PMID: 21699487]
[46]
Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF. Peripheral and central effects of repeated social defeat stress: Monocyte trafficking, microglial activation, and anxiety. Neuroscience 2015; 289: 429-42.
[http://dx.doi.org/10.1016/j.neuroscience.2015.01.001] [PMID: 25596319]
[47]
Munshi S, Loh MK, Ferrara N, et al. Repeated stress induces a pro-inflammatory state, increases amygdala neuronal and microglial activation, and causes anxiety in adult male rats. Brain Behav Immun 2020; 84: 180-99.
[http://dx.doi.org/10.1016/j.bbi.2019.11.023] [PMID: 31785394]
[48]
Li Z, Ma L, Kulesskaya N, Võikar V, Tian L. Microglia are polarized to M1 type in high-anxiety inbred mice in response to lipopolysaccharide challenge. Brain Behav Immun 2014; 38: 237-48.
[http://dx.doi.org/10.1016/j.bbi.2014.02.008] [PMID: 24561490]
[49]
Farhangian M, Azarafrouz F, Chavoshinezhad S, Dargahi L. Intranasal interferon-beta alleviates anxiety and depressive-like behaviors by modulating microglia polarization in an Alzheimer’s disease model. Neurosci Lett 2023; 792: 136968.
[http://dx.doi.org/10.1016/j.neulet.2022.136968] [PMID: 36396023]
[50]
Sawada A, Niiyama Y, Ataka K, Nagaishi K, Yamakage M, Fujimiya M. Suppression of bone marrow-derived microglia in the amygdala improves anxiety-like behavior induced by chronic partial sciatic nerve ligation in mice. Pain 2014; 155(9): 1762-72.
[http://dx.doi.org/10.1016/j.pain.2014.05.031] [PMID: 24907405]
[51]
Milior G, Lecours C, Samson L, et al. Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain Behav Immun 2016; 55: 114-25.
[http://dx.doi.org/10.1016/j.bbi.2015.07.024] [PMID: 26231972]
[52]
Hellwig S, Brioschi S, Dieni S, et al. Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav Immun 2016; 55: 126-37.
[http://dx.doi.org/10.1016/j.bbi.2015.11.008] [PMID: 26576722]
[53]
Singhal G, Baune BT. Microglia: An interface between the loss of neuroplasticity and depression. Front Cell Neurosci 2017; 11: 270.
[http://dx.doi.org/10.3389/fncel.2017.00270] [PMID: 28943841]
[54]
Li B, Yang W, Ge T, Wang Y, Cui R. Stress induced microglial activation contributes to depression. Pharmacol Res 2022; 179: 106145.
[http://dx.doi.org/10.1016/j.phrs.2022.106145] [PMID: 35219870]
[55]
Brites D, Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015; 9: 476.
[http://dx.doi.org/10.3389/fncel.2015.00476] [PMID: 26733805]
[56]
Deng S, Chen J, Wang F. Microglia: A central player in depression. Curr Med Sci 2020; 40(3): 391-400.
[http://dx.doi.org/10.1007/s11596-020-2193-1] [PMID: 32681244]
[57]
Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci 2015; 637-358.
[http://dx.doi.org/10.1016/j.tins.2015.08.001]
[58]
Mudra Rakshasa-Loots A, Bakewell N, Sharp DJ, et al. Biomarkers of central and peripheral inflammation mediate the association between HIV and depressive symptoms. Transl Psychiatry 2023; 13(1): 190.
[http://dx.doi.org/10.1038/s41398-023-02489-0] [PMID: 37280232]
[59]
Mariani N, Everson J, Pariante CM, Borsini A. Modulation of microglial activation by antidepressants. J Psychopharmacol 2022; 36(2): 131-50.
[http://dx.doi.org/10.1177/02698811211069110] [PMID: 35098788]
[60]
Jia X, Gao Z, Hu H. Microglia in depression: Current perspectives. Sci China Life Sci 2021; 64(6): 911-25.
[http://dx.doi.org/10.1007/s11427-020-1815-6] [PMID: 33068286]
[61]
Sneeboer MAM, Snijders GJLJ, Berdowski WM, et al. Microglia in post-mortem brain tissue of patients with bipolar disorder are not immune activated. Transl Psychiatry 2019; 9(1): 153.
[http://dx.doi.org/10.1038/s41398-019-0490-x]
[62]
Haarman BCMB, Riemersma-Van der Lek RF, de Groot JC, et al. Neuroinflammation in bipolar disorder - A [11C]-(R)-PK11195 positron emission tomography study. Brain Behav Immun 2014; 40: 219-25.
[http://dx.doi.org/10.1016/j.bbi.2014.03.016] [PMID: 24703991]
[63]
Seredenina T, Sorce S, Herrmann FR, et al. Decreased NOX2 expression in the brain of patients with bipolar disorder: Association with valproic acid prescription and substance abuse. Transl Psychiatry 2017; 7(8): e1206.
[http://dx.doi.org/10.1038/tp.2017.175]
[64]
Patel JP, Frey BN. Disruption in the blood-brain barrier: The missing link between brain and body inflammation in bipolar disorder? Neural Plast 2015; 2015: 1-12.
[http://dx.doi.org/10.1155/2015/708306] [PMID: 26075104]
[65]
Kamintsky L, Cairns KA, Veksler R, et al. Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression. Neuroimage Clin 2020; 26: 102049.
[http://dx.doi.org/10.1016/j.nicl.2019.102049] [PMID: 31718955]
[66]
Greene C, Hanley N, Campbell M. Campbell, blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Transl Psychiatry 2020; 373: 10(1): 373.
[http://dx.doi.org/10.1038/s41398-020-01054-3]
[67]
Martín-Hernández D, Martínez M, Robledo-Montaña J, et al. Neuroinflammation related to the blood-brain barrier and sphingosine-1-phosphate in a pre-clinical model of periodontal diseases and depression in rats. J Clin Periodontol 2023; 50(5): 642-56.
[http://dx.doi.org/10.1111/jcpe.13780] [PMID: 36644813]
[68]
Ivković M, Pantović-Stefanović M, Dunjić-Kostić B, et al. Neutrophil-to-lymphocyte ratio predicting suicide risk in euthymic patients with bipolar disorder: Moderatory effect of family history. Compr Psychiatry 2016; 66: 87-95.
[http://dx.doi.org/10.1016/j.comppsych.2016.01.005] [PMID: 26995241]
[69]
Aydin Sunbul E, Sunbul M, Yanartas O, et al. Increased neutrophil/lymphocyte ratio in patients with depression is correlated with the severity of depression and cardiovascular risk factors. Psychiatry Investig 2016; 13(1): 121-6.
[http://dx.doi.org/10.4306/pi.2016.13.1.121] [PMID: 26766954]
[70]
Kayhan F, Gündüz Ş, Ersoy SA, Kandeğer A, Annagür BB. Relationships of neutrophil-lymphocyte and platelet-lymphocyte ratios with the severity of major depression. Psychiatry Res 2017; 247: 332-5.
[http://dx.doi.org/10.1016/j.psychres.2016.11.016] [PMID: 27978453]
[71]
Orum MH, Kara MZ, Egilmez OB. Mean platelet volume and neutrophil to lymphocyte ratio as parameters to indicate the severity of suicide attempt. J Immunoassay Immunochem 2018; 39(6): 647-59.
[http://dx.doi.org/10.1080/15321819.2018.1529682] [PMID: 30311834]
[72]
Fusar-Poli L, Natale A, Amerio A, et al. Aguglia, neutrophil-to- lymphocyte, platelet-to-lymphocyte and monocyte-to-lymphocyte ratio in bipolar disorder. Brain Sci 2021; 11(1): 58.
[http://dx.doi.org/10.3390/brainsci11010058]
[73]
Melo MCA, Garcia RF, de Araújo CFC, Abreu RLC, de Bruin PFC, de Bruin VMS. Clinical significance of neutrophil-lymphocyte and platelet-lymphocyte ratios in bipolar patients: An 18- month prospective study. Psychiatry Res 2019; 271: 8-14.
[http://dx.doi.org/10.1016/j.psychres.2018.10.077] [PMID: 30448449]
[74]
Corsi-Zuelli F, Schneider AH, Santos-Silva T, et al. Increased blood neutrophil extracellular traps (NETs) associated with early life stress: Translational findings in recent-onset schizophrenia and rodent model. Transl Psychiatry 2022; 12(1): 526.
[http://dx.doi.org/10.1038/s41398-022-02291-4] [PMID: 36572669]
[75]
Melamed Y, Sirota P, Dicker DR, Fishman P. Superoxide anion production by neutrophils derived from peripheral blood of schizophrenic patients. Psychiatry Res 1998; 77(1): 29-34.
[http://dx.doi.org/10.1016/S0165-1781(97)00124-8] [PMID: 10710172]
[76]
Frank MG, Hendricks SE, Bessette D, Johnson DR, Wieseler Frank JL, Burke WJ. Levels of monocyte reactive oxygen species are associated with reduced natural killer cell activity in major depressive disorder. Neuropsychobiology 2001; 44(1): 1-6.
[http://dx.doi.org/10.1159/000054906] [PMID: 11408785]
[77]
Rammal H, Bouayed J, Younos C, Soulimani R. The impact of high anxiety level on the oxidative status of mouse peripheral blood lymphocytes, granulocytes and monocytes. Eur J Pharmacol 2008; 589: 173-5.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.053]
[78]
Gama CS, Salvador M, Andreazza AC, Kapczinski F, Silva Belmonte-de-Abreu P. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in schizophrenia: A study of patients treated with haloperidol or clozapine. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(3): 512-5.
[http://dx.doi.org/10.1016/j.pnpbp.2005.11.009] [PMID: 16426720]
[79]
Srivastava N, Barthwal M, Dalal P, et al. Nitrite content and antioxidant enzyme levels in the blood of schizophrenia patients. Psychopharmacology 2001; 158(2): 140-5.
[http://dx.doi.org/10.1007/s002130100860] [PMID: 11702087]
[80]
Pollak TA, Drndarski S, Stone JM, David AS, McGuire P, Abbott NJ. The blood-brain barrier in psychosis. Lancet Psychiatry 2018; 5(1): 79-92.
[http://dx.doi.org/10.1016/S2215-0366(17)30293-6] [PMID: 28781208]
[81]
Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19(12): 1584-96.
[http://dx.doi.org/10.1038/nm.3407] [PMID: 24309662]
[82]
Najjar S, Pahlajani S, De Sanctis V, Stern JNH, Najjar A, Chong D. Neurovascular unit dysfunction and blood-brain barrier hyperpermeability contribute to schizophrenia neurobiology: A theoretical integration of clinical and experimental evidence. Front Psychiatry 2017; 8: 83.
[http://dx.doi.org/10.3389/fpsyt.2017.00083] [PMID: 28588507]
[83]
Wohleb ES, Powell ND, Godbout JP, Sheridan JF. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci 2013; 33(34): 13820-33.
[http://dx.doi.org/10.1523/JNEUROSCI.1671-13.2013] [PMID: 23966702]
[84]
Wohleb ES, McKim DB, Shea DT, et al. Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol Psychiatry 2014; 75(12): 970-81.
[http://dx.doi.org/10.1016/j.biopsych.2013.11.029] [PMID: 24439304]
[85]
Kitaoka S. Inflammation in the brain and periphery found in animal models of depression and its behavioral relevance. J Pharmacol Sci 2022; 148(2): 262-6.
[http://dx.doi.org/10.1016/j.jphs.2021.12.005] [PMID: 35063142]
[86]
Zheng X, Ma S, Kang A, et al. Chemical dampening of Ly6Chi monocytes in the periphery produces anti-depressant effects in mice. Sci Rep 2016; 6(1): 19406.
[http://dx.doi.org/10.1038/srep19406] [PMID: 26783261]
[87]
McKim DB, Weber MD, Niraula A, et al. Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol Psychiatry 2018; 23(6): 1421-31.
[http://dx.doi.org/10.1038/mp.2017.64] [PMID: 28373688]
[88]
Brambilla P, Bellani M, Isola M, et al. Increased M1/decreased M2 signature and signs of Th1/Th2 shift in chronic patients with bipolar disorder, but not in those with schizophrenia. Transl Psychiatry 2014; 4(7): e406.
[http://dx.doi.org/10.1038/tp.2014.46] [PMID: 24984193]
[89]
Padmos RC, Hillegers MHJ, Knijff EM, et al. A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch Gen Psychiatry 2008; 65(4): 395-407.
[http://dx.doi.org/10.1001/archpsyc.65.4.395] [PMID: 18391128]
[90]
Beumer W, Drexhage RC, De Wit H, Versnel MA, Drexhage HA, Cohen D. Increased level of serum cytokines, chemokines and adipokines in patients with schizophrenia is associated with disease and metabolic syndrome. Psychoneuroendocrinology 2012; 37(12): 1901-11.
[http://dx.doi.org/10.1016/j.psyneuen.2012.04.001] [PMID: 22541717]
[91]
Uranova NA, Bonartsev PD, Androsova LV, Rakhmanova VI, Kaleda VG. Impaired monocyte activation in schizophrenia: Ultrastructural abnormalities and increased IL-1β production. Eur Arch Psychiatry Clin Neurosci 2017; 267(5): 417-26.
[http://dx.doi.org/10.1007/s00406-017-0782-1] [PMID: 28314932]
[92]
Hu L, Li D, Ge C, Liao H, Wang Y, Xu H. Natural killer cells may exert antidepressant-like effects in mice by controlling the release of inflammatory factors. Neuroscience 2019; 401: 59-72.
[http://dx.doi.org/10.1016/j.neuroscience.2019.01.002] [PMID: 30641114]
[93]
Lewitus GM, Cohen H, Schwartz M. Reducing post-traumatic anxiety by immunization. Brain Behav Immun 2008; 22(7): 1108-14.
[http://dx.doi.org/10.1016/j.bbi.2008.05.002] [PMID: 18562161]
[94]
Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M. T cell deficiency leads to cognitive dysfunction: Implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci 2004; 101(21): 8180-5.
[http://dx.doi.org/10.1073/pnas.0402268101] [PMID: 15141078]
[95]
Liu Y, Mian MF, McVey Neufeld KA, Forsythe P. CD4+CD25+ T cells are essential for behavioral effects of lactobacillus rhamnosus JB-1 in Male BALB/c mice. Brain Behav Immun 2020; 88: 451-60.
[http://dx.doi.org/10.1016/j.bbi.2020.04.014] [PMID: 32276029]
[96]
Vieira MMM, Ferreira TB, Pacheco PAF, et al. Enhanced Th17 phenotype in individuals with generalized anxiety disorder. J Neuroimmunol 2010; 229: 212-8.
[http://dx.doi.org/10.1016/j.jneuroim.2010.07.018]
[97]
Pietruczuk K, Lisowska KA, Grabowski K, Landowski J, Witkowski JM. Proliferation and apoptosis of T lymphocytes in patients with bipolar disorder. Sci Rep 2018; 8(1): 3327.
[http://dx.doi.org/10.1038/s41598-018-21769-0] [PMID: 29463875]
[98]
Ivanova SA, Semke VY, Vetlugina TP, Rakitina NM, Kudyakova TA, Simutkin GG. Signs of apoptosis of immunocompetent cells in patients with depression. Neurosci Behav Physiol 2007; 37(5): 527-30.
[http://dx.doi.org/10.1007/s11055-007-0047-y] [PMID: 17505807]
[99]
Grosse L, Carvalho LA, Birkenhager TK, et al. Circulating cytotoxic T cells and natural killer cells as potential predictors for antidepressant response in melancholic depression. Restoration of T regulatory cell populations after antidepressant therapy. Psychopharmacology 2016; 233(9): 1679-88.
[http://dx.doi.org/10.1007/s00213-015-3943-9] [PMID: 25953327]
[100]
Pietruczuk K, Lisowska KA, Grabowski K, Landowski J, Cubała WJ, Witkowski JM. Peripheral blood lymphocyte subpopulations in patients with bipolar disorder type II. Sci Rep 2019; 9(1): 5869.
[http://dx.doi.org/10.1038/s41598-019-42482-6] [PMID: 30971748]
[101]
Mazzarello V, Cecchini A, Fenu G, et al. Lymphocytes in schizophrenic patients under therapy: Serological, morphological and cell subset findings. Ital J Anat Embryol 2004; 109(3): 177-88.
[PMID: 15597918]
[102]
Miller BJ, Gassama B, Sebastian D, Buckley P, Mellor A. Meta-analysis of lymphocytes in schizophrenia: Clinical status and antipsychotic effects. Biol Psychiatry 2013; 73(10): 993-9.
[http://dx.doi.org/10.1016/j.biopsych.2012.09.007] [PMID: 23062357]
[103]
Fan K, Li Y, Wang H, et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior. Cell 2019; 179(4): 864-879.e19.
[http://dx.doi.org/10.1016/j.cell.2019.10.001] [PMID: 31675497]
[104]
Maino K, Gruber R, Riedel M, Seitz N, Schwarz M, Müller N. T- and B-lymphocytes in patients with schizophrenia in acute psychotic episode and the course of the treatment. Psychiatry Res 2007; 152: 173-80.
[http://dx.doi.org/10.1016/j.psychres.2006.06.004]
[105]
Uranova N, Bonartsev P, Brusov O, Morozova M, Rachmanova V, Orlovskaya D. The ultrastructure of lymphocytes in schizophrenia. World J Biol Psychiatry 2007; 8(1): 30-7.
[http://dx.doi.org/10.1080/15622970600960207] [PMID: 17366347]
[106]
Nikkilä H V, Müller K, Ahokas A, Rimón R, Andersson LC. Increased frequency of activated lymphocytes in the cerebrospinal fluid of patients with acute schizophrenia. Schizophr Res 2001; 49: 99-105.
[http://dx.doi.org/10.1016/S0920-9964(99)00218-2]
[107]
Printz DJ, Strauss DH, Goetz R, et al. Elevation of CD5+ B lymphocytes in schizophrenia. Biol Psychiatry 1999; 46(1): 110-8.
[http://dx.doi.org/10.1016/S0006-3223(98)00307-2] [PMID: 10394480]
[108]
Evans DL, Ten Have TR, Douglas SD, et al. Association of depression with viral load, CD8 T lymphocytes, and natural killer cells in women with HIV infection. Am J Psychiatry 2002; 159(10): 1752-9.
[http://dx.doi.org/10.1176/appi.ajp.159.10.1752] [PMID: 12359683]
[109]
Cruess DG, Douglas SD, Petitto JM, et al. Association of depression, CD8+ T lymphocytes, and natural killer cell activity: Implications for morbidity and mortality in human immunodeficiency virus disease. Curr Psychiatry Rep 2003; 5(6): 445-50.
[http://dx.doi.org/10.1007/s11920-003-0083-4] [PMID: 14609499]
[110]
Barbosa IG, Rocha NP, Assis F, et al. Monocyte and lymphocyte activation in bipolar disorder: A new piece in the puzzle of immune dysfunction in mood disorders. Int J Neuropsychopharmacol 2015; 18(1): pyu021.
[http://dx.doi.org/10.1093/ijnp/pyu021] [PMID: 25539506]
[111]
Monji A, Kato T, Kanba S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 2009; 63(3): 257-65.
[http://dx.doi.org/10.1111/j.1440-1819.2009.01945.x] [PMID: 19579286]
[112]
Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR. Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex 2013; 23(8): 1784-97.
[http://dx.doi.org/10.1093/cercor/bhs151] [PMID: 22710611]
[113]
Goldstein BI, Kemp DE, Soczynska JK, McIntyre RS. Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: A systematic review of the literature. J Clin Psychiatry 2009; 70(8): 1078-90.
[http://dx.doi.org/10.4088/JCP.08r04505] [PMID: 19497250]
[114]
Modabbernia A, Taslimi S, Brietzke E, Ashrafi M. Cytokine alterations in bipolar disorder: A meta-analysis of 30 studies. Biol Psychiatry 2013; 74(1): 15-25.
[http://dx.doi.org/10.1016/j.biopsych.2013.01.007] [PMID: 23419545]
[115]
Skurlova M, Stofkova A, Jurcovicova J. Anxiety-like behavior in the elevated-plus maze tests and enhanced IL-1β, IL-6, NADPH oxidase-1, and iNOS mRNAs in the hippocampus during early stage of adjuvant arthritis in rats. Neurosci Lett 2011; 487(2): 250-4.
[http://dx.doi.org/10.1016/j.neulet.2010.10.032] [PMID: 20970480]
[116]
Brietzke E, Stertz L, Fernandes BS, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord 2009; 116(3): 214-7.
[http://dx.doi.org/10.1016/j.jad.2008.12.001] [PMID: 19251324]
[117]
Hassan M, Elzehery R, Mosaad YM, Mostafa M, Elkalla IHR, Elwasify M. Clinical characteristics of bipolar 1 disorder in relation to interleukin-6: A cross-sectional study among egyptian patients. Middle East Curr Psychiatry 2023; 30(1): 21.
[http://dx.doi.org/10.1186/s43045-023-00297-2]
[118]
Velloso FJ, Wadhwa A, Kumari E, Carcea I, Gunal O, Levison SW. Modestly increasing systemic interleukin-6 perinatally disturbs secondary germinal zone neurogenesis and gliogenesis and produces sociability deficits. Brain Behav Immun 2022; 101: 23-36.
[http://dx.doi.org/10.1016/j.bbi.2021.12.015] [PMID: 34954074]
[119]
Hodes GE, Pfau ML, Leboeuf M, et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci 2014; 111(45): 16136-41.
[http://dx.doi.org/10.1073/pnas.1415191111] [PMID: 25331895]
[120]
Swiergiel AH, Dunn AJ. Feeding, exploratory, anxiety- and depression-related behaviors are not altered in interleukin-6-deficient male mice. Behav Brain Res 2006; 171(1): 94-108.
[http://dx.doi.org/10.1016/j.bbr.2006.03.024] [PMID: 16677721]
[121]
Leo A, Nesci V, Tallarico M, et al. IL-6 Receptor blockade by tocilizumab has anti-absence and anti-epileptogenic effects in the WAG/Rij rat model of absence epilepsy. Neurotherapeutics 2020; 17(4): 2004-14.
[http://dx.doi.org/10.1007/s13311-020-00893-8] [PMID: 32681356]
[122]
Luo Y, He H, Zhang J, Ou Y, Fan N. Changes in serum TNF-α, IL-18, and IL-6 concentrations in patients with chronic schizophrenia at admission and at discharge. Compr Psychiatry 2019; 90: 82-7.
[http://dx.doi.org/10.1016/j.comppsych.2019.01.003] [PMID: 30782515]
[123]
Beckett CW, Niklison-Chirou MV. The role of immunomodulators in treatment-resistant depression: Case studies. Cell Death Discov 2022; 8(1): 367.
[http://dx.doi.org/10.1038/s41420-022-01147-6]
[124]
Goldsmith DR, Haroon E, Miller AH, Strauss GP, Buckley PF, Miller BJ. TNF-α and IL-6 are associated with the deficit syndrome and negative symptoms in patients with chronic schizophrenia. Schizophr Res 2018; 199: 281-4.
[http://dx.doi.org/10.1016/j.schres.2018.02.048] [PMID: 29499967]
[125]
Brietzke E, Kapczinski F. TNF-α as a molecular target in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(6): 1355-61.
[http://dx.doi.org/10.1016/j.pnpbp.2008.01.006] [PMID: 18316149]
[126]
Krügel U, Fischer J, Radicke S, Sack U, Himmerich H. Antidepressant effects of TNF-α blockade in an animal model of depression. J Psychiatr Res 2013; 47(5): 611-6.
[http://dx.doi.org/10.1016/j.jpsychires.2013.01.007] [PMID: 23394815]
[127]
Ertenli I, Ozer S, Kiraz S, et al. Infliximab, a TNF-α antagonist treatment in patients with ankylosing spondylitis: The impact on depression, anxiety and quality of life level. Rheumatol Int 2012; 32(2): 323-30.
[http://dx.doi.org/10.1007/s00296-010-1616-x] [PMID: 21079965]
[128]
Chen J, Song Y, Yang J, et al. The contribution of TNF-α in the amygdala to anxiety in mice with persistent inflammatory pain. Neurosci Lett 2013; 541: 275-80.
[http://dx.doi.org/10.1016/j.neulet.2013.02.005] [PMID: 23415758]
[129]
Zhu S, Zhao L, Fan Y, et al. Interaction between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. Psychoneuroendocrinology 2020; 114: 104595.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104595] [PMID: 32036201]
[130]
Fan N, Luo Y, Qu Y, He H. Altered serum levels of TNF-α, IL-6, and IL-18 in depressive disorder patients. Hum Psychopharmacol 2017; 32(4): e2588.
[http://dx.doi.org/10.1002/hup.2588]
[131]
Uint L, Bastos GM, Thurow HS, et al. Increased levels of plasma IL-1b and BDNF can predict resistant depression patients. Rev Assoc Med Bras 2019; 65(3): 361-9.
[http://dx.doi.org/10.1590/1806-9282.65.3.361] [PMID: 30994834]
[132]
Wohleb ES, Patterson JM, Sharma V, Quan N, Godbout JP, Sheridan JF. Knockdown of interleukin-1 receptor type-1 on endothelial cells attenuated stress-induced neuroinflammation and prevented anxiety-like behavior. J Neurosci 2014; 34(7): 2583-91.
[http://dx.doi.org/10.1523/JNEUROSCI.3723-13.2014] [PMID: 24523548]
[133]
Cragnolini AB, Schiöth HB, Scimonelli TN. Anxiety-like behavior induced by IL-1β is modulated by α-MSH through central melanocortin-4 receptors. Peptides 2006; 27(6): 1451-6.
[http://dx.doi.org/10.1016/j.peptides.2005.10.020] [PMID: 16325304]
[134]
Söderlund J, Schröder J, Nordin C, et al. Activation of brain interleukin-1β in schizophrenia. Mol Psychiatry 2009; 14(12): 1069-71.
[http://dx.doi.org/10.1038/mp.2009.52] [PMID: 19920835]
[135]
Vares EA, Lehmann S, Sauer C, et al. Association of pro-inflammatory cytokines with clinical features in euthymic patients with Bipolar-I-Disorder. J Affect Disord 2020; 277: 450-5.
[http://dx.doi.org/10.1016/j.jad.2020.07.125] [PMID: 32871531]
[136]
Murata S, Murphy M, Hoppensteadt D, Fareed J, Welborn A, Halaris A. Effects of adjunctive inflammatory modulation on IL-1β in treatment resistant bipolar depression. Brain Behav Immun 2020; 87: 369-76.
[http://dx.doi.org/10.1016/j.bbi.2020.01.004] [PMID: 31923551]
[137]
Zhang J, He H, Qiao Y, et al. Priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Glia 2020; 68(12): 2674-92.
[http://dx.doi.org/10.1002/glia.23878] [PMID: 32652855]
[138]
Zhang XY, Zhou DF, Zhang PY, Wu GY, Cao LY, Shen CY. Elevated Interleukin-2, Interleukin-6, and Interleukin-8 serum levels in neuroleptic-free schizophrenia : Association with psychopathology. Schizophr Res 2002; 57: 247-58.
[139]
Ellman LM, Deicken RF, Vinogradov S, et al. Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr Res 2010; 121(1-3): 46-54.
[http://dx.doi.org/10.1016/j.schres.2010.05.014]
[140]
Munshi S, Parrilli V, Rosenkranz JA. Peripheral anti-inflammatory cytokine Interleukin-10 treatment mitigates interleukin-1β-induced anxiety and sickness behaviors in adult male rats. Behav Brain Res 2019; 372: 112024.
[http://dx.doi.org/10.1016/j.bbr.2019.112024] [PMID: 31195034]
[141]
Barnes J, Mondelli V, Pariante CM. Genetic contributions of inflammation to depression. Neuropsychopharmacology 2017; 42(1): 81-98.
[http://dx.doi.org/10.1038/npp.2016.169] [PMID: 27555379]
[142]
Bradburn S. Mechanisms linking depression, immune system and epigenetics during aging, Inflammation and Immunity in Depression. Academic Press 2018; pp. 339-56.
[http://dx.doi.org/10.1016/B978-0-12-811073-7.00019-2]
[143]
Zobdeh F, Eremenko II, Akan MA, et al. Pharmacogenetics and pain treatment with a focus on non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants: A systematic review. Pharmaceutics 2022; 14(6): 1190.
[http://dx.doi.org/10.3390/pharmaceutics14061190]
[144]
Anderson DB, Shaheed CA. Medications for treating low back pain in adults. evidence for the use of paracetamol, opioids, nonsteroidal anti-inflammatories, muscle relaxants, antibiotics, and antidepressants: an overview for musculoskeletal clinicians. J Orthop Sports Phys Ther 2022; 52(7): 425-31.
[http://dx.doi.org/10.2519/jospt.2022.10788] [PMID: 35584029]
[145]
Kopschina Feltes P, Doorduin J, Klein HC, et al. Anti-inflammatory treatment for major depressive disorder: Implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol 2017; 31(9): 1149-65.
[http://dx.doi.org/10.1177/0269881117711708] [PMID: 28653857]
[146]
Gałecki P, Mossakowska-Wójcik J, Talarowska M. The anti-inflammatory mechanism of antidepressants - SSRIs, SNRIs. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt C): 291-4.
[http://dx.doi.org/10.1016/j.pnpbp.2017.03.016] [PMID: 28342944]
[147]
Kálmán J, Palotás A, Juhász A, et al. Impact of venlafaxine on gene expression profile in lymphocytes of the elderly with major depression-evolution of antidepressants and the role of the “neuro-immune” system. Neurochem Res 2005; 30(11): 1429-38.
[http://dx.doi.org/10.1007/s11064-005-8513-9] [PMID: 16341940]
[148]
Sugino H, Futamura T, Mitsumoto Y, Maeda K, Marunaka Y. Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(2): 303-7.
[http://dx.doi.org/10.1016/j.pnpbp.2008.12.006] [PMID: 19138716]
[149]
Davey KJ, O’Mahony SM, Schellekens H, et al. Gender-dependent consequences of chronic olanzapine in the rat: Effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl) 2012; 221(1): 155-69.
[http://dx.doi.org/10.1007/s00213-011-2555-2] [PMID: 22234378]
[150]
Faour-Nmarne C, Azab AN. Effects of olanzapine on LPS-induced inflammation in rat primary glia cells. Innate Immun 2016; 22(1): 40-50.
[http://dx.doi.org/10.1177/1753425915613425] [PMID: 26542836]
[151]
Müller N, Schwarz M. COX-2 inhibition in schizophrenia and major depression. Curr Pharm Des 2008; 14(14): 1452-65.
[http://dx.doi.org/10.2174/138161208784480243] [PMID: 18537668]
[152]
Wang M, Zhang L, Gage FH. Microglia, complement and schizophrenia. Nat Neurosci 2019; 22(3): 333-4.
[http://dx.doi.org/10.1038/s41593-019-0343-1] [PMID: 30796420]
[153]
Uzzan S, Azab AN. Anti-TNF-α compounds as a treatment for depression. Molecules 2021; 26(8): 2368.
[http://dx.doi.org/10.3390/molecules26082368] [PMID: 33921721]
[154]
Miller BJ, Dias JK, Lemos HP, Buckley PF. An open-label, pilot trial of adjunctive tocilizumab in schizophrenia. J Clin Psychiatry 2016; 77(2): 13353.
[155]
Brietzke E, Scheinberg M, Lafer B. Therapeutic potential of interleukin-6 antagonism in bipolar disorder. Med Hypotheses 2011; 76(1): 21-3.
[http://dx.doi.org/10.1016/j.mehy.2010.08.021] [PMID: 20832177]
[156]
Worthen RJ, Garzon Zighelboim SS, Torres Jaramillo CS, Beurel E. Anti-inflammatory IL-10 administration rescues depression-associated learning and memory deficits in mice. J Neuroinflammation 2020; 17(1): 246.
[http://dx.doi.org/10.1186/s12974-020-01922-1] [PMID: 32828124]
[157]
Casey LM, Pearson RM, Hughes KR, et al. Conjugation of transforming growth factor beta to antigen-loaded poly(lactide-co-glycolide) nanoparticles enhances efficiency of antigen-specific tolerance. Bioconjug Chem 2018; 29(3): 813-23.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00624] [PMID: 29148731]
[158]
Saito E, Gurczynski SJ, Kramer KR, et al. Shea, Modulating lung immune cells by pulmonary delivery of antigen-specific nanoparticles to treat autoimmune disease. Sci Adv 2020; 6(42): eabc9317.
[http://dx.doi.org/10.1126/sciadv.abc9317]
[159]
Scheinfeld N. A comprehensive review and evaluation of the side effects of the tumor necrosis factor alpha blockers etanercept, infliximab and adalimumab. J Dermatolog Treat 2004; 15(5): 280-94.
[http://dx.doi.org/10.1080/09546630410017275] [PMID: 15370396]
[160]
Choong DJ, Tan E. Does tocilizumab have a role in dermatology? A review of clinical applications, its adverse side effects and practical considerations. Dermatol Ther 2021; 34(4): e14990.
[http://dx.doi.org/10.1111/dth.14990]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy