Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Role of Enhancing Aerobic Capacity in Countering COVID-19-induced Liver Injury in Elderlies

Author(s): Ayman A. Mohamed*, Ahmed A. Abdallah and Yih-Kuen Jan

Volume 24, Issue 4, 2024

Published on: 01 November, 2023

Page: [418 - 429] Pages: 12

DOI: 10.2174/0118715303250788231018080821

Price: $65

conference banner
Abstract

COVID-19 is still a world disaster; however, its vaccination is globally available. Liver and gastrointestinal disturbances occur in patients infected with COVID-19 at varying incidences. Aging decreases the functions of the liver. Thus, the elderly have a weaker response to the COVID-19 virus. The COVID-19 virus affects the liver directly through direct and indirect mechanisms. It directly affects the renin-angiotensin system or indirectly causes sepsis, uncontrolled immune reactions, drug-related hepatic injury, and cytokine storm. Also, COVID-19 vaccines and anti-drugs have adverse effects on the liver too. Thus, this review explores the effect of enhancing aerobic capacity as a nonpharmacological intervention on decreasing COVID- 19-induced liver injury. Enhancing aerobic capacity decreases COVID-19-induced liver injury through the following: 1) downregulating systemic and tissue ACE/ANG II/AT1R axis, upregulating ACE2/ANG 1–7/Mas axis, and moving the renin-angiotensin system to the direction of the ACE2/ANG (1–7)/Mas axis, 2) Improving mitochondrial function and oxygenation to body and lung tissues, causing a decrease in harmful oxidative reactions, 3) Increasing the processing of accumulated free radicals and inhibiting the acute respiratory distress syndrome, 4) Acting as an antioxidant to protect the liver from oxidative stress, 5) Increasing the effect of antiviral drugs and COVID-19 vaccines, which improves the function of immune biomarkers, decreases the viral load, and increases the body's defense against the virus, 6) Decreasing coagulation abnormalities and thrombosis. In conclusion, enhancing aerobic capacity may be an efficient nonpharmacological intervention to decrease COVID-19-induced liver injury in elderlies and regenerate the liver to its normal status after being infected by the COVID-19 virus. It also helps to strengthen the body's immunity for better effects of both COVID-19 vaccination and drugs.

Keywords: Aerobic, COVID-19, liver injury, immunity, oxidative stress, thrombosis.

Graphical Abstract
[1]
Mulita, F.; Vailas, M.; Tchabashvili, L.; Liolis, E.; Iliopoulos, F.; Drakos, N.; Maroulis, I. The impact of the COVID-19 outbreak on emergency surgery: A Greek emergency department experience. Prz. Gastroenterol., 2021, 16(1), 95.
[http://dx.doi.org/10.5114/pg.2021.104739] [PMID: 33986894]
[2]
Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; Penzar, D.; Perlman, S.; Poon, L.L.M.; Samborskiy, D.V.; Sidorov, I.A.; Sola, I.; Ziebuhr, J. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[3]
Shousha, H.I.; Afify, S.; Maher, R.; Asem, N.; Fouad, E.; Mostafa, E.F.; Medhat, M.A.; Abdalazeem, A.; Elmorsy, H.; Aziz, M.M.; Mohammed, R.S.; Ibrahem, M.; Elgarem, H.; Omran, D.; Hassany, M.; Elsayed, B.; Abdelaziz, A.Y.; El Kassas, M. Hepatic and gastrointestinal disturbances in Egyptian patients infected with coronavirus disease 2019: A multicentre cohort study. World J. Gastroenterol., 2021, 27(40), 6951-6966.
[http://dx.doi.org/10.3748/wjg.v27.i40.6951] [PMID: 34790017]
[4]
Youssef, M.; H Hussein, M.; Attia, A.S.; M Elshazli, R.; Omar, M.; Zora, G.; S Farhoud, A.; Elnahla, A.; Shihabi, A.; Toraih, E.A.; S Fawzy, M.; Kandil, E. COVID‐19 and liver dysfunction: A systematic review and meta‐analysis of retrospective studies. J. Med. Virol., 2020, 92(10), 1825-1833.
[http://dx.doi.org/10.1002/jmv.26055] [PMID: 32445489]
[5]
Jothimani, D.; Venugopal, R.; Abedin, M.F.; Kaliamoorthy, I.; Rela, M. COVID-19 and the liver. J. Hepatol., 2020, 73(5), 1231-1240.
[http://dx.doi.org/10.1016/j.jhep.2020.06.006] [PMID: 32553666]
[6]
Qu, L.; Chen, C.; Yin, T.; Fang, Q.; Hong, Z.; Zhou, R.; Tang, H.; Dong, H. Ace2 and innate immunity in the regulation of sars-cov-2-induced acute lung injury: A review. Int. J. Mol. Sci., 2021, 22(21), 11483.
[http://dx.doi.org/10.3390/ijms222111483] [PMID: 34768911]
[7]
Zhang, C.; Shi, L.; Wang, F.S. Liver injury in COVID-19: Management and challenges. Lancet Gastroenterol. Hepatol., 2020, 5(5), 428-430.
[http://dx.doi.org/10.1016/S2468-1253(20)30057-1] [PMID: 32145190]
[8]
Wang, X.; Lei, J.; Li, Z.; Yan, L. Potential effects of coronaviruses on the liver: An update. Front. Med., 2021, 8, 651658.
[http://dx.doi.org/10.3389/fmed.2021.651658] [PMID: 34646834]
[9]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19). JAMA, 2020, 323(18), 1824-1836.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[10]
Niedfeldt, M.W. Anabolic steroid effect on the liver. Curr. Sports Med. Rep., 2018, 17(3), 97-102.
[http://dx.doi.org/10.1249/JSR.0000000000000467] [PMID: 29521706]
[11]
Mousavi-Roknabadi, R.S.; Haddad, F.; Fazlzadeh, A.; Kheirabadi, D.; Dehghan, H.; Rezaeisadrabadi, M. Investigation of plasma exchange and hemoperfusion effects and complications for the treatment of patients with severe COVID‐19 (SARS‐CoV‐2) disease: A systematic scoping review. J. Med. Virol., 2021, 93(10), 5742-5755.
[http://dx.doi.org/10.1002/jmv.27182] [PMID: 34228355]
[12]
Larson, A.M.; Polson, J.; Fontana, R.J.; Davern, T.J.; Lalani, E.; Hynan, L.S.; Reisch, J.S.; Schiødt, F.V.; Ostapowicz, G.; Shakil, A.O.; Lee, W.M. Acetaminophen-induced acute liver failure: Results of a United States multicenter, prospective study. Hepatology, 2005, 42(6), 1364-1372.
[http://dx.doi.org/10.1002/hep.20948] [PMID: 16317692]
[13]
Alqarni, M.M.; Faloudah, A.Z.; Alsulaihebi, A.S.; Halawani, H.K.; Khan, A.S. A case of hepatotoxicity after receiving a COVID-19 vaccine. Cureus, 2021, 13(12), e20455.
[http://dx.doi.org/10.7759/cureus.20455] [PMID: 35070524]
[14]
Shroff, H.; Satapathy, S.K.; Crawford, J.M.; Todd, N.J.; VanWagner, L.B. Liver injury following SARS-CoV-2 vaccination: A multicenter case series. J. Hepatol., 2022, 76(1), 211-214.
[http://dx.doi.org/10.1016/j.jhep.2021.07.024] [PMID: 34339763]
[15]
Gonçalves, C.A.M.; Dantas, P.M.S.; dos Santos, I.K.; Dantas, M.; da Silva, D.C.P.; Cabral, B.G.A.T.; Guerra, R.O.; Júnior, G.B.C. Effect of acute and chronic aerobic exercise on immunological markers: A systematic review. Front. Physiol., 2020, 10, 1602.
[http://dx.doi.org/10.3389/fphys.2019.01602] [PMID: 32038286]
[16]
Lippi, G.; Banfi, G.; Montagnana, M.; Salvagno, G.L.; Schena, F.; Guidi, G.C. Acute variation of leucocytes counts following a half-marathon run. Int. J. Lab. Hematol., 2010, 32(1), 117-121.
[http://dx.doi.org/10.1111/j.1751-553X.2008.01133.x]
[17]
Lippi, G.; Salvagno, G.L.; Danese, E.; Skafidas, S.; Tarperi, C.; Guidi, G.C.; Schena, F. Mean platelet volume (MPV) predicts middle distance running performance. PLoS One, 2014, 9(11), e112892.
[http://dx.doi.org/10.1371/journal.pone.0112892] [PMID: 25386658]
[18]
Li, T.L.; Cheng, P.Y. Alterations of immunoendocrine responses during the recovery period after acute prolonged cycling. Eur. J. Appl. Physiol., 2007, 101(5), 539-546.
[http://dx.doi.org/10.1007/s00421-007-0529-1] [PMID: 17668230]
[19]
Lira, F.S.; dos Santos, T.; Caldeira, R.S.; Inoue, D.S.; Panissa, V.L.G.; Cabral-Santos, C.; Campos, E.Z.; Rodrigues, B.; Monteiro, P.A. Short-term high- and moderate-intensity training modifies inflammatory and metabolic factors in response to acute exercise. Front. Physiol., 2017, 8, 856.
[http://dx.doi.org/10.3389/fphys.2017.00856] [PMID: 29163201]
[20]
Reis Gonçalves, C.; Reis Gonçalves, C.; de Almeida, F.; dos Santos Lopes, F.; dos Santos Durão, A.; dos Santos, F.; da Silva, L.; Marcourakis, T.; Castro-Faria-Neto, H.C.; Vieira, R.; Dolhnikoff, M. Protective effects of aerobic exercise on acute lung injury induced by LPS in mice. Crit. Care, 2012, 16(5), R199.
[http://dx.doi.org/10.1186/cc11807] [PMID: 23078757]
[21]
Rodríguez, A.; Tjärnlund, A.; Ivanji, J.; Singh, M.; García, I.; Williams, A.; Marsh, P.D.; Troye-Blomberg, M.; Fernández, C. Role of IgA in the defense against respiratory infections. Vaccine, 2005, 23(20), 2565-2572.
[http://dx.doi.org/10.1016/j.vaccine.2004.11.032] [PMID: 15780438]
[22]
Hines, M.T.; Schott, H.C., II; Bayly, W.M.; Leroux, A.J. Exercise and immunity: A review with emphasis on the horse. J. Vet. Intern. Med., 1996, 10(5), 280-289.
[http://dx.doi.org/10.1111/j.1939-1676.1996.tb02063.x] [PMID: 8884712]
[23]
Cunningham-Rundles, C. Lung disease, antibodies and other unresolved issues in immune globulin therapy for antibody deficiency. Clin. Exp. Immunol., 2009, 157(S1), 12-16.
[http://dx.doi.org/10.1111/j.1365-2249.2009.03952.x]
[24]
Mohamed, G.S.; Taha, M.M. Comparison between the effects of aerobic and resistive training on immunoglobulins in obese women. Bull. Fac. Phys. Ther., 2016, 21(1), 11-16.
[http://dx.doi.org/10.4103/1110-6611.188023]
[25]
Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev., 2000, 80(3), 1055-1081.
[http://dx.doi.org/10.1152/physrev.2000.80.3.1055] [PMID: 10893431]
[26]
Marklund, P.; Mattsson, C.M.; Wåhlin-Larsson, B.; Ponsot, E.; Lindvall, B.; Lindvall, L.; Ekblom, B.; Kadi, F. Extensive inflammatory cell infiltration in human skeletal muscle in response to an ultraendurance exercise bout in experienced athletes. J. Appl. Physiol., 2013, 114(1), 66-72.
[http://dx.doi.org/10.1152/japplphysiol.01538.2011] [PMID: 23104690]
[27]
de Gonzalo-Calvo, D.; Dávalos, A.; Montero, A.; García-González, Á.; Tyshkovska, I.; González-Medina, A.; Soares, S.M.A.; Martínez-Camblor, P.; Casas-Agustench, P.; Rabadán, M.; Díaz-Martínez, Á.E.; Úbeda, N.; Iglesias-Gutiérrez, E. Circulating inflammatory miRNA signature in response to different doses of aerobic exercise. J. Appl. Physiol., 2015, 119(2), 124-134.
[http://dx.doi.org/10.1152/japplphysiol.00077.2015] [PMID: 25997943]
[28]
Zheng, G.; Qiu, P.; Xia, R.; Lin, H.; Ye, B.; Tao, J.; Chen, L. Effect of aerobic exercise on inflammatory markers in healthy middle-aged and older adults: A systematic review and meta-analysis of randomized controlled trials. Front. Aging Neurosci., 2019, 11(APR), 98.
[http://dx.doi.org/10.3389/fnagi.2019.00098] [PMID: 31080412]
[29]
Okita, K.; Nishijima, H.; Murakami, T.; Nagai, T.; Morita, N.; Yonezawa, K.; Iizuka, K.; Kawaguchi, H.; Kitabatake, A. Can exercise training with weight loss lower serum C-reactive protein levels? Arterioscler. Thromb. Vasc. Biol., 2004, 24(10), 1868-1873.
[http://dx.doi.org/10.1161/01.ATV.0000140199.14930.32] [PMID: 15284086]
[30]
Marshall, G.D., Jr The adverse effects of psychological stress on immunoregulatory balance: Applications to human inflammatory diseases. Immunol. Allergy Clin. North Am., 2011, 31(1), 133-140.
[http://dx.doi.org/10.1016/j.iac.2010.09.013] [PMID: 21094928]
[31]
Reed, J.; Buck, S. The effect of regular aerobic exercise on positive-activated affect: A meta-analysis. Psychol. Sport Exerc., 2009, 10(6), 581-594.
[http://dx.doi.org/10.1016/j.psychsport.2009.05.009]
[32]
Chan, J.S.Y.; Liu, G.; Liang, D.; Deng, K.; Wu, J.; Yan, J.H. Special issue-herapeutic benefits of physical activity for mood: A systematic review on the effects of exercise intensity, duration, and modality. J. Psychol.: Interdiscip. Appl., 2019, 153(1), 102-125.
[http://dx.doi.org/10.1080/00223980.2018.1470487]
[33]
Hogan, C.L.; Mata, J.; Carstensen, L.L. Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychol. Aging, 2013, 28(2), 587-594.
[http://dx.doi.org/10.1037/a0032634] [PMID: 23795769]
[34]
Broman-Fulks, J.J.; Storey, K.M. Evaluation of a brief aerobic exercise intervention for high anxiety sensitivity. Anxiety Stress Coping, 2008, 21(2), 117-128.
[http://dx.doi.org/10.1080/10615800701762675] [PMID: 18350391]
[35]
Crabbe, J.B.; Smith, J.C.; Dishman, R.K. Emotional & electroencephalographic responses during affective picture viewing after exercise. Physiol. Behav., 2007, 90(2-3), 394-404.
[http://dx.doi.org/10.1016/j.physbeh.2006.10.001] [PMID: 17113610]
[36]
Nabkasorn, C.; Miyai, N.; Sootmongkol, A.; Junprasert, S.; Yamamoto, H.; Arita, M.; Miyashita, K. Effects of physical exercise on depression, neuroendocrine stress hormones and physiological fitness in adolescent females with depressive symptoms. Eur. J. Public Health, 2006, 16(2), 179-184.
[http://dx.doi.org/10.1093/eurpub/cki159] [PMID: 16126743]
[37]
Mohamed, A.A.; Alawna, M. The effect of aerobic exercise on immune biomarkers and symptoms severity and progression in patients with COVID-19: A randomized control trial. J. Bodyw. Mov. Ther., 2021, 28, 425-432.
[http://dx.doi.org/10.1016/j.jbmt.2021.07.012] [PMID: 34776174]
[38]
Alawna, M.; Mohamed, A.A. An integrated intervention combining cognitive‐behavioural stress management and progressive muscle relaxation improves immune biomarkers and reduces COVID‐19 severity and progression in patients with COVID‐19: A randomized control trial. Stress Health, 2022, 38(5), 978-988.
[http://dx.doi.org/10.1002/smi.3151] [PMID: 35393715]
[39]
Alawna, M.; Mohamed, A.A. Effects of increasing aerobic capacity on improving psychological problems seen in patients with COVID-19: A review. Diabetes Metab. Syndr. Clin. Res. Rev, 2020, 16.
[40]
Mohamed, A.A.; Alawna, M.; Al-Turjman, F.; Nassif, M. Physical therapy recommendations for patients with COVID-19. In: AI-Powered IoT for COVID-19; CRC Press/Taylor & Francis: New York, 2020; pp. 169-176.
[http://dx.doi.org/10.1201/9781003098881-9]
[41]
Mohamed, A.A.; Alawna, M. Role of increasing the aerobic capacity on improving the function of immune and respiratory systems in patients with coronavirus (COVID-19): A review. Diabetes Metab. Syndr., 2020, 14(4), 489-496.
[http://dx.doi.org/10.1016/j.dsx.2020.04.038] [PMID: 32388326]
[42]
Mohamed, A.; Alawna, M. Enhancing oxygenation of patients with coronavirus disease 2019: Effects on immunity and other health-related conditions. World J. Clin. Cases, 2021, 9(19), 4939-4958.
[http://dx.doi.org/10.12998/wjcc.v9.i19.4939] [PMID: 34307545]
[43]
ALAWNA. M. Aerobic exercises recommendations and specifications for patients with COVID-19: A systematic review. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(24), 13049-13055.
[http://dx.doi.org/10.26355/eurrev_202012_24211]
[44]
Elhadary, M.A.T.; Elhaty, I.A.; Mohamed, A.A. Evaluation of academic performance of science and social science students in Turkish Universities during COVID-19 crisis. J. Crit. Rev., 2020, 7(11), 1740-1751.
[http://dx.doi.org/10.31838/jcr.07.11.280]
[45]
Yu, D. Liver injury in COVID-19: Clinical features and treatment management. Virol. J., 2021, 18(1), 121.
[http://dx.doi.org/10.1186/s12985-021-01593-1]
[46]
Cascella, M. Features, evaluation and treatment coronavirus (COVID-19). Curr. Opin. Infect. Dis., 2020, 2019(5), 411-417.
[http://dx.doi.org/10.1097/QCO.0000000000000089] [PMID: 32833689]
[47]
Mckee, D.L.; Sternberg, A.; Stange, U.; Laufer, S.; Naujokat, C. Candidate drugs against SARS-COV-2 and COVID-19. Pharmacol. Res., 2020, 157, 104859. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189851/pdf/main.pdf
[48]
Maier, H.J.; Bickerton, E.; Britton, P. Coronaviruses. Methods Mol. Biol., 2015, 1282(1), 1-282.
[http://dx.doi.org/10.1007/978-1-4939-2438-7] [PMID: 25870870]
[49]
Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.J.; Jiang, S. The spike protein of SARS-CoV - a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009, 7(3), 226-236.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[50]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[51]
Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.M.E.; van der Voort, P.H.J.; Mulder, D.J.; van Goor, H. Angiotensin‐converting enzyme 2 (ACE2), SARS‐COV ‐2 and the pathophysiology of coronavirus disease 2019 (COVID ‐19). J. Pathol., 2020, 251(3), 228-248.
[http://dx.doi.org/10.1002/path.5471] [PMID: 32418199]
[52]
Li, Y.; Zhou, W.; Yang, L.; You, R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol. Res., 2020, 157, 104833.
[http://dx.doi.org/10.1016/j.phrs.2020.104833] [PMID: 32302706]
[53]
Nan, X.; Tamgüney, T.M.; Collisson, E.A.; Lin, L.J.; Pitt, C.; Galeas, J.; Lewis, S.; Gray, J.W.; McCormick, F.; Chu, S. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc. Natl. Acad. Sci., 2015, 112(26), 7996-8001.
[http://dx.doi.org/10.1073/pnas.1509123112] [PMID: 26080442]
[54]
Magrone, T.; Magrone, M.; Jirillo, E. Focus on receptors for coronaviruses with special reference to angiotensin- converting enzyme 2 as a potential drug target - A perspective. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(6), 807-811.
[http://dx.doi.org/10.2174/22123873MTA2iMTYgx] [PMID: 32338224]
[55]
Qi, F.; Qian, S.; Zhang, S.; Zhang, Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun., 2020, 526(1), 135-140.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.044] [PMID: 32199615]
[56]
Herath, C.B.; Warner, F.J.; Lubel, J.S.; Dean, R.G.; Jia, Z.; Lew, R.A.; Smith, A.I.; Burrell, L.M.; Angus, P.W. Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1–7) levels in experimental biliary fibrosis. J. Hepatol., 2007, 47(3), 387-395.
[http://dx.doi.org/10.1016/j.jhep.2007.03.008] [PMID: 17532087]
[57]
Paizis, G.; Tikellis, C.; Cooper, M.E.; Schembri, J.M.; Lew, R.A.; Smith, A.I.; Shaw, T.; Warner, F.J.; Zuilli, A.; Burrell, L.M.; Angus, P.W. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut, 2005, 54(12), 1790-1796.
[http://dx.doi.org/10.1136/gut.2004.062398] [PMID: 16166274]
[58]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[59]
Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[60]
Qi, X.; Wang, J.; Li, X.; Wang, Z.; Liu, Y.; Yang, H.; Li, X.; Shi, J.; Xiang, H.; Liu, T.; Kawada, N.; Maruyama, H.; Jiang, Z.; Wang, F.; Takehara, T.; Rockey, D.C.; Sarin, S.K. Clinical course of COVID-19 in patients with pre-existing decompensated cirrhosis: Initial report from China. Hepatol. Int., 2020, 14(4), 478-482.
[http://dx.doi.org/10.1007/s12072-020-10051-z] [PMID: 32440857]
[61]
Evangelista, F.S. Physical exercise and the renin angiotensin system: Prospects in the COVID-19. Front. Physiol., 2020, 11(October), 561403.
[http://dx.doi.org/10.3389/fphys.2020.561403] [PMID: 33178033]
[62]
Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; Xu, Y.; Cao, Z.; Gao, Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care, 2020, 24(1), 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[63]
Frantz, E.D.C.; Medeiros, R.F.; Giori, I.G.; Lima, J.B.S.; Bento-Bernardes, T.; Gaique, T.G.; Fernandes-Santos, C.; Fernandes, T.; Oliveira, E.M.; Vieira, C.P.; Conte-Junior, C.A.; Oliveira, K.J.; Nobrega, A.C.L. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats. Exp. Physiol., 2017, 102(9), 1208-1220.
[http://dx.doi.org/10.1113/EP085924] [PMID: 28626963]
[64]
Cai, S.M.; Yang, R.Q.; Li, Y.; Ning, Z.W.; Zhang, L.L.; Zhou, G.S.; Luo, W.; Li, D.H.; Chen, Y.; Pan, M.X.; Li, X. Angiotensin-(1-7) improves liver fibrosis by regulating the NLRP3 inflammasome via redox balance modulation. Antioxid. Redox Signal., 2016, 24(14), 795-812.
[http://dx.doi.org/10.1089/ars.2015.6498] [PMID: 26728324]
[65]
Zhang, L.L.; Huang, S.; Ma, X.X.; Zhang, W.Y.; Wang, D.; Jin, S.Y.; Zhang, Y.P.; Li, Y.; Li, X. Angiotensin(1–7) attenuated Angiotensin II-induced hepatocyte EMT by inhibiting NOX-derived H 2 O 2 -activated NLRP3 inflammasome/IL-1β/Smad circuit. Free Radic. Biol. Med., 2016, 97, 531-543.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.07.014] [PMID: 27445100]
[66]
Magalhães, D.M.; Nunes-Silva, A.; Rocha, G.C.; Vaz, L.N.; de Faria, M.H.S.; Vieira, E.L.M.; Rocha, N.P.; Simões e Silva, A.C. Two protocols of aerobic exercise modulate the counter-regulatory axis of the renin-angiotensin system. Heliyon, 2020, 6(1), e03208.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03208] [PMID: 31989052]
[67]
Prata, L.O.; Rodrigues, C.R.; Martins, J.M.; Vasconcelos, P.C.; Oliveira, F.M.S.; Ferreira, A.J.; Rodrigues-Machado, M.G.; Caliari, M.V. Original Research: ACE2 activator associated with physical exercise potentiates the reduction of pulmonary fibrosis. Exp. Biol. Med., 2017, 242(1), 8-21.
[http://dx.doi.org/10.1177/1535370216665174] [PMID: 27550926]
[68]
Lopes, P.R.; Moreira, M.C.S.; Marques, S.M.; Pinto, I.S.J.; Macedo, L.M.; Silva, C.C.; Freiria-Oliveira, A.H.; Rebelo, A.C.S.; Reis, A.A.S.; Rosa, D.A.; Ferreira-Neto, M.L.; Castro, C.H.; Pedrino, G.R. Association of exercise training and angiotensin-converting enzyme 2 activator improves baroreflex sensitivity of spontaneously hypertensive rats. Braz. J. Med. Biol. Res., 2016, 49(9), e5349.
[http://dx.doi.org/10.1590/1414-431x20165349] [PMID: 27533767]
[69]
Frantz, E.D.C.; Prodel, E.; Braz, I.D.; Giori, I.G.; Bargut, T.C.L.; Magliano, D.A.C.; Nobrega, A.C.L. Modulation of the renin-angiotensin system in white adipose tissue and skeletal muscle: Focus on exercise training. Clin. Sci., 2018, 132(14), 1487-1507.
[http://dx.doi.org/10.1042/CS20180276] [PMID: 30037837]
[70]
Bhardwaj, V.; Dela Cruz, M.; Subramanyam, D.; Kumar, R.; Markan, S.; Parker, B.; Roy, H.K. Exercise-induced myokines downregulates the ACE2 level in bronchial epithelial cells: Implications for SARS-CoV-2 prevention. PLoS One, 2022, 17(7), e0271303.
[http://dx.doi.org/10.1371/journal.pone.0271303] [PMID: 35857747]
[71]
Bavel, J.J.V.; Baicker, K.; Boggio, P.S.; Capraro, V.; Cichocka, A.; Cikara, M.; Crockett, M.J.; Crum, A.J.; Douglas, K.M.; Druckman, J.N.; Drury, J.; Dube, O.; Ellemers, N.; Finkel, E.J.; Fowler, J.H.; Gelfand, M.; Han, S.; Haslam, S.A.; Jetten, J.; Kitayama, S.; Mobbs, D.; Napper, L.E.; Packer, D.J.; Pennycook, G.; Peters, E.; Petty, R.E.; Rand, D.G.; Reicher, S.D.; Schnall, S.; Shariff, A.; Skitka, L.J.; Smith, S.S.; Sunstein, C.R.; Tabri, N.; Tucker, J.A.; Linden, S.; Lange, P.; Weeden, K.A.; Wohl, M.J.A.; Zaki, J.; Zion, S.R.; Willer, R. Using social and behavioural science to support COVID-19 pandemic response. Nat. Hum. Behav., 2020, 4(5), 460-471.
[http://dx.doi.org/10.1038/s41562-020-0884-z] [PMID: 32355299]
[72]
Quesnelle, K.M.; Bystrom, P.V.; Toledo-Pereyra, L.H. Molecular responses to ischemia and reperfusion in the liver. Arch. Toxicol., 2015, 89(5), 651-657.
[http://dx.doi.org/10.1007/s00204-014-1437-x] [PMID: 25566829]
[73]
Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget, 2018, 9(24), 17181-17198.
[http://dx.doi.org/10.18632/oncotarget.24729] [PMID: 29682215]
[74]
Gagnon, D.D.; Dorman, S.; Ritchie, S.; Mutt, S.J.; Stenbäck, V.; Walkowiak, J.; Herzig, K.H. Multi-day prolonged low- to moderate-intensity endurance exercise mimics training improvements in metabolic and oxidative profiles without concurrent chromosomal changes in healthy adults. Front. Physiol., 2019, 10, 1123.
[http://dx.doi.org/10.3389/fphys.2019.01123] [PMID: 31551806]
[75]
Toledo, A.C.; Magalhaes, R.M.; Hizume, D.C.; Vieira, R.P.; Biselli, P.J.C.; Moriya, H.T.; Mauad, T.; Lopes, F.D.T.Q.S.; Martins, M.A. Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke. Eur. Respir. J., 2012, 39(2), 254-264.
[http://dx.doi.org/10.1183/09031936.00003411] [PMID: 21700603]
[76]
da Cunha, M.J.; da Cunha, A.A.; Ferreira, G.K.; Baladão, M.E.; Savio, L.E.B.; Reichel, C.L.; Kessler, A.; Netto, C.A.; Wyse, A.T.S. The effect of exercise on the oxidative stress induced by experimental lung injury. Life Sci., 2013, 92(3), 218-227.
[http://dx.doi.org/10.1016/j.lfs.2012.12.005] [PMID: 23295959]
[77]
Mohamed, A.A.; Alawna, M. Important role of relaxation techniques in immune functions, glycemic control, and stress in diabetic patients with COVID-19: A review. Curr. Diabetes Rev., 2021, 17(5), e121020186816.
[http://dx.doi.org/10.2174/1573399816999201012200109] [PMID: 33045980]
[78]
Trefler, S. Oxidative stress in immunocompetent patients with severe community-acquired pneumonia. A pilot study. Med. Intensiva., 2014, 38(2), 73-82.
[http://dx.doi.org/10.1016/j.medine.2013.01.008]
[79]
Yazdani, H.O.; Kaltenmeier, C.; Morder, K.; Moon, J.; Traczek, M.; Loughran, P.; Zamora, R.; Vodovotz, Y.; Li, F.; Wang, J.H.C.; Geller, D.A.; Simmons, R.L.; Tohme, S. Exercise training decreases hepatic injury and metastases through changes in immune response to liver ischemia/reperfusion in mice. Hepatology, 2021, 73(6), 2494-2509.
[http://dx.doi.org/10.1002/hep.31552] [PMID: 32924145]
[80]
ELKady. A.H.; Elkafoury, B.M.; Saad, D.A.; Abd el-Wahed, D.M.; Baher, W.; Ahmed, M.A. Hepatic ischemia reperfusion injury: Effect of moderate intensity exercise and oxytocin compared to l-arginine in a rat model. Egypt. Liver J., 2021, 11(1), 45.
[http://dx.doi.org/10.1186/s43066-021-00111-w]
[81]
Berzigotti, A.; Saran, U.; Dufour, J.F. Physical activity and liver diseases. Hepatology, 2016, 63(3), 1026-1040.
[http://dx.doi.org/10.1002/hep.28132] [PMID: 26313307]
[82]
Gao, B. Basic liver immunology. Cell. Mol. Immunol., 2016, 13(3), 265-266.
[http://dx.doi.org/10.1038/cmi.2016.09]
[83]
Jenne, C.N.; Kubes, P. Immune surveillance by the liver. Nat. Immunol., 2013, 14(10), 996-1006.
[http://dx.doi.org/10.1038/ni.2691] [PMID: 24048121]
[84]
Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: The perspectives on immune responses. Cell Death Differ., 2020, 27(5), 1451-1454.
[http://dx.doi.org/10.1038/s41418-020-0530-3] [PMID: 32205856]
[85]
Luckheeram, R.V.; Zhou, R.; Verma, A.D.; Xia, B. CD4⁺T cells: Differentiation and functions. Clin. Dev. Immunol., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/925135] [PMID: 22474485]
[86]
Haft, J.W.; Atluri, P.; Ailawadi, G.; Engelman, D.T.; Grant, M.C.; Hassan, A.; Legare, J.F.; Whitman, G.J.R.; Arora, R.C. Adult cardiac surgery during the COVID-19 pandemic: A tiered patient triage guidance statement. Ann. Thorac. Surg., 2020, 110(2), 697-700.
[http://dx.doi.org/10.1016/j.athoracsur.2020.04.003] [PMID: 32305286]
[87]
Ferdous, M.Z.; Islam, M.S.; Sikder, M.T.; Mosaddek, A.S.M.; Zegarra-Valdivia, J.A.; Gozal, D. Knowledge, attitude, and practice regarding COVID-19 outbreak in Bangladesh: An onlinebased cross-sectional study. PLoS One, 2020, 15(10), 1619-1629.
[http://dx.doi.org/10.1371/journal.pone.0239254]
[88]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[89]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[90]
Liu, F. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol., 2020, 127, 5.
[http://dx.doi.org/10.1016/j.jcv.2020.104370]
[91]
Thorgersen, E.B.; Barratt-Due, A.; Haugaa, H.; Harboe, M.; Pischke, S.E.; Nilsson, P.H.; Mollnes, T.E. The role of complement in liver injury, regeneration, and transplantation. Hepatology, 2019, 70(2), 725-736.
[http://dx.doi.org/10.1002/hep.30508] [PMID: 30653682]
[92]
Smith, J.K.; Chi, D.S.; Krish, G.; Reynolds, S.; Cambron, G. Effect of exercise on complement activity. Ann. Allergy, 1990, 65(4), 304-310.
[93]
Kostrzewa-Nowak, D.; Kubaszewska, J.; Nowakowska, A.; Nowak, R. Effect of aerobic and anaerobic exercise on the complement system of proteins in healthy young males. J. Clin. Med., 2020, 9(8), 2357.
[http://dx.doi.org/10.3390/jcm9082357] [PMID: 32717972]
[94]
Karacabey, K. Peker, İ.; Saygın, Ö.; Cıloglu, F.; Ozmerdivenli, R.; Bulut, V. Effects of acute aerobic and anaerobic exercise on humoral immune factors in elite athletes. Biotechnol. Biotechnol. Equip., 2005, 19(1), 175-180.
[http://dx.doi.org/10.1080/13102818.2005.10817177]
[95]
Asakura, H.; Ogawa, H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int. J. Hematol., 2021, 113(1), 45-57.
[http://dx.doi.org/10.1007/s12185-020-03029-y] [PMID: 33161508]
[96]
Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol., 2020, 7(6), e438-e440.
[http://dx.doi.org/10.1016/S2352-3026(20)30145-9] [PMID: 32407672]
[97]
Cui, S.; Chen, S.; Li, X.; Liu, S.; Wang, F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost., 2020, 18(6), 1421-1424.
[http://dx.doi.org/10.1111/jth.14830] [PMID: 32271988]
[98]
Rosen, R.J. Thrombotic complications in critically ill patients with COVID 19. Thromb. Res., 2020, 191, 56.
[http://dx.doi.org/10.1016/j.thromres.2020.04.032] [PMID: 32388068]
[99]
Di Minno, A.; Ambrosino, P.; Calcaterra, I.; Di Minno, M.N.D. COVID-19 and venous thromboembolism: A meta-analysis of literature studies. Semin. Thromb. Hemost., 2020, 46(7), 763-771.
[http://dx.doi.org/10.1055/s-0040-1715456] [PMID: 32882719]
[100]
Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 2020, 395(10234), 1417-1418.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[101]
Morrissey, J.H.; Smith, S.A. Polyphosphate as modulator of hemostasis, thrombosis, and inflammation. J. Thromb. Haemost., 2015, 13(1), S92-S97.
[http://dx.doi.org/10.1111/jth.12896] [PMID: 26149055]
[102]
Subramaniam, S.; Jurk, K.; Hobohm, L.; Jäckel, S.; Saffarzadeh, M.; Schwierczek, K.; Wenzel, P.; Langer, F.; Reinhardt, C.; Ruf, W. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood, 2017, 129(16), 2291-2302.
[http://dx.doi.org/10.1182/blood-2016-11-749879] [PMID: 28223279]
[103]
D’Ardes, D.; Boccatonda, A.; Cocco, G.; Fabiani, S.; Rossi, I.; Bucci, M.; Guagnano, M.T.; Schiavone, C.; Cipollone, F. Impaired coagulation, liver dysfunction and COVID-19: Discovering an intriguing relationship. World J. Gastroenterol., 2022, 28(11), 1102-1112.
[http://dx.doi.org/10.3748/wjg.v28.i11.1102] [PMID: 35431501]
[104]
Chen, S.; Liu, H.; Li, T.; Huang, R.; Gui, R.; Zhang, J. Correlation analysis of coagulation dysfunction and liver damage in patients with novel coronavirus pneumonia: A single-center, retrospective, observational study. Ups. J. Med. Sci., 2020, 125(4), 293-296.
[http://dx.doi.org/10.1080/03009734.2020.1822960] [PMID: 32990149]
[105]
Sonzogni, A.; Previtali, G.; Seghezzi, M.; Grazia Alessio, M.; Gianatti, A.; Licini, L.; Morotti, D.; Zerbi, P.; Carsana, L.; Rossi, R.; Lauri, E.; Pellegrinelli, A.; Nebuloni, M. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int., 2020, 40(9), 2110-2116.
[http://dx.doi.org/10.1111/liv.14601] [PMID: 32654359]
[106]
Philippe, M.; Gatterer, H.; Burtscher, M.; Weinberger, B.; Keller, M.; Grubeck-Loebenstein, B.; Fleckenstein, J.; Alack, K.; Krüger, K. Concentric and eccentric endurance exercise reverse hallmarks of T-Cell senescence in pre-diabetic subjects. Front. Physiol., 2019, 10, 684.
[http://dx.doi.org/10.3389/fphys.2019.00684] [PMID: 31214051]
[107]
Heber, S.; Volf, I. Effects of physical (in)activity on platelet function. BioMed Res. Int., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/165078] [PMID: 26557653]
[108]
Kahn, S.R.; Shrier, I.; Shapiro, S.; Houweling, A.H.; Hirsch, A.M.; Reid, R.D.; Kearon, C.; Rabhi, K.; Rodger, M.A.; Kovacs, M.J.; Anderson, D.R.; Wells, P.S. Six-month exercise training program to treat post-thrombotic syndrome: A randomized controlled two-centre trial. CMAJ, 2011, 183(1), 37-44.
[http://dx.doi.org/10.1503/cmaj.100248] [PMID: 21098066]
[109]
Roque, F.R.; Briones, A.M.; García-Redondo, A.B.; Galán, M.; Martínez-Revelles, S.; Avendaño, M.S.; Cachofeiro, V.; Fernandes, T.; Vassallo, D.V.; Oliveira, E.M.; Salaices, M. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br. J. Pharmacol., 2013, 168(3), 686-703.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02224.x] [PMID: 22994554]
[110]
Society, A.T. Dyspnea. Am. J. Respir. Crit. Care Med., 1999, 159(1), 321-340.
[http://dx.doi.org/10.1164/ajrccm.159.1.ats898] [PMID: 9872857]
[111]
Katarey, D.; Verma, S. Drug-induced liver injury. Clin. Med., 2016, 16(S6), 104-109.
[http://dx.doi.org/10.7861/clinmedicine.16-6-s104]
[112]
Sodeifian, F.; Seyedalhosseini, Z.S.; Kian, N.; Eftekhari, M.; Najari, S.; Mirsaeidi, M.; Farsi, Y.; Nasiri, M.J. Drug-induced liver injury in COVID-19 patients: A systematic review. Front. Med., 2021, 8, 731436.
[http://dx.doi.org/10.3389/fmed.2021.731436] [PMID: 34616757]
[113]
Neff, G.W.; Jayaweera, D.; Sherman, K.E. Drug-induced liver injury in HIV patients. Gastroenterol. Hepatol., 2006, 2(6), 430-437.
[PMID: 28316518]
[114]
Yan, M.; Huo, Y.; Yin, S.; Hu, H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol., 2018, 17, 274-283.
[http://dx.doi.org/10.1016/j.redox.2018.04.019] [PMID: 29753208]
[115]
Khaoshbaten, M.; Gholami, N.; Sokhtehzari, S.; Monazami, A.H.; Nejad, M.R. The effect of aerobic exercise on serum level of liver enzymes and liver echogenicity in patients with non-alcoholic fatty liver disease. Gastroenterol. Hepatol. Bed Bench, 2013, 6, 6-8.
[116]
Smart, N.A.; King, N.; McFarlane, J.R.; Graham, P.L.; Dieberg, G. Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: A systematic review and meta-analysis. Br. J. Sports Med., 2018, 52(13), 834-843.
[http://dx.doi.org/10.1136/bjsports-2016-096197] [PMID: 27317790]
[117]
Shamsoddini, A.; Sobhani, V.; Ghamar Chehreh, M.E.; Alavian, S.M.; Zaree, A. Effect of aerobic and resistance exercise training on liver enzymes and hepatic fat in Iranian men with Nonalcoholic fatty liver disease. Hepat. Mon., 2015, 15(10), e31434.
[http://dx.doi.org/10.5812/hepatmon.31434] [PMID: 26587039]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy