Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Bioactive Natural Leads and Traditional Herbal Plants in the Management of Inflammatory Bowel Diseases: A Brief Review

Author(s): Sonia Chauhan, Sakshi Sharma*, Rupa Mazumder and Nidhi Sharma

Volume 21, Issue 12, 2024

Published on: 02 November, 2023

Page: [2288 - 2301] Pages: 14

DOI: 10.2174/0115701808241753231024111800

Price: $65

Abstract

Inflammatory bowel disease is a chronic relapsing disorder that causes chronic inflammation and ulcers in the GIT. Depending upon the location, ulcerative colitis and Crohn's disease come under IBD. The exact etiology of IBD is still unknown. Over 8 lakhs of people were affected by inflammatory disease yearly, and the death rate increased daily. Depending upon the severity of the disease, JAK inhibitors, anti-TNF agents, and immunosuppressants can be used to manage ulcerative colitis and Crohn's disease. However, these treatments have been associated with harmful adverse effects, which cannot be ignored. To treat inflammatory diseases safely, various herbal medicines and their bioactive are preferred as game changers. Recently, the effectiveness of herbal plants has been recommended as the treatment against IBD, as shown by various in vivo models and clinical trials. The various herbal plants reported in the literature include gallic acid, lupeol, and curcumin aloe vera. This review focused on medicinal plants' anti-inflammatory, antioxidant, and anti-ulcer properties. Over 1.2 million healthcare practitioners are using herbal bioactive and have the advantages of lower side effects. Therefore, it is estimated that in Europe, the demand for plant-based products/formulations has risen by millions in 2020, showing the current position of herbal-based products in consumer health awareness.

Keywords: Inflammatory bowel disease, tissue necrosis factor-α, gastrointestinal tract, janus kinase inhibitors, health awareness, herbal plants.

Graphical Abstract
[1]
Thoreson, R.; Cullen, J.J.; Cullen, M.D. Pathophysiology of inflammation bowel disease: An overview. Surg. Clin. North Am., 2007, 87(3), 575-585.
[http://dx.doi.org/10.1016/j.suc.2007.03.001]
[2]
Sayedian, S.S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J. Med. Life, 2019, 12(2), 113-122.
[http://dx.doi.org/10.25122/jml-2018-0075]
[3]
Szałwińska, P.; Włodarczyk, J.; Spinelli, A.; Fichna, J.; Włodarczyk, M. IBS-Symptoms in IBD Patients-Manifestation of concomitant different entities. J. Clin. Med., 2020, 10(1), 31.
[http://dx.doi.org/10.3390/jcm10010031] [PMID: 33374388]
[4]
Hmar, E.B.L.; Paul, S.; Boruah, N.; Sarkar, P.; Borah, S.; Sharma, H.K. Apprehending ulcerative colitis management with springing up therapeutic approaches: can nanotechnology play a nascent role? Curr. Pathobiol. Rep., 2021, 9(1), 9-32.
[http://dx.doi.org/10.1007/s40139-020-00218-6]
[5]
Feuerstein, J.D.; Cheifetz, A.S.; Adam, S.; Cheifetz, M.D. Ulcerative colitis. Mayo Clin. Proc., 2014, 89(11), 1553-1563.
[http://dx.doi.org/10.1016/j.mayocp.2014.07.002] [PMID: 25199861]
[6]
Akshaya, K.; Chitra, V. A review on pathological state and herbal remedies on ulcerative colitis. Res. J. Pharm. Technol, 2019, 12(3), 1409-1417.
[http://dx.doi.org/10.5958/0974-360X.2019.00235.X]
[7]
Gangurde, H.H.; Chordiya, M.A.; Tamizharasi, S.; Sivakumar, T. Diseases, approaches and evaluation parameters for colon specific drug delivery: A review. Int. J. Drug Res. Tech., 2012, 2(3), 239-262.
[8]
Coskun, M. Intestinal epithelium in inflammatory bowel disease. Front. Med. (Lausanne), 2014, 1(24), 24.
[http://dx.doi.org/10.3389/fmed.2014.00024] [PMID: 25593900]
[9]
Khalili, H.; Chan, S.S.M.; Lochhead, P.; Ananthakrishnan, A.N.; Hart, A.R.; Chan, A.T. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(9), 525-535.
[http://dx.doi.org/10.1038/s41575-018-0022-9] [PMID: 29789682]
[10]
Zhao, M.; Burisch, J. Impact of genes and the environment on the pathogenesis and disease course of inflammatory bowel disease. Dig. Dis. Sci., 2019, 64(7), 1759-1769.
[http://dx.doi.org/10.1007/s10620-019-05648-w] [PMID: 31073736]
[11]
Brown, E.M.; Sadarangani, M.; Finlay, B.B. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol., 2013, 14(7), 660-667.
[http://dx.doi.org/10.1038/ni.2611] [PMID: 23778793]
[12]
Huang, Y.; Chen, Z. Inflammatory bowel disease related innate immunity and adaptive immunity. Am. J. Transl. Res., 2016, 8(6), 2490-2497.
[PMID: 27398134]
[13]
Marafini, I.; Sedda, S.; Dinallo, V.; Monteleone, G. Inflammatory cytokines: from discoveries to therapies in IBD. Expert Opin. Biol. Ther., 2019, 19(11), 1207-1217.
[http://dx.doi.org/10.1080/14712598.2019.1652267] [PMID: 31373244]
[14]
Pavli, P.; Gibson, P.R. Pathogenic factors in inflammatory bowel disease. 2. Crohn’s disease. Dig. Dis., 1992, 10(2), 72-84.
[http://dx.doi.org/10.1159/000171346] [PMID: 1591873]
[15]
Helgeland, L.; Tysk, C.; Järnerot, G.; Kett, K.; Lindberg, E.; Danielsson, D.; Andersen, S.N.; Brandtzaeg, P. IgG subclass distribution in serum and rectal mucosa of monozygotic twins with or without inflammatory bowel disease. Gut, 1992, 33(10), 1358-1364.
[http://dx.doi.org/10.1136/gut.33.10.1358] [PMID: 1446860]
[16]
Posnett, D.N.; Schmelkin, I.; Burton, D.A.; August, A.; McGrath, H.; Mayer, L.F. T cell antigen receptor V gene usage. Increases in V beta 8+ T cells in Crohn’s disease. J. Clin. Invest., 1990, 85(6), 1770-1776.
[http://dx.doi.org/10.1172/JCI114634] [PMID: 1971828]
[17]
Riccio, O.; van Gijn, M.E.; Bezdek, A.C.; Pellegrinet, L.; van Es, J.H.; Zimber-Strobl, U.; Strobl, L.J.; Honjo, T.; Clevers, H.; Radtke, F. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27 Kip1 and p57 Kip2. EMBO Rep., 2008, 9(4), 377-383.
[http://dx.doi.org/10.1038/embor.2008.7] [PMID: 18274550]
[18]
Okamoto, R.; Watanabe, M. Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J. Gastroenterol., 2016, 51(1), 11-21.
[http://dx.doi.org/10.1007/s00535-015-1098-4] [PMID: 26138071]
[19]
Khor, B.; Gardet, A.; Xavier, R.J. Genetics and pathogenesis of inflammatory bowel disease. Nature, 2011, 474(7351), 307-317.
[http://dx.doi.org/10.1038/nature10209] [PMID: 21677747]
[20]
Oka, A.; Sartor, R.B. Microbial-based and microbial-targeted therapies for inflammatory bowel diseases. Dig. Dis. Sci., 2020, 65(3), 757-788.
[http://dx.doi.org/10.1007/s10620-020-06090-z] [PMID: 32006212]
[21]
Tap, J.; Mondot, S.; Levenez, F.; Pelletier, E.; Caron, C.; Furet, J.P.; Ugarte, E.; Muñoz-Tamayo, R.; Paslier, D.L.E.; Nalin, R.; Dore, J.; Leclerc, M. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol., 2009, 11(10), 2574-2584.
[http://dx.doi.org/10.1111/j.1462-2920.2009.01982.x] [PMID: 19601958]
[22]
Schmitz, J.M.; Tonkonogy, S.L.; Dogan, B.; Leblond, A.; Whitehead, K.J.; Kim, S.C.; Simpson, K.W.; Sartor, R.B. Murine adherent and invasive E. coli induces chronic inflammation and immune responses in the small and large intestines of monoassociated IL-10 mice independent of long polar fimbriae adhesin A. Inflamm. Bowel Dis., 2019, 25(5), 875-885.
[http://dx.doi.org/10.1093/ibd/izy386] [PMID: 30576451]
[23]
Nikolaus, S.; Schreiber, S. Diagnostics of inflammatory bowel disease. Gastroenterology, 2007, 133(5), 1670-1689.
[http://dx.doi.org/10.1053/j.gastro.2007.09.001] [PMID: 17983810]
[24]
Strobel, D.; Goertz, R.S.; Bernatik, T. Diagnostics in inflammatory bowel disease: ultrasound. World J. Gastroenterol., 2011, 17(27), 3192-3197.
[PMID: 21912467]
[25]
Bernstein, C.N.; Fried, M.; Krabshuis, J.H.; Cohen, H.; Eliakim, R.; Fedail, S.; Gearry, R.; Goh, K.L.; Hamid, S.; Khan, A.G.; LeMair, A.W. Malfertheiner; Ouyang, Q.; Rey, J.F.; Sood, A.; Steinwurz, F.; Thomsen, O.O.; Thomson, A.; Watermeyer, G. World gastroenterology organization practice guidelines for the diagnosis and management of IBD in 2010. Inflamm. Bowel Dis., 2010, 16(1), 112-124.
[http://dx.doi.org/10.1002/ibd.21048] [PMID: 19653289]
[26]
Shanahan, F. Inflammatory bowel disease: Immunodiagnostics, immunotherapeutics, and ecotherapeutics. Gastroenterology, 2001, 120(3), 622-635.
[http://dx.doi.org/10.1053/gast.2001.22122] [PMID: 11179240]
[27]
Clinical Trials. Available from: https://clinicaltrials.gov/
[28]
Gupta, M.; Mishra, V.; Gulati, M.; Kapoor, B.; Kaur, A.; Gupta, R.; Tambuwala, M.M. Natural compounds as safe therapeutic options for ulcerative colitis. Inflammopharmacology, 2022, 30(2), 397-434.
[http://dx.doi.org/10.1007/s10787-022-00931-1] [PMID: 35212849]
[29]
Langmead, L.; Rampton, D.S. Review article: herbal treatment in gastrointestinal and liver disease-benefits and dangers. Aliment. Pharmacol. Ther., 2001, 15(9), 1239-1252.
[http://dx.doi.org/10.1046/j.1365-2036.2001.01053.x] [PMID: 11552894]
[30]
Holtmann, G.; Talley, N.J. Herbal medicines for the treatment of functional and inflammatory bowel disorders. Clin. Gastroenterol. Hepatol., 2015, 13(3), 422-432.
[http://dx.doi.org/10.1016/j.cgh.2014.03.014] [PMID: 24674944]
[31]
Li, C.; Wu, G.; Zhao, H.; Dong, N.; Wu, B.; Chen, Y.; Lu, Q. Natural-derived polysaccharides from plants, mushrooms, and seaweeds for treating inflammatory bowel disease. Front. Pharmacol., 2021, 12, 651813.
[http://dx.doi.org/10.3389/fphar.2021.651813] [PMID: 33981232]
[32]
Triantafyllidi, A.; Xanthos, T.; Papalois, A.; Triantafillidis, J.K. Herbal and plant therapy in patients with inflammatory bowel disease. Ann. Gastroenterol., 2015, 28(2), 210-220.
[PMID: 25830661]
[33]
Li, R.; Alex, P.; Ye, M.; Zhang, T.; Liu, L.; Li, X. An old herbal medicine with a potentially new therapeutic application in inflammatory bowel disease. Int. J. Clin. Exp. Med., 2011, 4(4), 309-319.
[PMID: 22140602]
[34]
Ng, S.C.; Lam, Y.T.; Tsoi, K.K.F.; Chan, F.K.L.; Sung, J.J.Y.; Wu, J.C.Y. Systematic review: the efficacy of herbal therapy in inflammatory bowel disease. Aliment. Pharmacol. Ther., 2013, 38(8), 854-863.
[http://dx.doi.org/10.1111/apt.12464] [PMID: 23981095]
[35]
Ganjare, A.B.; Nirmal, S.A.; Patil, A.N. Use of apigenin from Cordia dichotoma in the treatment of colitis. Fitoterapia, 2011, 82(7), 1052-1056.
[http://dx.doi.org/10.1016/j.fitote.2011.06.008] [PMID: 21745550]
[36]
Kumar, V.L.; Pandey, A.; Verma, S.; Das, P. Protection afforded by methanol extract of Calotropis procera latex in experimental model of colitis is mediated through inhibition of oxidative stress and pro-inflammatory signaling. Biomed. Pharmacother., 2019, 109, 1602-1609.
[http://dx.doi.org/10.1016/j.biopha.2018.10.187] [PMID: 30551414]
[37]
Sheth, D.B.; Patel, V.T.; Manek, R.A. evaluation of effect of ethanolic extract of fagonia cretica l. plant against experimentally induced ulcerative colitis in mice. Int. J. Adv. Sci. Res., 2020, 11(04), 131-141.
[38]
Santos, F.; Silva, R.M.; Campos, A.R.; De Araújo, R.P.; Lima Júnior, R.C.; Rao, V.S. 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem. Toxicol., 2004, 42(4), 579-584.
[http://dx.doi.org/10.1016/j.fct.2003.11.001] [PMID: 15019181]
[39]
Naini, M.A.; Zargari-Samadnejad, A.; Mehrvarz, S.; Tanideh, R.; Ghorbani, M.; Dehghanian, A.; Hasanzarrini, M.; Banaee, F.; Koohi-Hosseinabadi, O.; Tanideh, N.; Iraji, A. Anti-inflammatory, antioxidant, and healing-promoting effects of Aloe vera extract in the experimental colitis in rats. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/9945244] [PMID: 34912469]
[40]
Minaiyan, M.; Ghassemi-Dehkordi, N.; Mahzouni, P.; Ahmadi, N.S. Anti-inflammatory effect of Helichrysum oligocephalum DC extract on acetic acid - Induced acute colitis in rats. Adv. Biomed. Res., 2014, 3(1), 87.
[http://dx.doi.org/10.4103/2277-9175.128000] [PMID: 24761395]
[41]
Alizade Naini, M.; Mehrvarzi, S.; Zargari-Samadnejadi, A.; Tanideh, N.; Ghorbani, M.; Dehghanian, A.; Hasanzarrini, M.; Banaee, F.; Koohi-Hosseinabadi, O.; Irajie, C.; Iraji, A. The antioxidant and anti-inflammatory effects of quercus brantii extract on TNBS-induced ulcerative colitis in rats. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/3075973]
[42]
Théophile, D.; Laure, N.E.; Benoît, N.T.; Anatole, A.G.B.; Emmanuel, A.A.; Paul, T.V.; Pierre, K. Antinociceptive and anti-inflammatory effects of the ethyl acetate stem bark extract of Bridelia scleroneura (Euphorbiaceae). Inflammopharmacology, 2006, 14(1-2), 42-47.
[http://dx.doi.org/10.1007/s10787-006-1499-3] [PMID: 16835712]
[43]
Marín, M.; María Giner, R.; Ríos, J.L.; Carmen Recio, M. Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. J. Ethnopharmacol., 2013, 150(3), 925-934.
[http://dx.doi.org/10.1016/j.jep.2013.09.030] [PMID: 24140585]
[44]
Al-Rejaie, S.S.; Abuohashish, H.M.; Al-Enazi, M.M.; Al-Assaf, A.H.; Parmar, M.Y.; Ahmed, M.M. Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J. Gastroenterol., 2013, 19(34), 5633-5644.
[http://dx.doi.org/10.3748/wjg.v19.i34.5633] [PMID: 24039355]
[45]
Kandhare, A.D.; Raygude, K.S.; Ghosh, P.; Ghule, A.E.; Gosavi, T.P.; Badole, S.L.; Bodhankar, S.L. Effect of hydroalcoholic extract of Hibiscus rosa sinensis Linn. leaves in experimental colitis in rats. Asian Pac. J. Trop. Biomed., 2012, 2(5), 337-344.
[http://dx.doi.org/10.1016/S2221-1691(12)60053-7] [PMID: 23569927]
[46]
Aleisa, A.M.; Al-Rejaie, S.S.; Abuohashish, H.M.; Ola, M.S.; Parmar, M.Y.; Ahmed, M.M. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats. BMC Complement. Altern. Med., 2014, 14(1), 49.
[http://dx.doi.org/10.1186/1472-6882-14-49] [PMID: 24507431]
[47]
Owusu, G.; Obiri, D.D.; Ainooson, G.K.; Osafo, N.; Antwi, A.O.; Duduyemi, B.M.; Ansah, C. Acetic acid-induced ulcerative colitis in Sprague Dawley rats is suppressed by hydroethanolic extract of Cordia vignei leaves through reduced serum levels of TNF-α and IL-6. Int. J. Chronic Dis., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/8785497] [PMID: 32090060]
[48]
Pu, Z.; Han, C.; Zhang, W.; Xu, M.; Wu, Z.; Liu, Y.; Wu, M.; Sun, H.; Xie, H. Systematic understanding of the mechanism and effects of Arctigenin attenuates inflammation in dextran sulfate sodium-induced acute colitis through suppression of NLRP3 inflammasome by SIRT1. Am. J. Transl. Res., 2019, 11(7), 3992-4009.
[PMID: 31396314]
[49]
Hartmann, R.M.; Morgan Martins, M.I.; Tieppo, J.; Fillmann, H.S.; Marroni, N.P. Effect of Boswellia serrata on antioxidant status in an experimental model of colitis rats induced by acetic acid. Dig. Dis. Sci., 2012, 57(8), 2038-2044.
[http://dx.doi.org/10.1007/s10620-012-2134-3] [PMID: 22451119]
[50]
Andújar, I.; Ríos, J.L.; Giner, R.M.; Miguel Cerdá, J.; Recio, M.C. Beneficial effect of shikonin on experimental colitis induced by dextran sulfate sodium in BALB/c mice. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-15.
[http://dx.doi.org/10.1155/2012/271606] [PMID: 23346196]
[51]
Hwang, Y.J.; Nam, S.J.; Chun, W.; Kim, S.I.; Park, S.C.; Kang, C.D.; Lee, S.J. Anti-inflammatory effects of apocynin on dextran sulfate sodium-induced mouse colitis model. PLoS One, 2019, 14(5), e0217642.
[http://dx.doi.org/10.1371/journal.pone.0217642] [PMID: 31141554]
[52]
Naftali, T.; Mechulam, R.; Marii, A.; Gabay, G.; Stein, A.; Bronshtain, M.; Laish, I.; Benjaminov, F.; Konikoff, F.M. Low-dose cannabidiol is safe but ineffective in treating Crohn’s disease, a randomized controlled trial. Dig. Dis. Sci., 2017, 62(6), 1615-1620.
[http://dx.doi.org/10.1007/s10620-017-4540-z] [PMID: 28349233]
[53]
Li, C.; Xi, Y.; Li, S.; Zhao, Q.; Cheng, W.; Wang, Z.; Zhong, J.; Niu, X.; Chen, G. Berberine ameliorates TNBS induced colitis by inhibiting inflammatory responses and Th1/Th17 differentiation. Mol. Immunol., 2015, 67(2), 444-454.
[http://dx.doi.org/10.1016/j.molimm.2015.07.013] [PMID: 26224047]
[54]
Li, X.; Liu, C.; Liang, J.; Zhou, L.; Li, J.; Chen, H.; Jiang, T.; Guan, Y.; Eng Khoo, H. Antioxidative mechanisms and anticolitic potential of Desmodium styracifolium (Osb.) Merr. in DSS-induced colitic mice. J. Funct. Foods, 2022, 93, 105077.
[http://dx.doi.org/10.1016/j.jff.2022.105077]
[55]
Castejón, M.L.; Rosillo, M.Á.; Villegas, I.; Sánchez-Hidalgo, M.; Hadidi, L.; Zaidi, F.; Alarcón-de-la-Lastra, C. Quercus ilex extract ameliorates acute TNBS-induced colitis in rats. Planta Med., 2019, 85(8), 670-677.
[http://dx.doi.org/10.1055/a-0889-6132] [PMID: 31018218]
[56]
Mohamed, M.E.; Elsayed, S.A.; Madkor, H.R.; Eldien, H.M.S.; Mohafez, O.M. Yarrow oil ameliorates ulcerative colitis in mice model via regulating the NF-κB and PPAR-γ pathways. Intest. Res., 2021, 19(2), 194-205.
[http://dx.doi.org/10.5217/ir.2020.00021] [PMID: 32819032]
[57]
Pandurangan, A.K.; Mohebali, N.; Hasanpourghadi, M.; Looi, C.Y.; Mustafa, M.R.; Mohd Esa, N. Boldine suppresses dextran sulfate sodium-induced mouse experimental colitis: NF-κB and IL-6/STAT3 as potential targets. Biofactors, 2016, 42(3), 247-258.
[PMID: 26891685]
[58]
Dogra, A.; Gupta, D.; Bag, S.; Ahmed, I.; Bhatt, S.; Nehra, E.; Dhiman, S.; Kumar, A.; Singh, G.; Abdullah, S.T.; Sangwan, P.L.; Nandi, U. Glabridin ameliorates methotrexate-induced liver injury via attenuation of oxidative stress, inflammation, and apoptosis. Life Sci., 2021, 278, 119583.
[http://dx.doi.org/10.1016/j.lfs.2021.119583] [PMID: 33957170]
[59]
Li, C.; Lun, W.; Zhao, X.; Lei, S.; Guo, Y.; Ma, J.; Zhi, F. Allicin alleviates inflammation of trinitrobenzenesulfonic acid-induced rats and suppresses P38 and JNK pathways in Caco-2 cells. Mediators Inflamm., 2015, 2015, 434692.
[http://dx.doi.org/10.1155/2015/434692]
[60]
Lv, J.; Zhang, Y.; Tian, Z.; Liu, F.; Shi, Y.; Liu, Y.; Xia, P. Astragalus polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-κB activation. Int. J. Biol. Macromol., 2017, 98, 723-729.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.024] [PMID: 28188801]
[61]
Rogerio, A.P.; Kanashiro, A.; Fontanari, C.; da Silva, E.V.G.; Lucisano-Valim, Y.M.; Soares, E.G.; Faccioli, L.H. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm. Res., 2007, 56(10), 402-408.
[http://dx.doi.org/10.1007/s00011-007-7005-6] [PMID: 18026696]
[62]
Chun, J.; Lee, C.; Hwang, S.W.; Im, J.P.; Kim, J.S. Ursolic acid inhibits nuclear factor-κB signaling in intestinal epithelial cells and macrophages, and attenuates experimental colitis in mice. Life Sci., 2014, 110(1), 23-34.
[http://dx.doi.org/10.1016/j.lfs.2014.06.018] [PMID: 24992474]
[63]
Dou, W.; Zhang, J.; Sun, A.; Zhang, E.; Ding, L.; Mukherjee, S.; Wei, X.; Chou, G.; Wang, Z.T.; Mani, S. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-κB signalling. Br. J. Nutr., 2013, 110(4), 599-608.
[http://dx.doi.org/10.1017/S0007114512005594] [PMID: 23506745]
[64]
Guo, X.; Xu, Y.; Geng, R.; Qiu, J.; He, X. Curcumin alleviates dextran sulfate sodium‐induced colitis in mice through regulating gut microbiota. Mol. Nutr. Food Res., 2022, 66(8), 2100943.
[http://dx.doi.org/10.1002/mnfr.202100943] [PMID: 35106903]
[65]
Liu, Y.; Huang, W.; Ji, S.; Wang, J.; Luo, J.; Lu, B. Sophora japonica flowers and their main phytochemical, rutin, regulate chemically induced murine colitis in association with targeting the NF-κB signaling pathway and gut microbiota. Food Chem., 2022, 393, 133395.
[http://dx.doi.org/10.1016/j.foodchem.2022.133395] [PMID: 35691061]
[66]
Zugaro, S.; Benedetti, E.; Caioni, G. Garlic (Allium sativum L.) as an Ally in the Treatment of Inflammatory Bowel Diseases. Curr. Issues Mol. Biol., 2023, 45(1), 685-698.
[http://dx.doi.org/10.3390/cimb45010046] [PMID: 36661532]
[67]
Shibrya, E.E.; Rashed, R.R.; Abd El Fattah, M.A.; El-Ghazaly, M.A.; Kenawy, S.A. Apigenin and exposure to low dose gamma radiation ameliorate acetic acid-induced ulcerative colitis in rats. Dose Response, 2023, 21(1)
[http://dx.doi.org/10.1177/15593258231155787] [PMID: 36756150]
[68]
Hu, Y.; Guan, X.; He, Z.; Xie, Y.; Niu, Z.; Zhang, W.; Wang, A.; Zhang, J.; Si, C.; Li, F.; Hu, W. Apigenin-7-O-glucoside alleviates DSS-induced colitis by improving intestinal barrier function and modulating gut microbiota. J. Funct. Foods, 2023, 104, 105499.
[http://dx.doi.org/10.1016/j.jff.2023.105499]
[69]
Chen, L.; Li, X.; Gu, Q. Chimonanthus salicifolius extract alleviates DSS‐induced colitis and regulates gut microbiota in mice. Food Sci. Nutr., 2023, 11(6), 3019-3030.
[http://dx.doi.org/10.1002/fsn3.3282] [PMID: 37324926]
[70]
Yang, J.Y.; Chen, S.Y.; Wu, Y.H.; Liao, Y.L.; Yen, G.C. Ameliorative effect of buckwheat polysaccharides on colitis via regulation of the gut microbiota. Int. J. Biol. Macromol., 2023, 227, 872-883.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.155] [PMID: 36563806]
[71]
Duan, L.; Cheng, S.; Li, L.; Liu, Y.; Wang, D.; Liu, G. Natural anti-inflammatory compounds as drug candidates for inflammatory bowel disease. Front. Pharmacol., 2021, 12, 684486.
[http://dx.doi.org/10.3389/fphar.2021.684486] [PMID: 34335253]
[72]
Ebob, O.T.; Babiaka, S.B.; Ntie-Kang, F. Natural products as potential lead compounds for drug discovery against SARS-CoV-2. Nat. Prod. Bioprospect., 2021, 11(6), 611-628.
[http://dx.doi.org/10.1007/s13659-021-00317-w] [PMID: 34515981]

© 2024 Bentham Science Publishers | Privacy Policy