Research Article

肿瘤干细胞相关基因特征预测胃癌PD-L1免疫治疗及预后的系统分析

卷 31, 期 17, 2024

发表于: 02 November, 2023

页: [2467 - 2482] 页: 16

弟呕挨: 10.2174/0109298673278775231101064235

价格: $65

conference banner
摘要

目标:我们旨在建立一个带有干细胞相关基因的预后模型来评估胃癌(GC)的预后和免疫治疗反应性。 背景:肿瘤干性与肿瘤内异质性、免疫抑制和抗肿瘤耐药有关。我们建立了一个带有干细胞相关基因的预后模型来评估胃癌的预后和免疫治疗反应性。 目的:我们旨在建立一个带有干细胞相关基因的预后模型来评估胃癌的预后和免疫治疗反应性。 方法:从Gene-Expression Omnibus (GEO)数据库下载胃癌患者的单细胞RNA测序(scRNA-seq)数据,使用CytoTRACE软件筛选胃癌干性相关基因。我们描述了肿瘤干性与免疫检查点阻断(ICB)和免疫的关联。随后,采用加权基因共表达网络分析(WGCNA)、单变量Cox回归分析和最小绝对收缩和选择算子(LASSO)回归分析,建立了基于9干特征的预后模型。用模态图评价模型的预测值。 结果:早期胃癌患者干性明显增高。stemness评分与肿瘤免疫功能障碍和排斥(TIDE)评分及免疫浸润呈负相关,尤其是与T细胞和B细胞浸润呈负相关。构建了基于9个基因(ERCC6L、IQCC、NKAPD1、BLMH、SLC25A15、MRPL4、VPS35、SUMO3、CINP)的基于干性的特征,具有较好的预后预测效果,并在GSE26942队列中验证了其稳健性。其中,nomogram和risk score对预后的预测能力最强。高危患者表现出免疫逃逸倾向,对PD-L1免疫治疗反应低。 结论:我们建立了一种准确可靠的基于干细胞的预后预测基因标记。这一特征也有助于GC患者免疫治疗的临床决策。

关键词: 胃癌,干性,预后,PD-L1免疫治疗,单细胞RNA测序,肿瘤。

« Previous
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Chen, L.; Lu, L.; Gong, X.; Xu, Y.; Chu, X.; Huang, G. Gastric cancer with bone marrow invasion and disseminated intravascular coagulation: A case report. Oncologie, 2022, 24(3), 599-604.
[http://dx.doi.org/10.32604/oncologie.2022.023310]
[3]
Han, F; Qu, J; Li, F; Zhang, D; Qu, J; Li, G. Serum long non-coding RNA CCAT2 is a potential diagnostic and prognostic marker for gastric cancer. Oncologie, 2021, 23(1), 131-140.
[http://dx.doi.org/10.32604/Oncologie.2021.014153]
[4]
Cao, M.; Li, H.; Sun, D.; He, S.; Yan, X.; Yang, F.; Zhang, S.; Xia, C.; Lei, L.; Peng, J.; Chen, W. Current cancer burden in China: Epidemiology, etiology, and prevention. Cancer Biol. Med., 2022, 19(8), 1121-1138.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2022.0231] [PMID: 36069534]
[5]
Wang, D.; Chen, H.; Hu, Y. Polarized Autologous Macrophages (PAM) can be a tumor vaccine. Oncologie, 2022, 24(3), 441-449.
[http://dx.doi.org/10.32604/oncologie.2022.024898]
[6]
Li, K.; Zhang, A.; Li, X.; Zhang, H.; Zhao, L. Advances in clinical immunotherapy for gastric cancer. Biochimica et Biophysica Acta (BBA)-. Rev. Can., 2021, 1876(2), 188615.
[7]
Fu, Q.; Zhang, X.; Zhang, Y. The presence of human papillomavirus and Epstein-Barr virus in male Chinese lichen sclerosus patients: A single center study. Asian J. Androl., 2016, 18(4), 650-653.
[http://dx.doi.org/10.4103/1008-682X.160261] [PMID: 26289401]
[8]
Kwak, Y.; Seo, A.N.; Lee, H.E.; Lee, H.S. Tumor immune response and immunotherapy in gastric cancer. J. Pathol. Transl. Med., 2020, 54(1), 20-33.
[http://dx.doi.org/10.4132/jptm.2019.10.08] [PMID: 31674166]
[9]
Fu, Y.; Du, P.; Zhao, J.; Hu, C.; Qin, Y.; Huang, G. Gastric cancer stem cells: Mechanisms and therapeutic approaches. Yonsei Med. J., 2018, 59(10), 1150-1158.
[http://dx.doi.org/10.3349/ymj.2018.59.10.1150] [PMID: 30450848]
[10]
Galassi, C.; Musella, M.; Manduca, N.; Maccafeo, E.; Sistigu, A. The immune privilege of cancer stem cells: A key to understanding tumor immune escape and therapy failure. Cells, 2021, 10(9), 2361.
[http://dx.doi.org/10.3390/cells10092361] [PMID: 34572009]
[11]
Chen, X.; Zhang, D.; Jiang, F.; Shen, Y.; Li, X.; Hu, X.; Wei, P.; Shen, X. Prognostic prediction using a stemness index-related signature in a cohort of gastric cancer. Front. Mol. Biosci., 2020, 7, 570702.
[http://dx.doi.org/10.3389/fmolb.2020.570702] [PMID: 33134315]
[12]
Liu, M.; Zhou, R.; Zou, W.; Yang, Z.; Li, Q.; Chen, Z.; jiang, L.; Zhang, J. Machine learning-identified stemness features and constructed stemness-related subtype with prognosis, chemotherapy, and immunotherapy responses for non-small cell lung cancer patients. Stem Cell Res. Ther., 2023, 14(1), 238.
[http://dx.doi.org/10.1186/s13287-023-03406-4] [PMID: 37674202]
[13]
Yi, L.; Huang, P.; Zou, X.; Guo, L.; Gu, Y.; Wen, C.; Wu, G. Integrative stemness characteristics associated with prognosis and the immune microenvironment in esophageal cancer. Pharmacol. Res., 2020, 161, 105144.
[http://dx.doi.org/10.1016/j.phrs.2020.105144] [PMID: 32810627]
[14]
Zheng, H.; Liu, H.; Li, H.; Dou, W.; Wang, J.; Zhang, J.; Liu, T.; Wu, Y.; Liu, Y.; Wang, X. Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in colorectal cancer. Stem Cell Res. Ther., 2022, 13(1), 244.
[http://dx.doi.org/10.1186/s13287-022-02913-0] [PMID: 35681225]
[15]
Lu, X.; Ying, Y.; Zhang, W.; Li, R.; Wang, W. Identification of stemness subtypes and features to improve endometrial cancer treatment using machine learning. Artif. Cells Nanomed. Biotechnol., 2023, 51(1), 57-73.
[http://dx.doi.org/10.1080/21691401.2023.2172027] [PMID: 36748358]
[16]
Yang, F; Gan, L; Pan, J; Chen, Y; Zhang, H; Huang, L. Integrated single-cell RNA-sequencing analysis of gastric cancer identifies FABP1 as a novel prognostic biomarker. J Oncol., 2022, 2022, 4761403.
[17]
Gulati, G.S.; Sikandar, S.S.; Wesche, D.J.; Manjunath, A.; Bharadwaj, A.; Berger, M.J.; Ilagan, F.; Kuo, A.H.; Hsieh, R.W.; Cai, S.; Zabala, M.; Scheeren, F.A.; Lobo, N.A.; Qian, D.; Yu, F.B.; Dirbas, F.M.; Clarke, M.F.; Newman, A.M. Single-cell transcriptional diversity is a hallmark of developmental potential. Science, 2020, 367(6476), 405-411.
[http://dx.doi.org/10.1126/science.aax0249] [PMID: 31974247]
[18]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[19]
Danilova, L.; Ho, W.J.; Zhu, Q.; Vithayathil, T.; De Jesus-Acosta, A.; Azad, N.S.; Laheru, D.A.; Fertig, E.J.; Anders, R.; Jaffee, E.M.; Yarchoan, M. Programmed cell death ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival. Cancer Immunol. Res., 2019, 7(6), 886-895.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0822] [PMID: 31043417]
[20]
Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[21]
Ritchie, ME; Phipson, B; Wu, D; Hu, Y; Law, CW; Shi, W limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[22]
Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[23]
Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res., 2019, 47(W1), W199-W205.
[http://dx.doi.org/10.1093/nar/gkz401] [PMID: 31114916]
[24]
Hastie, T.; Qian, J.; Tay, K. An Introduction to glmnet; CRAN R Repositary, 2021.
[25]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[26]
Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; Dawson, N.A.; van der Heijden, M.S.; Dreicer, R.; Srinivas, S.; Retz, M.M.; Joseph, R.W.; Drakaki, A.; Vaishampayan, U.N.; Sridhar, S.S.; Quinn, D.I.; Durán, I.; Shaffer, D.R.; Eigl, B.J.; Grivas, P.D.; Yu, E.Y.; Li, S.; Kadel, E.E., III; Boyd, Z.; Bourgon, R.; Hegde, P.S.; Mariathasan, S.; Thåström, A.; Abidoye, O.O.; Fine, G.D.; Bajorin, D.F. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet, 2017, 389(10064), 67-76.
[http://dx.doi.org/10.1016/S0140-6736(16)32455-2] [PMID: 27939400]
[27]
Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G.; Seja, E.; Lomeli, S.; Kong, X.; Kelley, M.C.; Sosman, J.A.; Johnson, D.B.; Ribas, A.; Lo, R.S. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 2016, 165(1), 35-44.
[http://dx.doi.org/10.1016/j.cell.2016.02.065] [PMID: 26997480]
[28]
Hass, R.; von der Ohe, J.; Ungefroren, H. Impact of the tumor microenvironment on tumor heterogeneity and consequences for cancer cell plasticity and stemness. Cancers, 2020, 12(12), 3716.
[http://dx.doi.org/10.3390/cancers12123716] [PMID: 33322354]
[29]
Sarvaria, A.; Madrigal, J.A.; Saudemont, A. B cell regulation in cancer and anti-tumor immunity. Cell. Mol. Immunol., 2017, 14(8), 662-674.
[http://dx.doi.org/10.1038/cmi.2017.35] [PMID: 28626234]
[30]
Miranda, A.; Hamilton, P.T.; Zhang, A.W.; Pattnaik, S.; Becht, E.; Mezheyeuski, A.; Bruun, J.; Micke, P.; de Reynies, A.; Nelson, B.H. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc. Natl. Acad. Sci., 2019, 116(18), 9020-9029.
[http://dx.doi.org/10.1073/pnas.1818210116] [PMID: 30996127]
[31]
Zhang, Z.; Wang, Z.X.; Chen, Y.X.; Wu, H.X.; Yin, L.; Zhao, Q.; Luo, H.Y.; Zeng, Z.L.; Qiu, M.Z.; Xu, R.H. Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med., 2022, 14(1), 45.
[http://dx.doi.org/10.1186/s13073-022-01050-w] [PMID: 35488273]
[32]
Chen, P.; Hsu, W.H.; Han, J.; Xia, Y.; DePinho, R.A. Cancer stemness meets immunity: From mechanism to therapy. Cell Rep., 2021, 34(1), 108597.
[http://dx.doi.org/10.1016/j.celrep.2020.108597] [PMID: 33406434]
[33]
Wang, J.; Ren, H.; Wu, W.; Zeng, Q.; Chen, J.; Han, J.; Lin, M.; Zhang, C.; He, Y.; Li, M. Immune infiltration, cancer stemness, and targeted therapy in gastrointestinal stromal tumor. Front. Immunol., 2021, 12, 691713.
[http://dx.doi.org/10.3389/fimmu.2021.691713] [PMID: 34925310]
[34]
Wang, W; Xu, C; Ren, Y; Wang, S; Liao, C; Fu, X A novel cancer stemness-related signature for predicting prognosis in patients with colon adenocarcinoma. Stem Cells Int, 2021, 2021, 7036059.
[http://dx.doi.org/10.1155/2021/7036059]
[35]
Anselmi, M.; Fontana, F.; Marzagalli, M.; Gagliano, N.; Sommariva, M.; Limonta, P. Melanoma stem cells educate neutrophils to support cancer progression. Cancers, 2022, 14(14), 3391.
[http://dx.doi.org/10.3390/cancers14143391] [PMID: 35884452]
[36]
Gener, P; Seras-Franzoso, J; Callejo, PG; Andrade, F; Rafael, D; Martínez, F Dynamism, sensitivity, and consequences of mesenchymal and stem-like phenotype of cancer cells. Stem Cells Int., 2018, 2018, 4516454.
[http://dx.doi.org/10.1155/2018/4516454]
[37]
Dai, W.; Li, Y.; Mo, S.; Feng, Y.; Zhang, L.; Xu, Y.; Li, Q.; Cai, G. A robust gene signature for the prediction of early relapse in stage I–III colon cancer. Mol. Oncol., 2018, 12(4), 463-475.
[http://dx.doi.org/10.1002/1878-0261.12175] [PMID: 29377588]
[38]
De Francesco, E.M.; Maggiolini, M.; Tanowitz, H.B.; Sotgia, F.; Lisanti, M.P. Targeting hypoxic cancer stem cells (CSCs) with Doxycycline: Implications for optimizing anti-angiogenic therapy. Oncotarget, 2017, 8(34), 56126-56142.
[http://dx.doi.org/10.18632/oncotarget.18445] [PMID: 28915578]
[39]
Li, X.; Cao, Y.; Yu, X.; Jin, F.; Li, Y. A novel autophagy-related genes prognostic risk model and validation of autophagy-related oncogene VPS35 in breast cancer. Cancer Cell Int., 2021, 21(1), 265.
[http://dx.doi.org/10.1186/s12935-021-01970-4] [PMID: 34001111]
[40]
Wu, Q.; Fu, C.; Li, M.; Li, J.; Li, Z.; Qi, L.; Ci, X.; Ma, G.; Gao, A.; Fu, X.; A, J.; An, N.; Liu, M.; Li, Y.; King, J.L.; Fu, L.; Zhang, B.; Dong, J.T. CINP is a novel cofactor of KLF5 required for its role in the promotion of cell proliferation, survival and tumor growth. Int. J. Cancer, 2019, 144(3), 582-594.
[http://dx.doi.org/10.1002/ijc.31908] [PMID: 30289973]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy