Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Impact of Breaking up of Sitting Time on Anti-inflammatory Response Induced by Extracellular Vesicles

Author(s): Camila S. Padilha*, Bárbara M. Antunes, Alberto Jiménez-Maldonado, David H. St-Pierre and Fabio S. Lira*

Volume 29, Issue 32, 2023

Published on: 25 October, 2023

Page: [2524 - 2533] Pages: 10

DOI: 10.2174/0113816128244442231018070639

Price: $65

Abstract

Physical inactivity and sedentary behaviors (SB) have promoted a dramatic increase in the incidence of a host of chronic disorders over the last century. The breaking up of sitting time (i.e., sitting to standing up transition) has been proposed as a promising solution in several epidemiological and clinical studies. In parallel to the large interest it initially created, there is a growing body of evidence indicating that breaking up prolonged sedentary time (i.e., > 7 h in sitting time) could reduce overall mortality risks by normalizing the inflammatory profile and cardiometabolic functions. Recent advances suggest that the latter health benefits, may be mediated through the immunomodulatory properties of extracellular vesicles. Primarily composed of miRNA, lipids, mRNA and proteins, these vesicles would influence metabolism and immune system functions by promoting M1 to M2 macrophage polarization (i.e., from a pro-inflammatory to anti-inflammatory phenotype) and improving endothelial function. The outcomes of interrupting prolonged sitting time may be attributed to molecular mechanisms induced by circulating angiogenic cells. Functionally, circulating angiogenic cells contribute to repair and remodel the vasculature. This effect is proposed to be mediated through the secretion of paracrine factors. The present review article intends to clarify the beneficial contributions of breaking up sitting time on extracellular vesicles formation and macrophage polarization (M1 and M2 phenotypes). Hence, it will highlight key mechanistic information regarding how breaking up sitting time protocols improves endothelial health by promoting antioxidant and anti-inflammatory responses in human organs and tissues.

Keywords: Microparticles, innate immune cells, hypokinesia, sedentary behavior, immunomodulatory, angiogenic cells

[1]
Patterson R, McNamara E, Tainio M, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: A systematic review and dose response meta-analysis. Eur J Epidemiol 2018; 33(9): 811-29.
[http://dx.doi.org/10.1007/s10654-018-0380-1] [PMID: 29589226]
[2]
Mummery WK, Schofield G, Hinchliffe A, Joyner K, Brown W. Dissemination of a community-based physical activity project: The case of 10,000 steps. J Sci Med Sport 2006; 9(5): 424-30.
[http://dx.doi.org/10.1016/j.jsams.2006.06.015] [PMID: 16890489]
[3]
Blair SN, Kohl HW III, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 1989; 262(17): 2395-401.
[http://dx.doi.org/10.1001/jama.1989.03430170057028] [PMID: 2795824]
[4]
Blair SN, Kohl HW III, Barlow CE, Paffenbarger RS Jr, Gibbons LW, Macera CA. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA 1995; 273(14): 1093-8.
[http://dx.doi.org/10.1001/jama.1995.03520380029031] [PMID: 7707596]
[5]
Wei M, Kampert JB, Barlow CE, et al. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA 1999; 282(16): 1547-53.
[http://dx.doi.org/10.1001/jama.282.16.1547] [PMID: 10546694]
[6]
Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012; 380(9838): 219-29.
[http://dx.doi.org/10.1016/S0140-6736(12)61031-9] [PMID: 22818936]
[7]
DeFina LF, Haskell WL, Willis BL, et al. Physical activity versus cardiorespiratory fitness: Two (partly) distinct components of cardiovascular health? Prog Cardiovasc Dis 2015; 57(4): 324-9.
[http://dx.doi.org/10.1016/j.pcad.2014.09.008] [PMID: 25269066]
[8]
Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 2011; 31(1): 27-33.
[http://dx.doi.org/10.1161/ATVBAHA.110.218123] [PMID: 21160065]
[9]
Ahn YS. Cell-derived microparticles: ‘Miniature envoys with many faces’. J Thromb Haemost 2005; 3(5): 884-7.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01347.x] [PMID: 15869581]
[10]
Whitham M, Parker BL, Friedrichsen M, et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 2018; 27(1): 237-251.e4.
[http://dx.doi.org/10.1016/j.cmet.2017.12.001] [PMID: 29320704]
[11]
Arany Z, Foo SY, Ma Y, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature 2008; 451(7181): 1008-12.
[http://dx.doi.org/10.1038/nature06613] [PMID: 18288196]
[12]
Eichner NZM, Erdbrügger U, Malin SK. Extracellular vesicles: A novel target for exercise-mediated reductions in type 2 diabetes and cardiovascular disease risk. J Diabetes Res 2018; 2018: 1-14.
[http://dx.doi.org/10.1155/2018/7807245] [PMID: 30018986]
[13]
Boulanger CM. Microparticles, vascular function and hypertension. Curr Opin Nephrol Hypertens 2010; 19(2): 177-80.
[http://dx.doi.org/10.1097/MNH.0b013e32833640fd] [PMID: 20051854]
[14]
Alexandru N, Popov D, Dragan E, Andrei E, Georgescu A. Circulating endothelial progenitor cell and platelet microparticle impact on platelet activation in hypertension associated with hypercholesterolemia. PLoS One 2013; 8(1): e52058.
[http://dx.doi.org/10.1371/journal.pone.0052058] [PMID: 23372649]
[15]
Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 2014; 23(11): 1233-44.
[http://dx.doi.org/10.1089/scd.2013.0479] [PMID: 24367916]
[16]
Verbree-Willemsen L, Zhang Y, Ibrahim I, et al. Extracellular vesicle cystatin C and CD14 are associated with both renal dysfunction and heart failure. ESC Heart Fail 2020; 7(5): 2240-9.
[http://dx.doi.org/10.1002/ehf2.12699] [PMID: 32648717]
[17]
Kranendonk MEG, de Kleijn DPV, Kalkhoven E, et al. Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol 2014; 13(1): 37.
[http://dx.doi.org/10.1186/1475-2840-13-37] [PMID: 24498934]
[18]
Dekker M, Waissi F, Timmerman N, Silvis MJM, Timmers L, de Kleijn DPV. Extracellular vesicles in diagnosing chronic coronary syndromes the bumpy road to clinical implementation. Int J Mol Sci 2020; 21(23): 9128.
[http://dx.doi.org/10.3390/ijms21239128] [PMID: 33266227]
[19]
Dekker M, Waissi F, van Bennekom J, et al. Extracellular vesicle cystatin c is associated with unstable angina in troponin negative patients with acute chest pain. PLoS One 2020; 15(8): e0237036.
[http://dx.doi.org/10.1371/journal.pone.0237036] [PMID: 32756583]
[20]
Domenis R, Cifù A, Quaglia S, et al. Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Sci Rep 2018; 8(1): 13325.
[http://dx.doi.org/10.1038/s41598-018-31707-9] [PMID: 30190615]
[21]
Gonda A, Kabagwira J, Senthil GN, Wall NR. Internalization of exosomes through receptor-mediated endocytosis. Mol Cancer Res 2019; 17(2): 337-47.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0891] [PMID: 30487244]
[22]
Banizs AB, Huang T, Nakamoto RK, Shi W, He J. Endocytosis pathways of endothelial cell derived exosomes. Mol Pharm 2018; 15(12): 5585-90.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00765] [PMID: 30351959]
[23]
Essandoh K, Li Y, Huo J, Fan GC. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock 2016; 46(2): 122-31.
[http://dx.doi.org/10.1097/SHK.0000000000000604] [PMID: 26954942]
[24]
Chang YJ, Tuz-Zahra F, Godbole S, et al. Endothelial-derived cardiovascular disease-related microRNAs elevated with prolonged sitting pattern among postmenopausal women. Sci Rep 2021; 11(1): 11766.
[http://dx.doi.org/10.1038/s41598-021-90154-1] [PMID: 34083573]
[25]
Healy GN, Matthews CE, Dunstan DW, Winkler EAH, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur Heart J 2011; 32(5): 590-7.
[http://dx.doi.org/10.1093/eurheartj/ehq451] [PMID: 21224291]
[26]
Dempsey PC, Strain T, Khaw KT, Wareham NJ, Brage S, Wijndaele K. Prospective associations of accelerometer-measured physical activity and sedentary time with incident cardiovascular disease, cancer, and all-cause mortality. Circulation 2020; 141(13): 1113-5.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.043030] [PMID: 32223676]
[27]
Dempsey PC, Strain T, Winkler EAH, et al. Association of accelerometer-measured sedentary accumulation patterns with incident cardiovascular disease, cancer, and all-cause mortality. J Am Heart Assoc 2022; 11(9): e023845.
[http://dx.doi.org/10.1161/JAHA.121.023845] [PMID: 35470706]
[28]
Peachey MM, Richardson J, V Tang A, Dal-Bello Haas V, Gravesande J. Environmental, behavioural and multicomponent interventions to reduce adults’ sitting time: A systematic review and meta- analysis. Br J Sports Med 2020; 54(6): 315-25.
[PMID: 30352864]
[29]
Michaud TL, You W, Estabrooks PA, et al. Cost and cost-effectiveness of the ‘Stand and Move at Work’ multicomponent intervention to reduce workplace sedentary time and cardiometabolic risk. Scand J Work Environ Health 2022; 48(5): 399-409.
[http://dx.doi.org/10.5271/sjweh.4022] [PMID: 35333373]
[30]
Dieterich AV, Müller AM, Akksilp K, Sarin KC, Dabak SV, Rouyard T. Reducing sedentary behaviour and physical inactivity in the workplace: Protocol for a review of systematic reviews. BMJ Open Sport Exerc Med 2020; 6(1): e000909.
[http://dx.doi.org/10.1136/bmjsem-2020-000909] [PMID: 33324487]
[31]
Danquah IH, Tolstrup JS. Does it work for everyone? The effect of the take a stand! sitting-intervention in subgroups defined by socio-demographic, health-related, work-related, and psychosocial factors. J Occup Environ Med 2020; 62(1): 30-6.
[http://dx.doi.org/10.1097/JOM.0000000000001737] [PMID: 31626067]
[32]
Shrestha N, Kukkonen-Harjula KT, Verbeek JH, Ijaz S, Hermans V, Pedisic Z. Workplace interventions for reducing sitting at work. Cochrane Database Syst Rev 2018; 12(12): CD010912.
[PMID: 30556590]
[33]
Buckley JP, Hedge A, Yates T, et al. The sedentary office: An expert statement on the growing case for change towards better health and productivity. Br J Sports Med 2015; 49(21): 1357-62.
[http://dx.doi.org/10.1136/bjsports-2015-094618] [PMID: 26034192]
[34]
Bailey DP, Locke CD. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not. J Sci Med Sport 2015; 18(3): 294-8.
[http://dx.doi.org/10.1016/j.jsams.2014.03.008] [PMID: 24704421]
[35]
Dunstan DW, Kingwell BA, Larsen R, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 2012; 35(5): 976-83.
[http://dx.doi.org/10.2337/dc11-1931] [PMID: 22374636]
[36]
Hadgraft NT, Winkler E, Climie RE, et al. Effects of sedentary behaviour interventions on biomarkers of cardiometabolic risk in adults: Systematic review with meta-analyses. Br J Sports Med 2021; 55(3): 144-54.
[http://dx.doi.org/10.1136/bjsports-2019-101154] [PMID: 32269058]
[37]
Loh R, Stamatakis E, Folkerts D, Allgrove JE, Moir HJ. Effects of interrupting prolonged sitting with physical activity breaks on blood glucose, insulin and triacylglycerol measures: A systematic review and meta-analysis. Sports Med 2020; 50(2): 295-330.
[http://dx.doi.org/10.1007/s40279-019-01183-w] [PMID: 31552570]
[38]
Mulchandani R, Chandrasekaran AM, Shivashankar R, et al. Effect of workplace physical activity interventions on the cardio-metabolic health of working adults: Systematic review and meta-analysis. Int J Behav Nutr Phys Act 2019; 16(1): 134.
[http://dx.doi.org/10.1186/s12966-019-0896-0] [PMID: 31856826]
[39]
Wheeler MJ, Dempsey PC, Grace MS, et al. Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimers Dement 2017; 3(3): 291-300.
[http://dx.doi.org/10.1016/j.trci.2017.04.001] [PMID: 29067335]
[40]
Nieste I, Franssen WMA, Spaas J, Bruckers L, Savelberg HHCM, Eijnde BO. Lifestyle interventions to reduce sedentary behaviour in clinical populations: A systematic review and meta-analysis of different strategies and effects on cardiometabolic health. Prev Med 2021; 148: 106593.
[http://dx.doi.org/10.1016/j.ypmed.2021.106593] [PMID: 33930434]
[41]
Gao Y, Silvennoinen M, Pesola AJ, Kainulainen H, Cronin NJ, Finni T. Acute metabolic response, energy expenditure, and EMG activity in sitting and standing. Med Sci Sports Exerc 2017; 49(9): 1927-34.
[http://dx.doi.org/10.1249/MSS.0000000000001305] [PMID: 28463899]
[42]
Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353(10): 999-1007.
[http://dx.doi.org/10.1056/NEJMoa043814] [PMID: 16148285]
[43]
Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2006; 26(1): 112-6.
[http://dx.doi.org/10.1161/01.ATV.0000191634.13057.15] [PMID: 16239600]
[44]
Evans WS. Local exercise does not prevent the aortic stiffening response to acute prolonged sitting: A randomized crossover trial. J Appl Physiol 2019; 127(3): 781-7.
[http://dx.doi.org/10.1152/japplphysiol.00318.2019]
[45]
Morishima T, Restaino RM, Walsh LK, Kanaley JA, Fadel PJ, Padilla J. Prolonged sitting-induced leg endothelial dysfunction is prevented by fidgeting. Am J Physiol Heart Circ Physiol 2016; 311(1): H177-82.
[http://dx.doi.org/10.1152/ajpheart.00297.2016] [PMID: 27233765]
[46]
Morishima T, Restaino RM, Walsh LK, Kanaley JA, Padilla J. Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction. Clin Sci 2017; 131(11): 1045-53.
[http://dx.doi.org/10.1042/CS20170031] [PMID: 28385735]
[47]
Kruse NT, Hughes W, Benzo RM, Carr LJ, Casey DP. Workplace strategies to prevent sitting-induced endothelial dysfunction. Med Sci Sports Exerc 2018; 50(4): 801-8.
[http://dx.doi.org/10.1249/MSS.0000000000001484] [PMID: 29117072]
[48]
Hur J, Yang HM, Yoon CH, et al. Identification of a novel role of T cells in postnatal vasculogenesis: Characterization of endothelial progenitor cell colonies. Circulation 2007; 116(15): 1671-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.694778] [PMID: 17909106]
[49]
Yang Z, von Ballmoos MW, Faessler D, et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis 2010; 211(1): 103-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.02.022] [PMID: 20227693]
[50]
Kucia M, Jankowski K, Reca R, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 2003; 35(3): 233-45.
[http://dx.doi.org/10.1023/B:HIJO.0000032355.66152.b8] [PMID: 15339043]
[51]
Simons M. An inside view: VEGF receptor trafficking and signaling. Physiology 2012; 27(4): 213-22.
[http://dx.doi.org/10.1152/physiol.00016.2012] [PMID: 22875452]
[52]
Heiston EM, Ballantyne A, La Salvia S, Musante L, Erdbrügger U, Malin SK. Acute exercise decreases insulin-stimulated extracellular vesicles in conjunction with augmentation index in adults with obesity. J Physiol 2022; JP282274.
[http://dx.doi.org/10.1113/JP282274] [PMID: 35081660]
[53]
Berda-Haddad Y, Robert S, Salers P, et al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α. Proc Natl Acad Sci 2011; 108(51): 20684-9.
[http://dx.doi.org/10.1073/pnas.1116848108] [PMID: 22143786]
[54]
Tkachev VO, Menshchikova EB, Zenkov NK. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry 2011; 76(4): 407-22.
[http://dx.doi.org/10.1134/S0006297911040031] [PMID: 21585316]
[55]
Ali T, Kim T, Rehman SU, et al. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol Neurobiol 2018; 55(7): 6076-93.
[http://dx.doi.org/10.1007/s12035-017-0798-6] [PMID: 29170981]
[56]
Kim JS, Kim B, Lee H, et al. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells. Am J Physiol Heart Circ Physiol 2015; 309(3): H425-33.
[http://dx.doi.org/10.1152/ajpheart.00438.2014] [PMID: 26024684]
[57]
Dimassi S, Karkeni E, Laurant P, Tabka Z, Landrier JF, Riva C. Microparticle miRNAs as biomarkers of vascular function and inflammation response to aerobic exercise in obesity? Obesity 2018; 26(10): 1584-93.
[http://dx.doi.org/10.1002/oby.22298] [PMID: 30260095]
[58]
Sun Y, Li Q, Gui H, et al. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res 2013; 23(11): 1270-83.
[http://dx.doi.org/10.1038/cr.2013.116] [PMID: 23979021]
[59]
Thivel D, Tremblay A, Genin PM, Panahi S, Rivière D, Duclos M. Physical activity, inactivity, and sedentary behaviors: Definitions and implications in occupational health. Front Public Health 2018; 6: 288.
[http://dx.doi.org/10.3389/fpubh.2018.00288] [PMID: 30345266]
[60]
Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep 1985; 100(2): 126-31.
[PMID: 3920711]
[62]
Tremblay MS, Aubert S, Barnes JD, et al. Sedentary Behavior Research Network (SBRN) – Terminology consensus project process and outcome. Int J Behav Nutr Phys Act 2017; 14(1): 75.
[http://dx.doi.org/10.1186/s12966-017-0525-8] [PMID: 28599680]
[63]
Katzmarzyk PT, Friedenreich C, Shiroma EJ, Lee IM. Physical inactivity and non-communicable disease burden in low-income, middle-income and high-income countries. Br J Sports Med 2022; 56(2): 101-6.
[http://dx.doi.org/10.1136/bjsports-2020-103640] [PMID: 33782046]
[64]
Rome S, Forterre A, Mizgier ML, Bouzakri K. Skeletal muscle-released extracellular vesicles: State of the art. Front Physiol 2019; 10: 929.
[http://dx.doi.org/10.3389/fphys.2019.00929] [PMID: 31447684]
[65]
Boyle LJ. Impact of reduced daily physical activity on conduit artery flow-mediated dilation and circulating endothelial microparticles. J Appl Physiol 2013; 115(10): 1519-25.
[http://dx.doi.org/10.1152/japplphysiol.00837.2013]
[66]
Darkwah S, Park EJ, Myint PK, et al. Potential roles of muscle-derived extracellular vesicles in remodeling cellular microenvironment: Proposed implications of the exercise-induced myokine, irisin. Front Cell Dev Biol 2021; 9: 634853.
[http://dx.doi.org/10.3389/fcell.2021.634853] [PMID: 33614663]
[67]
Zwaal RFA, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 1997; 89(4): 1121-32.
[http://dx.doi.org/10.1182/blood.V89.4.1121] [PMID: 9028933]
[68]
Schroit AJ, Tanaka Y, Madsen J, Fidler IJ. The recognition of red blood cells by macrophages: Role of phosphatidylserine and possible implications of membrane phospholipid asymmetry. Biol Cell 1984; 51(2): 227-38.
[http://dx.doi.org/10.1111/j.1768-322X.1984.tb00303.x] [PMID: 6240306]
[69]
Freyssinet J-M. Cellular microparticles: What are they bad or good for? J Thromb Haemost 2003; 1(7): 1655-62.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00309.x] [PMID: 12871302]
[70]
Ferraris VA. Microparticles: The good, the bad, and the ugly. J Thorac Cardiovasc Surg 2015; 149(1): 312-3.
[http://dx.doi.org/10.1016/j.jtcvs.2014.08.051] [PMID: 25263714]
[71]
Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol 2004; 286(5): H1910-5.
[http://dx.doi.org/10.1152/ajpheart.01172.2003] [PMID: 15072974]
[72]
Mezentsev A, Merks RMH, O’Riordan E, et al. Endothelial microparticles affect angiogenesis in vitro: Role of oxidative stress. Am J Physiol Heart Circ Physiol 2005; 289(3): H1106-14.
[http://dx.doi.org/10.1152/ajpheart.00265.2005] [PMID: 15879485]
[73]
Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91(10): 3527-61.
[PMID: 9572988]
[74]
Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83(5): 1774-7.
[http://dx.doi.org/10.1172/JCI114081] [PMID: 2540223]
[75]
von der Leyen HE, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: In vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci 1995; 92(4): 1137-41.
[http://dx.doi.org/10.1073/pnas.92.4.1137] [PMID: 7532305]
[76]
Zhang X, Li H, Jin H, Ebin Z, Brodsky S, Goligorsky MS. Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol 2000; 279(4): F671-8.
[http://dx.doi.org/10.1152/ajprenal.2000.279.4.F671] [PMID: 10997917]
[77]
Welch GN, Upchurch GR Jr, Farivar RS, et al. Homocysteine-induced nitric oxide production in vascular smooth-muscle cells by NF-kappa B-dependent transcriptional activation of Nos2. Proc Assoc Am Physicians 1998; 110(1): 22-31.
[PMID: 9460080]
[78]
Weigert C, Lehmann R, Hartwig S, Lehr S. The secretome of the working human skeletal muscle-A promising opportunity to combat the metabolic disaster? Proteomics Clin Appl 2014; 8(1-2): 5-18.
[http://dx.doi.org/10.1002/prca.201300094] [PMID: 24376246]
[79]
Kirk B, Feehan J, Lombardi G, Duque G. Muscle, bone, and fat crosstalk: The biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep 2020; 18(4): 388-400.
[http://dx.doi.org/10.1007/s11914-020-00599-y] [PMID: 32529456]
[80]
Le Bihan MC, Bigot A, Jensen SS, et al. In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J Proteomics 2012; 77: 344-56.
[http://dx.doi.org/10.1016/j.jprot.2012.09.008] [PMID: 23000592]
[81]
Forterre A, Jalabert A, Berger E, et al. Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: A new paradigm for myoblast-myotube cross talk? PLoS One 2014; 9(1): e84153.
[http://dx.doi.org/10.1371/journal.pone.0084153] [PMID: 24392111]
[82]
Aswad H, Forterre A, Wiklander OPB, et al. Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia 2014; 57(10): 2155-64.
[http://dx.doi.org/10.1007/s00125-014-3337-2] [PMID: 25073444]
[83]
Nederveen JP, Warnier G, Di Carlo A, Nilsson MI, Tarnopolsky MA. Extracellular vesicles and exosomes: Insights from exercise science. Front Physiol 2021; 11: 604274.
[http://dx.doi.org/10.3389/fphys.2020.604274] [PMID: 33597890]
[84]
Vechetti IJ Jr, Peck BD, Wen Y, et al. Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J 2021; 35(6): e21644.
[http://dx.doi.org/10.1096/fj.202100242R] [PMID: 34033143]
[85]
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1): 1535750.
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[86]
Wang J, Xia J, Huang R, et al. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Res Ther 2020; 11(1): 424.
[http://dx.doi.org/10.1186/s13287-020-01937-8] [PMID: 32993783]
[87]
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2): 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[88]
Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 2020; 12(8): 814-40.
[http://dx.doi.org/10.4252/wjsc.v12.i8.814] [PMID: 32952861]
[89]
Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852.
[http://dx.doi.org/10.3390/ijms18091852] [PMID: 28841158]
[90]
Jafarinia M, Alsahebfosoul F, Salehi H, Eskandari N, Ganjalikhani-Hakemi M. Mesenchymal stem cell-derived extracellular vesicles: A novel cell-free therapy. Immunol Invest 2020; 49(7): 758-80.
[http://dx.doi.org/10.1080/08820139.2020.1712416] [PMID: 32009478]
[91]
Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal stromal cells and exosomes: Progress and challenges. Front Cell Dev Biol 2020; 8: 665.
[http://dx.doi.org/10.3389/fcell.2020.00665] [PMID: 32766255]
[92]
Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes 2018; 67(2): 235-47.
[http://dx.doi.org/10.2337/db17-0356] [PMID: 29133512]
[93]
Xu R, Zhang F, Chai R, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med 2019; 23(11): 7617-31.
[http://dx.doi.org/10.1111/jcmm.14635] [PMID: 31557396]
[94]
Arabpour M, Saghazadeh A, Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int Immunopharmacol 2021; 97: 107823.
[http://dx.doi.org/10.1016/j.intimp.2021.107823] [PMID: 34102486]
[95]
Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells 2019; 8(12): 1605.
[http://dx.doi.org/10.3390/cells8121605] [PMID: 31835680]
[96]
Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 2019; 115(7): 1205-16.
[http://dx.doi.org/10.1093/cvr/cvz040] [PMID: 30753344]
[97]
Yin K, Wang S, Zhao RC. Exosomes from mesenchymal stem/stromal cells: A new therapeutic paradigm. Biomark Res 2019; 7(1): 8.
[http://dx.doi.org/10.1186/s40364-019-0159-x] [PMID: 30992990]
[98]
Lo Sicco C, Reverberi D, Balbi C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Transl Med 2017; 6(3): 1018-28.
[http://dx.doi.org/10.1002/sctm.16-0363] [PMID: 28186708]
[99]
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019; 54(S2): 789-92.
[http://dx.doi.org/10.1038/s41409-019-0616-z] [PMID: 31431712]
[100]
Liu H, Liang Z, Wang F, et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight 2019; 4(24): e131273.
[http://dx.doi.org/10.1172/jci.insight.131273] [PMID: 31689240]
[101]
Baharlooi H, Azimi M, Salehi Z, Izad M. Mesenchymal stem cell-derived exosomes: A promising therapeutic ace card to address autoimmune diseases. Int J Stem Cells 2020; 13(1): 13-23.
[http://dx.doi.org/10.15283/ijsc19108] [PMID: 31887849]
[102]
Xie M, Xiong W, She Z, et al. immunoregulatory effects of stem cell-derived extracellular vesicles on immune cells. Front Immunol 2020; 11: 13.
[http://dx.doi.org/10.3389/fimmu.2020.00013] [PMID: 32117221]
[103]
Mardpour S, Hamidieh AA, Taleahmad S, Sharifzad F, Taghikhani A, Baharvand H. Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J Cell Physiol 2019; 234(6): 8249-58.
[http://dx.doi.org/10.1002/jcp.27669] [PMID: 30378105]
[104]
van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. The mononuclear phagocyte system: A new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 1972; 46(6): 845-52.
[PMID: 4538544]
[105]
Dasgupta P, Keegan AD. Contribution of alternatively activated macrophages to allergic lung inflammation: A tale of mice and men. J Innate Immun 2012; 4(5-6): 478-88.
[http://dx.doi.org/10.1159/000336025] [PMID: 22440980]
[106]
Gordon S. Elie Metchnikoff: Father of natural immunity. Eur J Immunol 2008; 38(12): 3257-64.
[http://dx.doi.org/10.1002/eji.200838855] [PMID: 19039772]
[107]
Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol 2019; 10: 792.
[http://dx.doi.org/10.3389/fimmu.2019.00792] [PMID: 31037072]
[108]
Ross EA, Devitt A, Johnson JR. Macrophages: The good, the bad, and the gluttony. Front Immunol 2021; 12: 708186.
[http://dx.doi.org/10.3389/fimmu.2021.708186] [PMID: 34456917]
[109]
Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol 2014; 5: 514.
[http://dx.doi.org/10.3389/fimmu.2014.00514] [PMID: 25368618]
[110]
Tarique AA, Logan J, Thomas E, Holt PG, Sly PD, Fantino E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol 2015; 53(5): 676-88.
[http://dx.doi.org/10.1165/rcmb.2015-0012OC] [PMID: 25870903]
[111]
Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res 2018; 191: 1-14.
[http://dx.doi.org/10.1016/j.trsl.2017.09.002] [PMID: 29066321]
[112]
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014; 41(1): 14-20.
[http://dx.doi.org/10.1016/j.immuni.2014.06.008] [PMID: 25035950]
[113]
Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. J Immunol 2006; 177(10): 7303-11.
[http://dx.doi.org/10.4049/jimmunol.177.10.7303] [PMID: 17082649]
[114]
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep 2014; 6: 13.
[http://dx.doi.org/10.12703/P6-13] [PMID: 24669294]
[115]
Parisi L, Gini E, Baci D, et al. Macrophage polarization in chronic inflammatory diseases: Killers or builders? J Immunol Res 2018; 2018: 1-25.
[http://dx.doi.org/10.1155/2018/8917804] [PMID: 29507865]
[116]
Zheng G, Huang L, Tong H, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: A randomized, placebo-controlled pilot study. Respir Res 2014; 15(1): 39.
[http://dx.doi.org/10.1186/1465-9921-15-39] [PMID: 24708472]
[117]
Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One 2018; 13(1): e0190358.
[http://dx.doi.org/10.1371/journal.pone.0190358] [PMID: 29293592]
[118]
Sun X, Shan A, Wei Z, Xu B. Intravenous mesenchymal stem cell-derived exosomes ameliorate myocardial inflammation in the dilated cardiomyopathy. Biochem Biophys Res Commun 2018; 503(4): 2611-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.012] [PMID: 30126637]
[119]
Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 2017; 8(1): 198.
[http://dx.doi.org/10.1186/s13287-017-0648-5] [PMID: 28962585]
[120]
Shen B, Liu J, Zhang F, et al. CCR2 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury. Stem Cells Int 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/1240301] [PMID: 27843457]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy