Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Cell Death Induced by the Combination of Ephedra sinica Extract and Radiation in HNSCC is Positively Related to BAX and p-MLKL Expression

Author(s): Seon Rang Woo, Joo Kyung Noh, Sun-Young Ahn, Min Kyeong Lee, Hyeon Seo Yu, Soonki Min, Moonkyoo Kong, Jung Woo Lee, Young Chan Lee, Seong-Gyu Ko and Young-Gyu Eun*

Volume 24, Issue 1, 2024

Published on: 30 October, 2023

Page: [50 - 57] Pages: 8

DOI: 10.2174/0118715206267182231024105837

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Numerous studies have proven the efficacy and safety of natural products, and are widely used as attractive cancer treatments. The investigation of effective natural products for improving cancer treatment is a promising strategy. Combination treatment with radiosensitizers and radiotherapy (RT) is considered necessary for therapeutic improvement in head and neck squamous cell carcinoma(HNSCC).

Objective: This study aims to investigate whether Ephedra sinica (ES) extract could induce selective cell death in cancer cells and serve as a radiosensitizer for HNSCC.

Methods: HNSCC cells were pretreated with ES extract before radiation, and the radiosensitizing activity was assessed using a colony formation assay. Radiation-induced cell death was evaluated using an annexinV-FITC assay. Western blotting was performed to confirm cell death-related gene expression, including apoptosis and necrosis markers.

Results: ES extract significantly inhibited HNSCC cell viability (FaDu and SNU1076), while having minimal effect on normal HaCaT cells. When HNSCC cells were irradiated with 2, 4, or 8 Gy and cultured with ES extract (25 μg/mL), they exhibited increased radiation sensitivity compared to non-treated cells. The combination of ES extract and radiation resulted in increased cell death compared to non-treated, ES-treated, or irradiated cells. The apoptosis marker BAX and necrosis marker p-MLKL expression levels were also elevated following the combination treatment.

Conclusion: ES extract demonstrated significant cytotoxic potential in HNSCC cells without affecting normal cells. It enhanced the radiosensitivity of HNSCC cells by upregulating BAX and p-MLKL expression, leading to increased cell death. These results suggest ES extract exhibits a potential radiosensitizing capacity in HNSCC.

Keywords: Ephedra sinica, head and neck cancer, radiosensitizer, combination therapy, traditional chinese medicine (TCM), TNFα.

Graphical Abstract
[1]
Ephedra. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases 2012.
[2]
Nam, N.H.; Lee, C.W.; Hong, D.H.; Kim, H.M.; Bae, K.H.; Ahn, B.Z. Antiinvasive, antiangiogenic and antitumour activity of Ephedra sinica extract. Phytother. Res., 2003, 17(1), 70-76.
[http://dx.doi.org/10.1002/ptr.901] [PMID: 12557251]
[3]
Yeom, G.G.M.; Min, S.; Kim, S.Y. 2,3,5,6-tetramethylpyrazine of ephedra sinica regulates melanogenesis and inflammation in a uva-induced melanoma/keratinocytes co-culture system. Int. Immunopharmacol., 2014, 18(2), 262-269.
[http://dx.doi.org/10.1016/j.intimp.2013.11.028] [PMID: 24333010]
[4]
Yahagi, H.; Yahagi, T.; Matsumura, M.; Igarashi, K.; Yokoyama, N.; Matsuzaki, K. Inhibitory activity of flavonoids from Ephedrae Herba on hypoxia signaling in PANC-1 cells and the evaluation of their mechanisms. J. Nat. Med., 2021, 75(3), 612-622.
[http://dx.doi.org/10.1007/s11418-021-01507-z] [PMID: 33813664]
[5]
Komorowska, D.; Radzik, T.; Kalenik, S.; Rodacka, A. Natural radiosensitizers in radiotherapy: Cancer treatment by combining ionizing radiation with resveratrol. Int. J. Mol. Sci., 2022, 23(18), 10627.
[http://dx.doi.org/10.3390/ijms231810627] [PMID: 36142554]
[6]
Jia, L.; Ma, S.; Hou, X.; Wang, X.; Qased, A.B.L.; Sun, X.; Liang, N.; Li, H.; Yi, H.; Kong, D.; Liu, X.; Fan, F. The synergistic effects of traditional Chinese herbs and radiotherapy for cancer treatment. Oncol. Lett., 2013, 5(5), 1439-1447.
[http://dx.doi.org/10.3892/ol.2013.1245] [PMID: 23760551]
[7]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[8]
Chen, S.T.; Lee, T.Y.; Tsai, T.H.; Lin, Y.C.; Lin, C.P.; Shieh, H.R.; Hsu, M.L.; Chi, C.W.; Lee, M.C.; Chang, H.H.; Chen, Y.J. The traditional Chinese medicine DangguiBuxue Tang sensitizes colorectal cancer cells to chemoradiotherapy. Molecules, 2016, 21(12), 1677.
[http://dx.doi.org/10.3390/molecules21121677] [PMID: 27929437]
[9]
Lee, N.C.J.; Kelly, J.R.; Park, H.S.; An, Y.; Judson, B.L.; Burtness, B.A.; Husain, Z.A. Patterns of failure in high-metastatic node number human papillomavirus-positive oropharyngeal carcinoma. Oral Oncol., 2018, 85, 35-39.
[http://dx.doi.org/10.1016/j.oraloncology.2018.08.001] [PMID: 30220317]
[10]
Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers, 2020, 6(1), 92.
[http://dx.doi.org/10.1038/s41572-020-00224-3] [PMID: 33243986]
[11]
Marur, S.; Forastiere, A.A. Head and neck cancer: Changing epidemiology, diagnosis, and treatment. In: Mayo Clinic Proceedings; Elsevier, 2008; Vol. 83, pp. 489-501.
[http://dx.doi.org/10.4065/83.4.489]
[12]
Alterio, D.; Marvaso, G.; Ferrari, A.; Volpe, S.; Orecchia, R.; Jereczek-Fossa, B.A. Modern radiotherapy for head and neck cancer. In: Seminars in oncology; Elsevier, 2019; Vol. 46, pp. 233-245.
[http://dx.doi.org/10.1053/j.seminoncol.2019.07.002]
[13]
Marur, S.; Forastiere, A.A. Head and neck squamous cell carcinoma: Update on epidemiology, diagnosis, and treatment. In: Mayo Clinic Proceedings; Elsevier, 2016; Vol. 91, pp. 386-396.
[http://dx.doi.org/10.1016/j.mayocp.2015.12.017]
[14]
Haussmann, J.; Tamaskovics, B.; Bölke, E.; Djiepmo-Njanang, F.J.; Kammers, K.; Corradini, S.; Hautmann, M.; Ghadjar, P.; Maas, K.; Schuler, P.J.; Hoffmann, T.K.; Lammering, G.; Budach, W.; Matuschek, C. Addition of chemotherapy to hyperfractionated radiotherapy in advanced head and neck cancer—a meta-analysis. Strahlenther. Onkol., 2019, 195(12), 1041-1049.
[http://dx.doi.org/10.1007/s00066-019-01511-z] [PMID: 31586229]
[15]
Osman, N.; Elamin, Y.Y.; Rafee, S.; O’Brien, C.; Stassen, L.F.A.; Timon, C.; Kinsella, J.; Brennan, S.; O’Byrne, K.J. Weekly cisplatin concurrently with radiotherapy in head and neck squamous cell cancer: A retrospective analysis of a tertiary institute experience. Eur. Arch. Otorhinolaryngol., 2014, 271(8), 2253-2259.
[http://dx.doi.org/10.1007/s00405-013-2749-9] [PMID: 24121822]
[16]
Tang, W.H.; Sun, W.; Long, G.X. Concurrent cisplatin or cetuximab with radiotherapy in patients with locally advanced head and neck squamous cell carcinoma. Medicine, 2020, 99(36), e21785.
[http://dx.doi.org/10.1097/MD.0000000000021785] [PMID: 32899005]
[17]
Geiger, J.L.; Lazim, A.F.; Walsh, F.J.; Foote, R.L.; Moore, E.J.; Okuno, S.H.; Olsen, K.D.; Kasperbauer, J.L.; Price, D.L.; Garces, Y.I.; Ma, D.J.; Neben-Wittich, M.A.; Molina, J.R.; Garcia, J.J.; Price, K.A.R. Adjuvant chemoradiation therapy with high-dose versus weekly cisplatin for resected, locally-advanced HPV/p16-positive and negative head and neck squamous cell carcinoma. Oral Oncol., 2014, 50(4), 311-318.
[http://dx.doi.org/10.1016/j.oraloncology.2014.01.001] [PMID: 24467937]
[18]
Zhang, D.Y.; Wu, J.; Ye, F.; Xue, L.; Jiang, S.; Yi, J.; Zhang, W.; Wei, H.; Sung, M.; Wang, W.; Li, X. Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis. Cancer Res., 2003, 63(14), 4037-4043.
[PMID: 12874003]
[19]
Noh, J.K.; Woo, S.R.; Yun, M.; Lee, M.K.; Kong, M.; Min, S.; Kim, S.; Lee, Y.C.; Eun, Y.G.; Ko, S.G. SOD2-and NRF2-associated gene signature to predict radioresistance in head and neck cancer. Cancer Genom Proteom, 2021, 18(5), 675-684.
[http://dx.doi.org/10.21873/cgp.20289] [PMID: 34479919]
[20]
Noh, J.K.; Woo, S.R.; Kong, M.; Lee, M.K.; Lee, J.W.; Lee, Y.C.; Ko, S.G.; Eun, Y.G. Gene signature predicting recurrence in oral squamous cell carcinoma is characterized by increased oxidative phosphorylation. Mol. Oncol., 2023, 17(1), 134-149.
[http://dx.doi.org/10.1002/1878-0261.13328] [PMID: 36271693]
[21]
Popovtzer, A.; Eisbruch, A. Advances in radiation therapy of head and neck cancer. Expert Rev. Anticancer Ther., 2008, 8(4), 633-644.
[http://dx.doi.org/10.1586/14737140.8.4.633] [PMID: 18402530]
[22]
Schnoell, J.; Stanisz, I.; Jank, B.J.; Stanek, V.; Schmid, R.; Brunner, M.; Heiduschka, G.; Kotowski, U. Zerumbone acts as a radiosensitizer in head and neck squamous cell carcinoma. Invest. New Drugs, 2022, 40(2), 224-231.
[http://dx.doi.org/10.1007/s10637-021-01190-7] [PMID: 34613571]
[23]
Kantapan, J.; Dechsupa, N.; Tippanya, D.; Nobnop, W.; Chitapanarux, I. Gallotannin from Bouea macrophylla seed extract suppresses cancer stem-like cells and radiosensitizes head and neck cancer. Int. J. Mol. Sci., 2021, 22(17), 9253.
[http://dx.doi.org/10.3390/ijms22179253] [PMID: 34502158]
[24]
Hyuga, S.; Hyuga, M.; Yoshimura, M.; Amakura, Y.; Goda, Y.; Hanawa, T. Herbacetin, a constituent of ephedrae herba, suppresses the HGF-induced motility of human breast cancer MDA-MB-231 cells by inhibiting c-Met and Akt phosphorylation. Planta Med., 2013, 79(16), 1525-1530.
[http://dx.doi.org/10.1055/s-0033-1350899] [PMID: 24081687]
[25]
Aoki, K.; Yamakuni, T.; Yoshida, M.; Ohizumi, Y. Ephedorae herba decreases lipopolysaccharide-induced cyclooxgenase-2 protein expression and NF-kappaB-dependent transcription in C6 rat glioma cells. J. Pharmacol. Sci., 2005, 98(3), 327-330.
[http://dx.doi.org/10.1254/jphs.SC0050118] [PMID: 16006736]
[26]
Tu, J.; Fang, Y.; Han, D.; Tan, X.; Jiang, H.; Gong, X.; Wang, X.; Hong, W.; Wei, W. Activation of nuclear factor‐κB in the angiogenesis of glioma: Insights into the associated molecular mechanisms and targeted therapies. Cell Prolif., 2021, 54(2), e12929.
[http://dx.doi.org/10.1111/cpr.12929] [PMID: 33300633]
[27]
Brockmueller, A.; Mueller, A.L.; Kunnumakkara, A.B.; Aggarwal, B.B.; Shakibaei, M. Multifunctionality of Calebin A in inflammation, chronic diseases and cancer. Front. Oncol., 2022, 12, 962066.
[http://dx.doi.org/10.3389/fonc.2022.962066] [PMID: 36185259]
[28]
Lalier, L.; Cartron, P.F.; Juin, P.; Nedelkina, S.; Manon, S.; Bechinger, B.; Vallette, F.M. Bax activation and mitochondrial insertion during apoptosis. Apoptosis, 2007, 12(5), 887-896.
[http://dx.doi.org/10.1007/s10495-007-0749-1] [PMID: 17453158]
[29]
Dadsena, S.; King, L.E.; García-Sáez, A.J. Apoptosis regulation at the mitochondria membrane level. Biochim. Biophys. Acta Biomembr., 2021, 1863(12), 183716.
[http://dx.doi.org/10.1016/j.bbamem.2021.183716] [PMID: 34343535]
[30]
Martens, S.; Bridelance, J.; Roelandt, R.; Vandenabeele, P.; Takahashi, N. MLKL in cancer: More than a necroptosis regulator. Cell Death Differ., 2021, 28(6), 1757-1772.
[http://dx.doi.org/10.1038/s41418-021-00785-0] [PMID: 33953348]
[31]
Gong, Y.; Fan, Z.; Luo, G.; Yang, C.; Huang, Q.; Fan, K.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; Liu, C. The role of necroptosis in cancer biology and therapy. Mol. Cancer, 2019, 18(1), 100.
[http://dx.doi.org/10.1186/s12943-019-1029-8] [PMID: 31122251]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy