Research Article

预测肝癌预后和耐药的CD8_+T细胞相关基因标记物的综合scRNA-seq分析及鉴定

卷 31, 期 17, 2024

发表于: 01 November, 2023

页: [2414 - 2430] 页: 17

弟呕挨: 10.2174/0109298673274578231030065454

价格: $65

摘要

背景:肿瘤免疫浸润细胞的异质性在肝细胞癌(HCC)的治疗反应和预后中起决定性作用。本研究探讨不同亚型CD8+T细胞对HCC肿瘤微环境及预后的影响。 方法:基于GEO、TCGA和HCCD18数据库获取LUAD患者的单细胞RNA测序、转录组和单核苷酸变异数据。通过一致聚类分析鉴定CD8+ T细胞相关亚型,并使用WGCNA鉴定与预后CD8+ T细胞亚型相关性最高的基因。使用ssGSEA和ESTIMATE算法计算不同亚型之间的途径富集评分和免疫细胞浸润水平。最后,利用TIDE算法、CYT评分和肿瘤反应性评分预测患者对免疫治疗的反应。 结果:基于scRNA- seq数据集(GSE149614),我们定义了3个CD8+T细胞簇(CD8_0, CD8_1, CD8_2)。其中CD8_2是HCC预后相关危险因素。我们从CD8_2中筛选出30个预后基因,鉴定出3个分子亚型(cluster1, cluster2, cluster3)。cluster1有更好的生存结果,更高的基因突变和增强的免疫浸润。此外,我们发现了12个基因特征(包括CYP7A1、SPP1、MSC、CXCL8、CXCL1、GCNT3、TMEM45A、SPP2、ME1、TSPAN13、S100A9和NQO1)对HCC预后具有良好的预测能力。此外,免疫浸润程度较高的高分患者从免疫治疗中获益较少。评分低的患者对Parthenolide、Shikonin等多种药物的敏感性显著高于评分高的患者。此外,得分高的患者氧化应激途径得分较高,且RiskScore与氧化应激途径得分密切相关。该图具有良好的临床应用价值。 结论:为了预测HCC的生存结果和免疫治疗反应,我们基于CD8+ T细胞的异质性建立了12个基因标记。

关键词: CD8+T细胞,肝细胞癌,scRNA-seq,免疫浸润,parthenolide,甲基化。

[1]
Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Kulik, L.; El-Serag, H.B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology, 2019, 156(2), 477-491.e1.
[http://dx.doi.org/10.1053/j.gastro.2018.08.065] [PMID: 30367835]
[4]
Wang, L.; Park, H.; Chhim, S.; Ding, Y.; Jiang, W.; Queen, C.; Kim, K.J. A novel monoclonal antibody to fibroblast growth factor 2 effectively inhibits growth of hepatocellular carcinoma xenografts. Mol. Cancer Ther., 2012, 11(4), 864-872.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0813] [PMID: 22351746]
[5]
Radvanyi, L.G. Tumor-infiltrating lymphocyte therapy. Cancer J., 2015, 21(6), 450-464.
[http://dx.doi.org/10.1097/PPO.0000000000000162] [PMID: 26588676]
[6]
Rosenberg, S.A.; Spiess, P.; Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science, 1986, 233(4770), 1318-1321.
[http://dx.doi.org/10.1126/science.3489291] [PMID: 3489291]
[7]
Harlin, H.; Meng, Y.; Peterson, A.C.; Zha, Y.; Tretiakova, M.; Slingluff, C.; McKee, M.; Gajewski, T.F. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res., 2009, 69(7), 3077-3085.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2281] [PMID: 19293190]
[8]
Ji, R.R.; Chasalow, S.D.; Wang, L.; Hamid, O.; Schmidt, H.; Cogswell, J.; Alaparthy, S.; Berman, D.; Jure-Kunkel, M.; Siemers, N.O.; Jackson, J.R.; Shahabi, V. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother., 2012, 61(7), 1019-1031.
[http://dx.doi.org/10.1007/s00262-011-1172-6] [PMID: 22146893]
[9]
Hutter, C.; Zenklusen, J.C. The cancer genome atlas: Creating lasting value beyond its data. Cell, 2018, 173(2), 283-285.
[http://dx.doi.org/10.1016/j.cell.2018.03.042] [PMID: 29625045]
[10]
Toro-Domínguez, D.; Martorell-Marugán, J.; López-Domínguez, R.; García-Moreno, A.; González-Rumayor, V.; Alarcón-Riquelme, M.E.; Carmona-Sáez, P. ImaGEO: Integrative gene expression meta-analysis from GEO database. Bioinformatics, 2019, 35(5), 880-882.
[http://dx.doi.org/10.1093/bioinformatics/bty721] [PMID: 30137226]
[11]
Lian, Q.; Wang, S.; Zhang, G.; Wang, D.; Luo, G.; Tang, J.; Chen, L.; Gu, J. HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics Proteom. Bioinform., 2018, 16(4), 269-275.
[http://dx.doi.org/10.1016/j.gpb.2018.07.003] [PMID: 30266410]
[12]
Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform., 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[13]
Horvath, S.; Zhang, B.; Carlson, M.; Lu, K.V.; Zhu, S.; Felciano, R.M.; Laurance, M.F.; Zhao, W.; Qi, S.; Chen, Z.; Lee, Y.; Scheck, A.C.; Liau, L.M.; Wu, H.; Geschwind, D.H.; Febbo, P.G.; Kornblum, H.I.; Cloughesy, T.F.; Nelson, S.F.; Mischel, P.S. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl. Acad. Sci., 2006, 103(46), 17402-17407.
[http://dx.doi.org/10.1073/pnas.0608396103] [PMID: 17090670]
[14]
Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573.
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[15]
Yang, P.; Chen, W.; Xu, H.; Yang, J.; Jiang, J.; Jiang, Y.; Xu, G. Correlation of CCL8 expression with immune cell infiltration of skin cutaneous melanoma: Potential as a prognostic indicator and therapeutic pathway. Cancer Cell Int., 2021, 21(1), 635.
[http://dx.doi.org/10.1186/s12935-021-02350-8] [PMID: 34844613]
[16]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[17]
Engebretsen, S.; Bohlin, J. Statistical predictions with glmnet. Clin. Epigenetics, 2019, 11(1), 123.
[http://dx.doi.org/10.1186/s13148-019-0730-1] [PMID: 31443682]
[18]
Pan, X.; Jin, X.; Wang, J.; Hu, Q.; Dai, B. Placenta inflammation is closely associated with gestational diabetes mellitus. Am. J. Transl. Res., 2021, 13(5), 4068-4079.
[PMID: 34149999]
[19]
Yan, D.; Li, C.; Zhou, Y.; Yan, X.; Zhi, W.; Qian, H.; Han, Y. Exploration of combinational therapeutic strategies for HCC based on TCGA HCC database. Oncologie, 2022, 24(1), 101-111.
[http://dx.doi.org/10.32604/oncologie.2022.020357]
[20]
Speiser, D.E.; Ho, P.C.; Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol., 2016, 16(10), 599-611.
[http://dx.doi.org/10.1038/nri.2016.80] [PMID: 27526640]
[21]
Thommen, D.S.; Schumacher, T.N. T cell dysfunction in cancer. Cancer Cell, 2018, 33(4), 547-562.
[http://dx.doi.org/10.1016/j.ccell.2018.03.012] [PMID: 29634943]
[22]
Poureau, P.G.; Metges, J.P. Fundamentals of digestive cancers immunology, especially gastric and hepatocellular carcinomasfondamentaux de l’immunologie des cancers digestifs (gastriques et hépatocellulaires). Oncologie, 2021, 23(1), 47-59.
[http://dx.doi.org/10.32604/Oncologie.2021.15525]
[23]
Hashimoto, M.; Kamphorst, A.O.; Im, S.J.; Kissick, H.T.; Pillai, R.N.; Ramalingam, S.S.; Araki, K.; Ahmed, R. CD8 T cell exhaustion in chronic infection and cancer: Opportunities for interventions. Annu. Rev. Med., 2018, 69(1), 301-318.
[http://dx.doi.org/10.1146/annurev-med-012017-043208] [PMID: 29414259]
[24]
He, Q.F.; Xu, Y.; Li, J.; Huang, Z.M.; Li, X.H.; Wang, X. CD8+ T-cell exhaustion in cancer: Mechanisms and new area for cancer immunotherapy. Brief. Funct. Genomics, 2019, 18(2), 99-106.
[http://dx.doi.org/10.1093/bfgp/ely006] [PMID: 29554204]
[25]
Wherry, E.J. T cell exhaustion. Nat. Immunol., 2011, 12(6), 492-499.
[http://dx.doi.org/10.1038/ni.2035] [PMID: 21739672]
[26]
Wang, X.; Lu, X.J.; Sun, B. The pros and cons of dying tumour cells in adaptive immune responses. Nat. Rev. Immunol., 2017, 17(9), 591.
[http://dx.doi.org/10.1038/nri.2017.87] [PMID: 28757605]
[27]
Flecken, T.; Schmidt, N.; Hild, S.; Gostick, E.; Drognitz, O.; Zeiser, R.; Schemmer, P.; Bruns, H.; Eiermann, T.; Price, D.A.; Blum, H.E.; Neumann-Haefelin, C.; Thimme, R. Immunodominance and functional alterations of tumor-associated antigen-specific CD8 + T-cell responses in hepatocellular carcinoma. Hepatology, 2014, 59(4), 1415-1426.
[http://dx.doi.org/10.1002/hep.26731] [PMID: 24002931]
[28]
Wang, L.; Ma, X.; Chen, Y.; Zhang, J.; Zhang, J.; Wang, W.; Chen, S. MiR-145-5p suppresses hepatocellular carcinoma progression by targeting ABHD17C. Oncologie, 2022, 24(4), 897-912.
[http://dx.doi.org/10.32604/oncologie.2022.025693]
[29]
Wu, C.; Zhou, Y.; Wang, M.; Dai, G.; Liu, X.; Lai, L.; Tang, S. Bioinformatics analysis explores potential hub genes in nonalcoholic fatty liver disease. Front. Genet., 2021, 12, 772487.
[http://dx.doi.org/10.3389/fgene.2021.772487] [PMID: 34777484]
[30]
Casagrande, V.; Mauriello, A.; Bischetti, S.; Mavilio, M.; Federici, M.; Menghini, R. Hepatocyte specific TIMP3 expression prevents diet dependent fatty liver disease and hepatocellular carcinoma. Sci. Rep., 2017, 7(1), 6747.
[http://dx.doi.org/10.1038/s41598-017-06439-x] [PMID: 28751722]
[31]
Liu, L.; Zhang, R.; Deng, J.; Dai, X.; Zhu, X.; Fu, Q.; Zhang, H.; Tong, Z.; Zhao, P.; Fang, W.; Zheng, Y.; Bao, X. Construction of TME and Identification of crosstalk between malignant cells and macrophages by SPP1 in hepatocellular carcinoma. Cancer Immunol. Immunother., 2022, 71(1), 121-136.
[http://dx.doi.org/10.1007/s00262-021-02967-8] [PMID: 34028567]
[32]
Zhu, J.; Zhou, Y.; Wang, L.; Hao, J.; Chen, R.; Liu, L.; Li, J. CXCL5/CXCL8 is a promising potential prognostic and tumor microenvironment-related cluster in hepatocellular carcinoma. J. Gastrointest. Oncol., 2020, 11(6), 1364-1380.
[http://dx.doi.org/10.21037/jgo-20-556] [PMID: 33457007]
[33]
He, Q.; Huang, W.; Liu, D.; Zhang, T.; Wang, Y.; Ji, X.; Xie, M.; Sun, M.; Tian, D.; Liu, M.; Xia, L. Homeobox B5 promotes metastasis and poor prognosis in Hepatocellular Carcinoma, via FGFR4 and CXCL1 upregulation. Theranostics, 2021, 11(12), 5759-5777.
[http://dx.doi.org/10.7150/thno.57659] [PMID: 33897880]
[34]
Liu, T.; Zhang, S.; Chen, J.; Jiang, K.; Zhang, Q.; Guo, K.; Liu, Y. The transcriptional profiling of glycogenes associated with hepatocellular carcinoma metastasis. PLoS One, 2014, 9(9), e107941.
[http://dx.doi.org/10.1371/journal.pone.0107941] [PMID: 25232831]
[35]
Xu, D.; Wang, Y.; Wu, J.; Lin, S.; Chen, Y.; Zheng, J. Identification and clinical validation of EMT-associated prognostic features based on hepatocellular carcinoma. Cancer Cell Int., 2021, 21(1), 621.
[http://dx.doi.org/10.1186/s12935-021-02326-8] [PMID: 34819088]
[36]
Zhang, X.; Kang, C.; Li, N.; Liu, X.; Zhang, J.; Gao, F.; Dai, L. Identification of special key genes for alcohol-related hepatocellular carcinoma through bioinformatic analysis. PeerJ, 2019, 7, e6375.
[http://dx.doi.org/10.7717/peerj.6375] [PMID: 30755830]
[37]
Wen, D.; Liu, D.; Tang, J.; Dong, L.; Liu, Y.; Tao, Z.; Wan, J.; Gao, D.; Wang, L.; Sun, H.; Fan, J.; Wu, W. Malic enzyme 1 induces epithelial–mesenchymal transition and indicates poor prognosis in hepatocellular carcinoma. Tumour Biol., 2015, 36(8), 6211-6221.
[http://dx.doi.org/10.1007/s13277-015-3306-5] [PMID: 25753478]
[38]
Liao, J.; Li, J.Z.; Xu, J.; Xu, Y.; Wen, W.P.; Zheng, L.; Li, L. High S100A9+ cell density predicts a poor prognosis in hepatocellular carcinoma patients after curative resection. Aging, 2021, 13(12), 16367-16380.
[http://dx.doi.org/10.18632/aging.203162] [PMID: 34157683]
[39]
Zhong, C.; Niu, Y.; Liu, W.; Yuan, Y.; Li, K.; Shi, Y.; Qiu, Z.; Li, K.; Lin, Z.; Huang, Z.; Zuo, D.; Yang, Z.; Liao, Y.; Zhang, Y.; Wang, C.; Qiu, J.; He, W.; Yuan, Y.; Li, B. S100A9 derived from chemoembolization-induced hypoxia governs mitochondrial function in hepatocellular carcinoma progression. Adv. Sci., 2022, 9(30), 2202206.
[http://dx.doi.org/10.1002/advs.202202206] [PMID: 36041055]
[40]
Yang, Y.; Zheng, J.; Wang, M.; Zhang, J.; Tian, T.; Wang, Z.; Yuan, S.; Liu, L.; Zhu, P.; Gu, F.; Fu, S.; Shan, Y.; Pan, Z.; Zhou, W. Retracted: NQO1 promotes an aggressive phenotype in hepatocellular carcinoma via amplifying ERK-NRF2 signaling. Cancer Sci., 2021, 112(2), 641-654.
[http://dx.doi.org/10.1111/cas.14744] [PMID: 33222332]
[41]
Sharma, A.; Rajappa, M.; Saxena, A.; Sharma, M. Antioxidant status in advanced cervical cancer patients undergoing neoadjuvant chemoradiation. Br. J. Biomed. Sci., 2007, 64(1), 23-27.
[http://dx.doi.org/10.1080/09674845.2007.11732751] [PMID: 17444415]
[42]
Jelic, M.; Mandic, A.; Maricic, S.; Srdjenovic, B. Oxidative stress and its role in cancer. J. Cancer Res. Ther., 2021, 17(1), 22-28.
[http://dx.doi.org/10.4103/jcrt.JCRT_862_16] [PMID: 33723127]
[43]
Gabbia, D.; Cannella, L.; De Martin, S. The role of oxidative stress in NAFLD-NASH-HCC transition-focus on nadph oxidases. Biomedicines, 2021, 9(6), 687.
[http://dx.doi.org/10.3390/biomedicines9060687] [PMID: 34204571]
[44]
Yang, Y.; Karsli-Uzunbas, G.; Poillet-Perez, L.; Sawant, A.; Hu, Z.S.; Zhao, Y.; Moore, D.; Hu, W.; White, E. Autophagy promotes mammalian survival by suppressing oxidative stress and p53. Genes Dev., 2020, 34(9-10), 688-700.
[http://dx.doi.org/10.1101/gad.335570.119] [PMID: 32193353]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy