Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Effectiveness of Blood Glucose Time in Range to Reduce Risk of Blood Glucose Extrusion and Improve Blood Glucose Metrics in Type 1 Diabetic Patients

Author(s): Omar Oraibi*, Mohammed Somaili, Erwa Elmakki, Sameer Alqassimi, Mohammed Ali Madkhali, Mostafa Mohrag, Faisal Abusageah, Mohammed Alhazmi, Samar Alfaifi, Ruba Ageeli, Mohammed Sumayli, Fatimah Arishi, Abdulaziz H. Alhazmi and Abdulrahman Hummadi

Volume 24, Issue 10, 2024

Published on: 08 November, 2023

Page: [1197 - 1203] Pages: 7

DOI: 10.2174/0118715303263019231029163336

Price: $65

Open Access Journals Promotions 2
Abstract

Background: With evolving diabetes technology, continuous glucose monitoring (CGM) and time in range have been advanced as critical measurements to assess complications. They have shown improvement in A1C levels and decreased episodes of blood glucose extrusion.

Aims: This study aimed to assess the awareness and utilization of blood glucose time in range and its effectiveness in reducing the risk of blood glucose extrusion and improving blood glucose metrics among patients with type 1 diabetes mellitus.

Methods: A retrospective study included 342 patients who met the inclusion criteria and were using the CGM, aiming for a TIR of 70% daily. Glycemic control was followed using TIR data, blood glucose extrusion frequency (including hyperglycemia and hypoglycemia events), active sensor time, average blood glucose, and glucose management indicator (GMI) levels.

Results: A total of 342 individuals participated in this study, the majority of whom were below 18 years of age (62.3%). The hypoglycemic frequency was significantly increased compared to the baseline, and most participants experienced hypoglycemia events (p = 0.0001). The incidences increased over time, with 90.9% and 93% having hypoglycemia at 60 and 90 days (p = 0.0001), respectively. The active scan and sensor time were not followed, which led to the blood glucose target not being achieved, with no improvement throughout the study. Consequently, no improvement occurred in glycemic control.

Conclusion: CGM technology has been promising and proven effective in improving glycemic. However, our study did not show these benefits as expected, which could be explained by the underutilization and improper use of the CGM.

Keywords: Diabetes mellitus, CGM, A1C, glucose management indicator, hypoglycemia, hyperglycemia.

[1]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[2]
Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract., 2017, 128, 40-50.
[http://dx.doi.org/10.1016/j.diabres.2017.03.024] [PMID: 28437734]
[3]
Alotaibi, A.; Perry, L.; Gholizadeh, L.; Al-Ganmi, A. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: An overview. J. Epidemiol. Glob. Health, 2017, 7(4), 211-218.
[http://dx.doi.org/10.1016/j.jegh.2017.10.001] [PMID: 29110860]
[4]
Alhowaish, A. Economic costs of diabetes in Saudi Arabia. J. Family Community Med., 2013, 20(1), 1-7.
[http://dx.doi.org/10.4103/2230-8229.108174] [PMID: 23723724]
[5]
Memish, Z.A.; Jaber, S.; Mokdad, A.H.; AlMazroa, M.A.; Murray, C.J.L.; Al Rabeeah, A.A. Burden of disease, injuries, and risk factors in the Kingdom of Saudi Arabia, 1990-2010. Prev. Chronic Dis., 2014, 11(10), 140176.
[http://dx.doi.org/10.5888/pcd11.140176] [PMID: 25275806]
[6]
Zhao, Y.; Ye, W.; Boye, K.S.; Holcombe, J.H.; Swindle, R. Healthcare charges and utilization associated with diabetic neuropathy: Impact of Type 1 diabetes and presence of other diabetes-related complications and comorbidities. Diabet. Med., 2009, 26(1), 61-69.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02616.x] [PMID: 19125762]
[7]
Melendez-Ramirez, L.Y.; Richards, R.J.; Cefalu, W.T. Complications of type 1 diabetes. Endocrinol. Metab. Clin. North Am., 2010, 39(3), 625-640.
[http://dx.doi.org/10.1016/j.ecl.2010.05.009] [PMID: 20723824]
[8]
IDF. 1 in 10 people are living with diabetes. 2023. Available From: http://idf.org/our-activities/care-prevention/cardiovascular-disease/cvd-report.html
[9]
Foster, N.C.; Beck, R.W.; Miller, K.M.; Clements, M.A.; Rickels, M.R.; DiMeglio, L.A.; Maahs, D.M.; Tamborlane, W.V.; Bergenstal, R.; Smith, E.; Olson, B.A.; Garg, S.K. State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016–2018. Diabetes Technol. Ther., 2019, 21(2), 66-72.
[http://dx.doi.org/10.1089/dia.2018.0384] [PMID: 30657336]
[10]
Welsh, K.J.; Kirkman, M.S.; Sacks, D.B. Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions. Diabetes Care, 2016, 39(8), 1299-1306.
[http://dx.doi.org/10.2337/dc15-2727] [PMID: 27457632]
[11]
Beck, R.W.; Connor, C.G.; Mullen, D.M.; Wesley, D.M.; Bergenstal, R.M. The fallacy of average: How using HbA1c alone to assess glycemic control can be misleading. Diabetes Care, 2017, 40(8), 994-999.
[http://dx.doi.org/10.2337/dc17-0636] [PMID: 28733374]
[12]
Adolfsson, P.; Rentoul, D.; Klinkenbijl, B.; Parkin, C.G. Glucose monitoring is the solution. Eur. Endocrinol., 2018, 14(2), 50-56.
[13]
Tumminia, A.; Crimi, S.; Sciacca, L.; Buscema, M.; Frittitta, L.; Squatrito, S.; Vigneri, R.; Tomaselli, L. Efficacy of real-time continuous glucose monitoring on glycaemic control and glucose variability in type 1 diabetic patients treated with either insulin pumps or multiple insulin injection therapy: A randomized controlled crossover trial. Diabetes Metab. Res. Rev., 2015, 31(1), 61-68.
[http://dx.doi.org/10.1002/dmrr.2557] [PMID: 24816997]
[14]
Beck, R.W.; Riddlesworth, T.; Ruedy, K.; Ahmann, A.; Bergenstal, R.; Haller, S.; Kollman, C.; Kruger, D.; McGill, J.B.; Polonsky, W.; Toschi, E.; Wolpert, H.; Price, D. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections. JAMA, 2017, 317(4), 371-378.
[http://dx.doi.org/10.1001/jama.2016.19975] [PMID: 28118453]
[15]
Pluchino, K.M.; Wu, Y.; Silk, A.D.; Yi, J.; Lias, C.H. Glucose management indicator (GMI): A new term for estimating A1C from continuous glucose monitoring. Diabetes Care, 2019, 42(2), e28.
[http://dx.doi.org/10.2337/dc18-2366] [PMID: 30559103]
[16]
Vigersky, R.A.; McMahon, C. The relationship of hemoglobin A1C to time-in-range in patients with diabetes. Diabetes Technol. Ther., 2019, 21(2), 81-85.
[http://dx.doi.org/10.1089/dia.2018.0310] [PMID: 30575414]
[17]
Beck, R.W.; Bergenstal, R.M.; Cheng, P.; Kollman, C.; Carlson, A.L.; Johnson, M.L.; Rodbard, D. The relationships between time in range, hyperglycemia metrics, and HbA1c. J. Diabetes Sci. Technol., 2019, 13(4), 614-626.
[http://dx.doi.org/10.1177/1932296818822496] [PMID: 30636519]
[18]
Omar, A.S.; Salama, A.; Allam, M.; Elgohary, Y.; Mohammed, S.; Tuli, A.K.; Singh, R. Association of time in blood glucose range with outcomes following cardiac surgery. BMC Anesthesiol., 2015, 15(1), 14.
[http://dx.doi.org/10.1186/1471-2253-15-14] [PMID: 25670921]
[19]
Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; Beck, R.; Bosi, E.; Buckingham, B.; Cobelli, C.; Dassau, E.; Doyle, F.J., III; Heller, S.; Hovorka, R.; Jia, W.; Jones, T.; Kordonouri, O.; Kovatchev, B.; Kowalski, A.; Laffel, L.; Maahs, D.; Murphy, H.R.; Nørgaard, K.; Parkin, C.G.; Renard, E.; Saboo, B.; Scharf, M.; Tamborlane, W.V.; Weinzimer, S.A.; Phillip, M. International consensus on use of continuous glucose monitoring. Diabetes Care, 2017, 40(12), 1631-1640.
[http://dx.doi.org/10.2337/dc17-1600] [PMID: 29162583]
[20]
Maiorino, M.I.; Signoriello, S.; Maio, A.; Chiodini, P.; Bellastella, G.; Scappaticcio, L.; Longo, M.; Giugliano, D.; Esposito, K. Effects of continuous glucose monitoring on metrics of glycemic control in diabetes: A Systematic Review With Meta-analysis of Randomized Controlled Trials. Diabetes Care, 2020, 43(5), 1146-1156.
[http://dx.doi.org/10.2337/dc19-1459] [PMID: 32312858]
[21]
Xing, D.; Kollman, C.; Beck, R.W.; Tamborlane, W.V.; Laffel, L.; Buckingham, B.A.; Wilson, D.M.; Weinzimer, S.; Fiallo-Scharer, R. Optimal sampling intervals to assess long-term glycemic control using continuous glucose monitoring. Diabetes Technol. Ther., 2011, 13(3), 351-358.
[http://dx.doi.org/10.1089/dia.2010.0156] [PMID: 21299401]
[22]
Laiteerapong, N.; Ham, S.A.; Gao, Y.; Moffet, H.H.; Liu, J.Y.; Huang, E.S.; Karter, A.J. The legacy effect in type 2 diabetes: Impact of early glycemic control on future complications (the diabetes & aging study). Diabetes Care, 2019, 42(3), 416-426.
[http://dx.doi.org/10.2337/dc17-1144] [PMID: 30104301]
[23]
Sanders, K.; Mills, J.; Martin, F.I.; Del Horne, D.J. Emotional attitudes in adult insulin-dependent diabetics. J. Psychosom. Res., 1975, 19(4), 241-246.
[http://dx.doi.org/10.1016/0022-3999(75)90020-3] [PMID: 1202208]
[24]
Tamborlane, W.V.; Beck, R.W.; Bode, B.W.; Buckingham, B.; Chase, H.P.; Clemons, R.; Fiallo-Scharer, R.; Fox, L.A.; Gilliam, L.K.; Hirsch, I.B.; Huang, E.S.; Kollman, C.; Kowalski, A.J.; Laffel, L.; Lawrence, J.M.; Lee, J.; Mauras, N.; O’Grady, M.; Ruedy, K.J.; Tansey, M.; Tsalikian, E.; Weinzimer, S.; Wilson, D.M.; Wolpert, H.; Wysocki, T.; Xing, D. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med., 2008, 359(14), 1464-1476.
[http://dx.doi.org/10.1056/NEJMoa0805017] [PMID: 18779236]
[25]
Martens, T.; Beck, R.W.; Bailey, R.; Ruedy, K.J.; Calhoun, P.; Peters, A.L.; Pop-Busui, R.; Philis-Tsimikas, A.; Bao, S.; Umpierrez, G.; Davis, G.; Kruger, D.; Bhargava, A.; Young, L.; McGill, J.B.; Aleppo, G.; Nguyen, Q.T.; Orozco, I.; Biggs, W.; Lucas, K.J.; Polonsky, W.H.; Buse, J.B.; Price, D.; Bergenstal, R.M.; Carlson, A.; Chambers, S.; Yang, S.; Kirkman, M.S.; Kass, A.; Fraser, R.; Cushman, T.; Ramos, C.; Magar, M.; Walker, M.; Serafin-Dokhan, S.; Salam, M.; Hurst, S.; Clifton, M.J.; Kravarusic, J.; Bansal, A.; Fulkerson, C.; Ang, L.; Richardson, C.; Mizokami-Stout, K.; Reiss, J.; Leone, V.; Stifel, K.; Dailey, G.; Change, A.; McCallum, J.; Garcia, M.I.; Davis, D.; Lovell, C.; Root, C.; Toler, F.; Wilhelm, L.; Eifert, R.; Murguia, L.; Cota, B.; Nguyen, L.; Lipski, R.; Lawrence, M.K.; Fournier, A.; Carter, M.; Hoover, S.; Cohen, N.; Mouse, T.; Rusnak, J.; Campos, T.; Njeru, N.; Arant, T.; Beck, S.E.; Balo, A. Effect of continuous glucose monitoring on glycemic control in patients with type 2 diabetes treated with basal insulin: A randomized clinical trial. JAMA, 2021, 325(22), 2262-2272.
[http://dx.doi.org/10.1001/jama.2021.7444] [PMID: 34077499]
[26]
Davis, T.M.E.; Dwyer, P.; England, M.; Fegan, P.G.; Davis, W.A. Efficacy of intermittently scanned continuous glucose monitoring in the prevention of recurrent severe hypoglycemia. Diabetes Technol. Ther., 2020, 22(5), 367-373.
[http://dx.doi.org/10.1089/dia.2019.0331] [PMID: 31724878]
[27]
de Souza, K.L.V.; Rassi, M.M.B.; de Sá, D.A.R.; Bussuan, R.M.; Rodrigues, L.C de S.; Arbex, A.K. New trends: Time in range and the use of continuous glucose monitoring devices on glycemic control. Eur J Med Heal Sci., 2021, 3(1 SE-Review), 47-59.
[28]
Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; Cobelli, C.; Dassau, E.; DeVries, J.H.; Donaghue, K.C.; Dovc, K.; Doyle, F.J., III; Garg, S.; Grunberger, G.; Heller, S.; Heinemann, L.; Hirsch, I.B.; Hovorka, R.; Jia, W.; Kordonouri, O.; Kovatchev, B.; Kowalski, A.; Laffel, L.; Levine, B.; Mayorov, A.; Mathieu, C.; Murphy, H.R.; Nimri, R.; Nørgaard, K.; Parkin, C.G.; Renard, E.; Rodbard, D.; Saboo, B.; Schatz, D.; Stoner, K.; Urakami, T.; Weinzimer, S.A.; Phillip, M. Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the international consensus on time in range. Diabetes Care, 2019, 42(8), 1593-1603.
[http://dx.doi.org/10.2337/dci19-0028] [PMID: 31177185]
[29]
Battelino, T.; Phillip, M.; Bratina, N.; Nimri, R.; Oskarsson, P.; Bolinder, J. Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care, 2011, 34(4), 795-800.
[http://dx.doi.org/10.2337/dc10-1989] [PMID: 21335621]
[30]
Urakami, T.; Yoshida, K.; Kuwabara, R.; Mine, Y.; Aoki, M.; Suzuki, J.; Morioka, I. Frequent scanning using flash glucose monitoring contributes to better glycemic control in children and adolescents with type 1 diabetes. J. Diabetes Investig., 2022, 13(1), 185-190.
[http://dx.doi.org/10.1111/jdi.13618] [PMID: 34143544]
[31]
Pickup, J.C.; Freeman, S.C.; Sutton, A.J. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: Meta-analysis of randomised controlled trials using individual patient data. BMJ, 2011, 343(jul07 1), d3805.
[http://dx.doi.org/10.1136/bmj.d3805] [PMID: 21737469]
[32]
Hirsch, I.B.; Abelseth, J.; Bode, B.W.; Fischer, J.S.; Kaufman, F.R.; Mastrototaro, J.; Parkin, C.G.; Wolpert, H.A.; Buckingham, B.A. Sensor-augmented insulin pump therapy: Results of the first randomized treat-to-target study. Diabetes Technol. Ther., 2008, 10(5), 377-383.
[http://dx.doi.org/10.1089/dia.2008.0068] [PMID: 18715214]
[33]
Anderson, B.J.; Levy, W.; Hilliard, M.E. Benefits and barriers of continuous glucose monitoring in young children with type 1 diabetes. Diabetes Technol. Ther., 2019, 21(9), 493-498.
[http://dx.doi.org/10.1089/dia.2019.0142]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy