Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

1,4-Dihydropyridine Derivatives: An Overview of Synthesis Conditions and Biological Tests

Author(s): Aline de Fátima Silva Lago, Danilo Forti Carvalho de Benedicto, Larissa da Silva and Sérgio Scherrer Thomasi*

Volume 27, Issue 18, 2023

Published on: 25 October, 2023

Page: [1567 - 1610] Pages: 44

DOI: 10.2174/0113852728264228231013074432

Price: $65

Abstract

1,4-dihydropyridine is a versatile class of compounds with multiple biological activities, thus holding significant pharmacological potential. Recent studies have provided evidence concerning the anticancer, antimicrobial, and anti-inflammatory properties of 1,4-dihydropyridines, as well as their potential in Alzheimer’s disease treatment. Therefore, this class of compounds is a promising candidate in studies of drug development and drug discovery. The major derivatives of 1,4-dihydropyridine can be synthesized through one-pot synthesis in many different ways, varying the solvents, catalysts, and experimental conditions. Due to the compound’s remarkable potential and ease of production, in this review we aimed to present the biological activities and synthesis methodologies of the main 1,4-dihydropyridine derivatives reported by scientific literature over the past decade.

Keywords: 1, 4-dihydropyridine, one-pot synthesis, biological activities, experimental conditions, catalyst, hexahydroacredinedione, hexahydroquinoline, benzoacridinone.

Graphical Abstract
[1]
Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939]
[2]
Petrova, M.; Muhamadejev, R.; Vigante, B.; Cekavicus, B.; Plotniece, A.; Duburs, G.; Liepinsh, E. Intramolecular C-H···O hydrogen bonding in 1,4-dihydropyridine derivatives. Molecules, 2011, 16(9), 8041-8052.
[http://dx.doi.org/10.3390/molecules16098041] [PMID: 21931285]
[3]
Ahn, S.; Lee, Y.; Park, J.; Lee, J.; Shin, S.Y.; Lee, Y.H.; Koh, D.; Lim, Y. Synthetic Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates Induce Apoptosis. Med. Chem., 2018, 14(8), 851-862.
[http://dx.doi.org/10.2174/1573406414666180418143048] [PMID: 29669502]
[4]
Bajaj, S.D.; Mahodaya, O.A.; Tekade, P.V.; Patil, V.B.; Kukade, S.D. Synthesis of diethyl 4-(phenyl-substituted)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates catalyzed by CoCl2/K-10 montmorillonite in water and their antimicrobial activity. Russ. J. Gen. Chem., 2017, 87(3), 546-549.
[http://dx.doi.org/10.1134/S1070363217030264]
[5]
Lavanya, G.; Magesh, C.J.; Venkatapathy, K.; Perumal, P.T.; Prema, S. Design, synthesis, spectral characterization and molecular docking studies of novel pyranoquinolinyl dihydropyridine carboxylates as potential antibacterial agents including Vibrio cholerae with minimal cytotoxity towards fibroblast cell line (L-929). Bioorg. Chem., 2021, 107, 104582.
[http://dx.doi.org/10.1016/j.bioorg.2020.104582] [PMID: 33450547]
[6]
Correa, I.T.S.; da Costa-Silva, T.A.; Tempone, A.G. Bioenergetics impairment of Trypanosoma cruzi by the antihypertensive manidipine: A drug repurposing strategy. Acta Trop., 2021, 214, 105768.
[http://dx.doi.org/10.1016/j.actatropica.2020.105768] [PMID: 33245907]
[7]
Razzaghi-Asl, N.; Aggarwal, N.; Srivastava, S.; Parmar, V.S.; Prasad, A.K.; Miri, R.; Saso, L.; Firuzi, O. Inhibition of Alzheimer’s BACE-1 by 2,6-dialkyl-4-chromon-3-yl-1,4-dihydropyridine-3,5-dicarboxylates. Med. Chem. Res., 2015, 24(8), 3230-3241.
[http://dx.doi.org/10.1007/s00044-015-1367-z]
[8]
Niaz, H.; Kashtoh, H.; Khan, J.A.J.; Khan, A.; Wahab, A.; Alam, M.T.; Khan, K.M.; Perveen, S.; Choudhary, M.I. Synthesis of diethyl 4-substituted-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates as a new series of inhibitors against yeast α-glucosidase. Eur. J. Med. Chem., 2015, 95, 199-209.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.018] [PMID: 25817770]
[9]
Pachón Angona, I.; Martin, H.; Daniel, S.; Moraleda, I.; Bonet, A.; Wnorowski, A.; Maj, M.; Jozwiak, K.; Iriepa, I.; Refouvelet, B.; Marco-Contelles, J.; Ismaili, L. Synthesis of hantzsch adducts as cholinesterases and calcium flux inhibitors, antioxidants and neuroprotectives. Int. J. Mol. Sci., 2020, 21(20), 7652.
[http://dx.doi.org/10.3390/ijms21207652] [PMID: 33081112]
[10]
Pachòn Angona, I.; Daniel, S.; Martin, H.; Bonet, A.; Wnorowski, A.; Maj, M. Jó wiak, K.; Silva, T.B.; Refouvelet, B.; Borges, F.; Marco-Contelles, J.; Ismaili, L. Design, synthesis and biological evaluation of new antioxidant and neuroprotective multitarget directed ligands able to block calcium channels. Molecules, 2020, 25(6), 1329.
[http://dx.doi.org/10.3390/molecules25061329] [PMID: 32183349]
[11]
Prasanthi, G.; Prasad, K.V.S.R.G.; Bharathi, K. Synthesis, anticonvulsant activity and molecular properties prediction of dialkyl 1-(di(ethoxycarbonyl)methyl)-2,6-dimethyl-4-substituted-1,4-dihydropyridine-3,5-dicarboxylates. Eur. J. Med. Chem., 2014, 73, 97-104.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.001] [PMID: 24384550]
[12]
Ulloora, S.; Kumar, S.; Shabaraya, R.; Adhikari, A.V. New dihydropyridine derivatives: anti-inflammatory, analgesic and docking studies. Med. Chem. Res., 2013, 22(4), 1549-1562.
[http://dx.doi.org/10.1007/s00044-012-0156-1]
[13]
Guo, Z.; Zhou, K.; Cao, Y.; Li, Y.; Zhang, S. Synthesis and antihypertensive activity evaluation in spontaneously hypertensive rats of lacidipine analogues. Med. Chem. Res., 2012, 21(8), 1647-1651.
[http://dx.doi.org/10.1007/s00044-011-9680-7]
[14]
Chang, C.C.; Cao, S.; Kang, S.; Kai, L.; Tian, X.; Pandey, P.; Dunne, S.F.; Luan, C.H.; Surmeier, D.J.; Silverman, R.B. Antagonism of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates toward voltage-dependent L-type Ca2+ channels CaV1.3 and CaV1.2. Bioorg. Med. Chem., 2010, 18(9), 3147-3158.
[http://dx.doi.org/10.1016/j.bmc.2010.03.038] [PMID: 20382537]
[15]
Santa-Helena, E.; Ribeiro, J.P.; Gioda, C.R.; Cabrera, D.C.; D’Oca, M.M.; Nery, L.E.M.; Gonçalves, C.A.N. Fatty dihydropyridines with anti-hypertensive and cardioprotective potential during ischemia and reperfusion. Research Square, 2021.
[http://dx.doi.org/10.21203/rs.3.rs-611018/v1]
[16]
Subudhi, B.B.; Panda, S.K.; Ghosh, G.; Panda, P.K. Synthesis and antiulcer activity study of disubstituted alkyl 4-(substituted)-2,6-dimethyl-1((4-oxo-3-(4-sulfamoylphenyl)-2-thioxo-3,4-dihydroquinazolin-1(2H)-yl) methyl)-1,4-dihydropyridine-3,5 dicarboxylate. Indian J. Chem. Sect. B, 2012, 51(6), 899-903.
[17]
Shahbazi Mojarrad, J.; Nazemiyeh, H.; Kaviani, F. Synthesis and regioselective hydrolysis of novel dialkyl 4-imidazolyl-1,4-dihydropyridine-3,5-dicaroxlates as potential dual acting angiotensin II inhibitors and calcium channel blockers. J. Indian Chem. Soc., 2010, 7(1), 171-179.
[http://dx.doi.org/10.1007/BF03245875]
[18]
Sidhom, P.A.; El-Bastawissy, E.; Salama, A.A.; El-Moselhy, T.F. Revisiting ageless antiques; synthesis, biological evaluation, docking simulation and mechanistic insights of 1,4-Dihydropyridines as anticancer agents. Bioorg. Chem., 2021, 114, 105054.
[http://dx.doi.org/10.1016/j.bioorg.2021.105054] [PMID: 34146919]
[19]
Ghoorbannejad, S.; Akbari, D.; Nikoo, A. Synthesis and assessment of the cytotoxic effect of some of 1,4-dihydropyridine derivatives which contain azole moiety. J. Serb. Chem. Soc., 2021, 86(11), 1013-1021.
[http://dx.doi.org/10.2298/JSC200818064G]
[20]
Periyasami, G.; Antonisamy, P.; Perumal, K.; Stalin, A.; Rahaman, M.; Alothman, A.A. A competent synthesis and efficient anti-inflammatory responses of isatinimino acridinedione moiety via suppression of in vivo NF-B, COX-2 and iNOS signaling. Bioorg. Chem., 2019, 90, 103047.
[http://dx.doi.org/10.1016/j.bioorg.2019.103047] [PMID: 31234130]
[21]
Abd-Allah, O.A.; Abdelhamid, A.A.; Mohamed, S.K. Synthesis and anti-inflammatory study of novel n-substituted hydro-acridine-1, 8-diones and bis-hexahydroacridine-1,8-dione derivatives. Med. Chem., 2015, 2, 2161.
[22]
Madar, J.M.; Samundeeswari, S.; Holiyachi, M.; Naik, N.S.; Pawar, V.; Gudimani, P.; Shastri, L.A.; Kumbar, V.M.; Sunagar, V.A. Solvent-free synthesis, characterization, and in vitro biological activity study of xanthenediones and acridinediones. Russ. J. Bioorganic Chem., 2021, 47(2), 535-542.
[http://dx.doi.org/10.1134/S1068162021020163]
[23]
Mallu, L.; Thirumalai, D.; Asharani, I.V. One-pot cascade synthesis and in vitro evaluation of anti-inflammatory and antidiabetic activities of S-methylphenyl substituted acridine-1,8-diones. Chem. Biol. Drug Des., 2017, 90(4), 520-526.
[http://dx.doi.org/10.1111/cbdd.12973] [PMID: 28294548]
[24]
Bhosle, M.R.; Nipte, D.; Gaikwad, J.; Shaikh, M.A.; Bondle, G.M.; Sangshetti, J.N. A rapid and green method for expedient multicomponent synthesis of N-substituted decahydroacridine-1,8-diones as potential antimicrobial agents. Res. Chem. Intermed., 2018, 44(11), 7047-7064.
[http://dx.doi.org/10.1007/s11164-018-3541-7]
[25]
Venkatapathy, K.; Magesh, C.J.; Lavanya, G.; Perumal, P.T.; Prema, S. Design, synthesis, molecular docking, and spectral studies of new class of carbazolyl polyhydroquinoline derivatives as promising antibacterial agents with noncytotoxicity towards human mononuclear cells from peripheral blood. J. Heterocycl. Chem., 2020, 57(4), 1936-1955.
[http://dx.doi.org/10.1002/jhet.3921]
[26]
Ladani, N.K.; Mungra, D.C.; Patel, M.P.; Patel, R.G. Microwave assisted synthesis of novel Hantzsch 1,4-dihydropyridines, acridine-1,8-diones and polyhydroquinolines bearing the tetrazolo[1,5-a]quinoline moiety and their antimicrobial activity assess. Chin. Chem. Lett., 2011, 22(12), 1407-1410.
[http://dx.doi.org/10.1016/j.cclet.2011.07.009]
[27]
Bhosle, M.R.; Kharote, S.A.; Bondle, G.M.; Sangshetti, J.N.; Ansari, S.A.; Alkahtani, H.M. Organocatalyzed domino synthesis of new thiazole based decahydroacridine‐1,8‐diones and dihydropyrido[2,3‐d:6,5‐d′]‐dipyrimidines in water as antimicrobial agents. Chem. Biodivers., 2020, 17(2), e1900577.
[http://dx.doi.org/10.1002/cbdv.201900577] [PMID: 31823465]
[28]
Kaya, M. Yıldır r, Y.; Çelik, G.Y. Synthesis and antimicrobial activities of novel bisacridine-1,8-dione derivatives. Med. Chem. Res., 2011, 20(3), 293-299.
[http://dx.doi.org/10.1007/s00044-010-9321-6]
[29]
Bhosle, M.R.; Shaikh, M.A.; Nipate, D.; Khillare, L.D.; Bondle, G.M.; Sangshetti, J.N. ChCl:2ZnCl2 catalyzed efficient synthesis of new sulfonyl decahydroacridine-1,8-diones via one-pot multicomponent reactions to discover potent antimicrobial agents. Polycycl. Aromat. Compd., 2020, 40(4), 1175-1186.
[http://dx.doi.org/10.1080/10406638.2018.1533875]
[30]
Fincan, G.S.Ö.; Gündüz, M.G. Vural, İM.; Şimşek, R.; Sarıoğlu, Y.; Şafak, C. Investigation of myorelaxant activity of 9-aryl-3,4,6,7-tetrahydroacridine-1,8-(2H,5H,9H,10H)-diones in isolated rabbit gastric fundus. Med. Chem. Res., 2012, 21(8), 1817-1824.
[http://dx.doi.org/10.1007/s00044-011-9698-x]
[31]
Gündüz, M.G. İşli, F.; El-Khouly, A.; Yıldırım, Ş.; Öztürk Fincan, G.S.; Şimşek, R.; Şafak, C.; Sarıoğlu, Y.; Öztürk Yıldırım, S.; Butcher, R.J. Microwave-assisted synthesis and myorelaxant activity of 9-indolyl-1,8-acridinedione derivatives. Eur. J. Med. Chem., 2014, 75, 258-266.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.059] [PMID: 24534541]
[32]
Zhang, K.; Yang, C.L.; Lv, S.M.; Li, Y.; Yin, S.F. Synthesis and calming activity of 9-(4-β-D-allopyranosyloxyphenyl)-decahydroacridine-1,8-dione derivatives. Chem. Nat. Compd., 2011, 47(4), 507-510.
[http://dx.doi.org/10.1007/s10600-011-9982-5]
[33]
Alvala, M.; Bhatnagar, S.; Ravi, A.; Jeankumar, V.U.; Manjashetty, T.H.; Yogeeswari, P.; Sriram, D. Novel acridinedione derivatives: Design, synthesis, SIRT1 enzyme and tumor cell growth inhibition studies. Bioorg. Med. Chem. Lett., 2012, 22(9), 3256-3260.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.030] [PMID: 22464458]
[34]
El-Husseiny, W.M.; El-Sayed, M.A.A.; El-Azab, A.S.; AlSaif, N.A.; Alanazi, M.M.; Abdel-Aziz, A.A.M. Synthesis, antitumor activity, and molecular docking study of 2-cyclopentyloxyanisole derivatives: mechanistic study of enzyme inhibition. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 744-758.
[http://dx.doi.org/10.1080/14756366.2020.1740695] [PMID: 32183576]
[35]
Jamalian, A.; Miri, R.; Firuzi, O.; Amini, M.; Moosavi-Movahedi, A.A.; Shafieea, A. Synthesis, cytotoxicity and calcium antagonist activity of novel imidazolyl derivatives of 1,8-acridinediones. J. Indian Chem. Soc., 2011, 8(4), 983-991.
[http://dx.doi.org/10.1007/BF03246554]
[36]
Wang, F.M.; Zhou, L.; Li, J.F.; Bao, D.; Chen, L.Z. Synthesis, structure, and biological activities of 10-substituted 3,3,6,6-tetramethyl-9-aryl-3,4, 6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione derivatives. J. Heterocycl. Chem., 2017, 54(6), 3120-3125.
[http://dx.doi.org/10.1002/jhet.2925]
[37]
Xiong, H.; Han, J.; Wang, J.; Lu, W.; Wang, C.; Chen, Y.; Fulin, Lian Zhang, N.; Liu, Y.C.; Zhang, C.; Ding, H.; Jiang, H.; Lu, W.; Luo, C.; Zhou, B. Discovery of 1,8-acridinedione derivatives as novel GCN5 inhibitors via high throughput screening. Eur. J. Med. Chem., 2018, 151, 740-751.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.005] [PMID: 29665527]
[38]
Naouri, A.; Djemoui, A.; Ouahrani, M.R.; Lahrech, M.B.; Lemouari, N.; Rocha, D.H.A.; Albuquerque, H.; Mendes, R.F.; Almeida Paz, F.A.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S. Multicomponent and 1,3-dipolar cycloaddition synthesis of triazole- and isoxazole-acridinedione/xanthenedione heterocyclic hybrids: Cytotoxic effects on human cancer cells. J. Mol. Struct., 2020, 1217, 128325.
[http://dx.doi.org/10.1016/j.molstruc.2020.128325]
[39]
Wang, F.M.; Bao, D.; Hu, B.X.; Zhou, Z.Y.; Huang, D.D.; Chen, L.Z.; Dan, Y.Y. Synthesis of 10-substituted 3,6-Diphenyl-9-aryl-3,4,6,7,9,10-hexahydro-acridine-1,8(2H,5H)-dione derivatives and biological activities. J. Heterocycl. Chem., 2017, 54(1), 784-788.
[http://dx.doi.org/10.1002/jhet.2547]
[40]
Moallem, S.A.; Dehghani, N.; Mehri, S.; Shahsavand, Sh.; Alibolandi, M.; Hadizadeh, F. Synthesis of novel 1,8-acridinediones derivatives: Investigation of MDR reversibility on breast cancer cell lines T47D and tamoxifen-resistant T47D. Res. Pharm. Sci., 2015, 10(3), 214-221.
[PMID: 26600848]
[41]
Praveenkumar, E.; Gurrapu, N.; Kolluri, P.K. Shivaraj; Subhashini, N.J.P.; Dokala, A. Selective CDK4/6 inhibition of novel 1,2,3-triazole tethered acridinedione derivatives induces G1/S cell cycle transition arrest via Rb phosphorylation blockade in breast cancer models. Bioorg. Chem., 2021, 116, 105377.
[http://dx.doi.org/10.1016/j.bioorg.2021.105377] [PMID: 34670329]
[42]
Ulus, R. Esirden, İ. Aday, B.; Turgut, G.Ç.; Şen, A.; Kaya, M. Synthesis of novel acridine-sulfonamide hybrid compounds as acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Med. Chem. Res., 2018, 27(2), 634-641.
[http://dx.doi.org/10.1007/s00044-017-2088-2]
[43]
Singh, H.; Singh, A.; Gupta, M.K.; Sharma, S.; Bedi, P.M.S. Microwave-assisted SiO2-H2SO4-catalyzed synthesis of 3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-9,10-diphenylacridine-1,8-dione derivatives as cholesterol esterase inhibitors. Indian J. Pharm. Sci., 2017, 79(5), 801-812.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000294]
[44]
Yeşildağ İ. Ulus, R.; Başar, E.; Aslan, M.; Kaya, M.; Bülbül, M. Facile, highly efficient, and clean one-pot synthesis of acridine sulfonamide derivatives at room temperature and their inhibition of human carbonic anhydrase isoenzymes. Monatsh. Chem., 2014, 145(6), 1027-1034.
[http://dx.doi.org/10.1007/s00706-013-1145-x]
[45]
Kaya, M.; Basar, E.; Çakir, E.; Tunca, E.; Bülbül, M. Synthesis and characterization of novel dioxoacridine sulfonamide derivatives as new carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2012, 27(4), 509-514.
[http://dx.doi.org/10.3109/14756366.2011.599029] [PMID: 21846203]
[46]
Ulus, R. Yeşildağ İ. Tanç, M.; Bülbül, M.; Kaya, M.; Supuran, C.T. Synthesis of novel acridine and bis acridine sulfonamides with effective inhibitory activity against the cytosolic carbonic anhydrase isoforms II and VII. Bioorg. Med. Chem., 2013, 21(18), 5799-5805.
[http://dx.doi.org/10.1016/j.bmc.2013.07.014] [PMID: 23910989]
[47]
Raju, R.; Rajasekar, S.; Raghunathan, R.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R. Regioselective synthesis and antioxidant activity of a novel class of mono and C-symmetric bis-1,2,3-triazole and acridinedione grafted macromolecules. J. Saudi Chem. Soc., 2020, 24(12), 934-941.
[http://dx.doi.org/10.1016/j.jscs.2020.10.001]
[48]
Bhardwaj, V.K.; Singh, R.; Das, P.; Purohit, R. Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Comput. Biol. Med., 2021, 128, 104117.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104117] [PMID: 33217661]
[49]
Magalhaes, L.G.; Marques, F.B.; da Fonseca, M.B.; Rogério, K.R.; Graebin, C.S.; Andricopulo, A.D. Discovery of a series of acridinones as mechanism-based tubulin assembly inhibitors with anticancer activity. PLoS One, 2016, 11(8), e0160842.
[http://dx.doi.org/10.1371/journal.pone.0160842] [PMID: 27508497]
[50]
Zheng, L.; Yin, X.J.; Yang, C.L.; Li, Y.; Yin, S.F. Synthesis and sedative-hypnotic activity of helicid derivatives containing a 1,4-dihydropyridine moiety. Chem. Nat. Compd., 2011, 47(2), 170-175.
[http://dx.doi.org/10.1007/s10600-011-9873-9]
[51]
Murugesan, A.; Gengan, M. R.; G Moodley, K.; Gericke, G. Microwave-assisted: Boron nitride nanomaterials based sulfonic acid catalyst for the synthesis of biologically active ethylpiperazinyl-quinolinyl fused acridine derivatives. Adv. Mater. Lett., 2017, 8(7), 773-782.
[http://dx.doi.org/10.5185/amlett.2017.1495]
[52]
Murugesan, A.; Gengan, R.M.; Krishnan, A. Sulfonic acid functionalized boron nitride nano materials as a microwave-assisted efficient and highly biologically active one-pot synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives. Mater. Chem. Phys., 2017, 188, 154-167.
[http://dx.doi.org/10.1016/j.matchemphys.2016.12.039]
[53]
Shaheen, M.A.; El-Emam, A.A.; El-Gohary, N.S. Design, synthesis and biological evaluation of new series of hexahydroquinoline and fused quinoline derivatives as potent inhibitors of wild-type EGFR and mutant EGFR (L858R and T790M). Bioorg. Chem., 2020, 105, 104274.
[http://dx.doi.org/10.1016/j.bioorg.2020.104274] [PMID: 33339080]
[54]
Oskuie, E.F.; Azizi, S.; Ghasemi, Z.; Pirouzmand, M.; Kojanag, B.N.; Soleymani, J. Zn/MCM-41-catalyzed unsymmetrical Hantzsch reaction and the evaluation of optical properties and anti-cancer activities of the polyhydroquinoline products. Monatsh. Chem., 2020, 151(2), 243-249.
[http://dx.doi.org/10.1007/s00706-020-02549-x]
[55]
Ranjbar, S.; Khonkarn, R.; Moreno, A.; Baubichon-Cortay, H.; Miri, R.; Khoshneviszadeh, M.; Saso, L.; Edraki, N.; Falson, P.; Firuzi, O. 5-Oxo-hexahydroquinoline derivatives as modulators of P-gp, MRP1 and BCRP transporters to overcome multidrug resistance in cancer cells. Toxicol. Appl. Pharmacol., 2019, 362, 136-149.
[http://dx.doi.org/10.1016/j.taap.2018.10.025] [PMID: 30391378]
[56]
Shahraki, O.; Edraki, N.; Khoshneviszadeh, M.; Zargari, F.; Ranjbar, S.; Saso, L.; Firuzi, O.; Miri, R. Novel 5-oxo-hexahydroquinoline derivatives: design, synthesis, in vitro P-glycoprotein-mediated multidrug resistance reversal profile and molecular dynamics simulation study. Drug Des. Devel. Ther., 2017, 11, 407-418.
[http://dx.doi.org/10.2147/DDDT.S119995] [PMID: 28243063]
[57]
Mokhtar, M.; Alghamdi, K.S.; Ahmed, N.S.; Bakhotmah, D.; Saleh, T.S. Design and green synthesis of novel quinolinone derivatives of potential anti-breast cancer activity against MCF-7 cell line targeting multi-receptor tyrosine kinases. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1453-1470.
[http://dx.doi.org/10.1080/14756366.2021.1944126] [PMID: 34210212]
[58]
Ranjbar, S.; Khoshneviszadeh, M.; Tavakkoli, M.; Miri, R.; Edraki, N.; Firuzi, O. 5-Oxo-hexahydroquinoline and 5-oxo-tetrahydrocyclopenta-pyridine derivatives as promising antiproliferative agents with potential apoptosis-inducing capacity. Mol. Divers., 2022, 26(3), 1481-1500.
[http://dx.doi.org/10.1007/s11030-021-10281-9] [PMID: 34671894]
[59]
Venkatesan, K.; Satyanarayana, V.S.V.; Sivakumar, A. Synthesis and biological evaluation of novel phenothiazine derivatives as potential antitumor agents. Polycycl. Aromat. Compd., 2022, 43(1), 850-859.
[http://dx.doi.org/10.1080/10406638.2021.2021254]
[60]
Khoshneviszadeh, M.; Zahedi, M.; Asgari, Q.; Badakhshan, F.; Sakhteman, A.; Ranjbar, S. Anti-Toxoplasma gondii activity of 5-oxo-hexahydroquinoline derivatives: synthesis, in vitro and in vivo evaluations, and molecular docking analysis. Res. Pharm. Sci., 2020, 15(4), 367-380.
[http://dx.doi.org/10.4103/1735-5362.293515] [PMID: 33312215]
[61]
Baydar, E. Gündüz, M.G.; Krishna, V.S.; Şimşek, R.; Sriram, D.; Yıldırım, S.Ö.; Butcher, R.J.; Şafak, C. Synthesis, crystal structure and antimycobacterial activities of 4-indolyl-1,4-dihydropyridine derivatives possessing various ester groups. Res. Chem. Intermed., 2017, 43(12), 7471-7489.
[http://dx.doi.org/10.1007/s11164-017-3087-0]
[62]
Mohamed Abdelmoniem, A.; Abdelshafy Abdelhamid, I.; Ahmed Soliman Ghozlan, S.; Ali Ramadan, M. Synthesis and antimicrobial evaluations of novel spiro cyclic 2-oxindole derivatives of n-(1h-pyrazol-5-yl) hexahydroquinoline derivatives. Heterocycles, 2016, 92(6), 1075-1084.
[http://dx.doi.org/10.3987/COM-16-13451]
[63]
Machado, G. H. A.; Trento, M. V. C.; Pinelli, J. J.; Piccoli, R. H.; Thomasi, S. S.; Marcussi, S. Synthesis of the polyhydroquinoline derivative 4-(2-chloro-phenyl)-2,7,7-Trimethyl5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylic acid ethyl ester: antimicrobial and enzyme modulator. 2021.
[64]
Bisenieks, E.; Vigante, B.; Petrovska, R.; Turovska, B.; Muhamadejev, R.; Soloduns, V.; Velena, A.; Pajuste, K.; Saso, L.; Klovins, J.; Duburs, G.; Mandrika, I. The specificity and broad multitarget properties of ligands for the free fatty acid receptors FFA3/GPR41 and FFA2/GPR43 and the related hydroxycarboxylic acid receptor HCA2/GPR109A. Pharmaceuticals (Basel), 2021, 14(10), 987.
[http://dx.doi.org/10.3390/ph14100987] [PMID: 34681211]
[65]
Mishnev, A.; Bisenieks, E.; Mandrika, I.; Petrovska, R.; Kalme, Z.; Bruvere, I.; Duburs, G. Crystal structure and metabolic activity of 4-(thien-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylic acid ethoxycarbonylphenylmethylester. Acta Crystallogr. E Crystallogr. Commun., 2018, 74(11), 1577-1579.
[http://dx.doi.org/10.1107/S2056989018014251] [PMID: 30443384]
[66]
Kagne, R.; Niwadange, S.; Kalalawe, V.; Khansole, G.; Munde, D. Synthesis of bioactive 1,4‐dhps using sulfated tin oxide as an efficient solid superacid catalyst. Macromol. Symp., 2021, 400(1), 2100056.
[http://dx.doi.org/10.1002/masy.202100056]
[67]
Mokhtar, M.; Saleh, T.S.; Narasimharao, K.; Al-Mutairi, E. New green perspective to dihydropyridines synthesis utilizing modified heteropoly acid catalysts. Catal. Today, 2022, 397-399, 484-496.
[http://dx.doi.org/10.1016/j.cattod.2021.07.006]
[68]
Alponti, L.H.R.; Picinini, M.; Urquieta-Gonzalez, E.A.; Corrêa, A.G. USY-zeolite catalyzed synthesis of 1,4-dihydropyridines under microwave irradiation: structure and recycling of the catalyst. J. Mol. Struct., 2021, 1227, 129430.
[http://dx.doi.org/10.1016/j.molstruc.2020.129430]
[69]
More, K.A.; Gandhare, N.V.; Ali, P.S.; Pathan, N.B.; Al-Mousa, K.M. An expeditious one pot green synthesis of novel bioactive 1, 4-dihydropyridine derivatives at ambient temperature and molecular modelling. Curr. Res. Green Sustainable Chem., 2021, 4, 100108.
[http://dx.doi.org/10.1016/j.crgsc.2021.100108]
[70]
Bakhtiarian, M.; Khodaei, M.M. Sonochemical synthesis of 1,4-dihydropyridines using a bio-derived magnetic nanocomposite based on the pectin modified with the di-sulfonic acids under mild conditions. Mater. Today Commun., 2021, 29, 102791.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102791]
[71]
Ghosh, A.; Kavitha, C.S.; Keri, R.S. Fe3O4@cysteine nanocomposite: An efficient and reusable catalyst for the facile, green, one-pot synthesis of 1,4-dihydropyridine via Hantzsch reaction. Chem. Data Collect., 2021, 33, 100688.
[http://dx.doi.org/10.1016/j.cdc.2021.100688]
[72]
Ghamari Kargar, P.; Noorian, M.; Chamani, E.; Bagherzade, G.; Kiani, Z. Synthesis, characterization and cytotoxicity evaluation of a novel magnetic nanocomposite with iron oxide deposited on cellulose nanofibers with nickel (Fe3O4@NFC@ONSM-Ni). RSC Advances, 2021, 11(28), 17413-17430.
[http://dx.doi.org/10.1039/D1RA01256H] [PMID: 35479678]
[73]
Kamalzare, P.; Mirza, B.; Soleimani-Amiri, S. Chitosan magnetic nanocomposite: a magnetically reusable nanocatalyst for green synthesis of Hantzsch 1,4-dihydropyridines under solvent-free conditions. J. Nanostructure Chem., 2021, 11(2), 229-243.
[http://dx.doi.org/10.1007/s40097-020-00361-x]
[74]
Khodamorady, M.; Sohrabnezhad, S.; Bahrami, K. Efficient one-pot synthetic methods for the preparation of 3,4-dihydropyrimidinones and 1,4-dihydropyridine derivatives using BNPs@SiO2(CH2)3NHSO3H as a ligand and metal free acidic heterogeneous nano-catalyst. Polyhedron, 2020, 178, 114340.
[http://dx.doi.org/10.1016/j.poly.2019.114340]
[75]
Kumar, P.; Kadyan, K.; Duhan, M.; Sindhu, J.; Hussain, K.; Lal, S. Silica-supported ceric ammonium nitrate (CAN): A simple, mild and solid-supported reagent for quickest oxidative aromatization of Hantzsch 1,4-dihydropyridines. Chem. Pap., 2019, 73(5), 1153-1162.
[http://dx.doi.org/10.1007/s11696-018-0666-5]
[76]
Rezaei, N.; Ranjbar, P.R. The efficient synthesis of Hantzsch 1,4-dihydropyridines via metal-free oxidative C-C coupling by HBr and DMSO. Tetrahedron Lett., 2018, 59(46), 4102-4106.
[http://dx.doi.org/10.1016/j.tetlet.2018.10.010]
[77]
Asseri, S.; Tan, S.H.; Mohamad, W.; Poh, S.C.; Chia, P.W.; Kan, S-Y.; Chuah, T.S. MgCl2 as efficient and inexpensive catalyst for the synthesis of 1,4-dihydropyridine derivatives. Malays. J. Anal. Sci., 2017, 21(1), 13-19.
[http://dx.doi.org/10.17576/mjas-2017-2101-02]
[78]
Rekunge, D.S.; Khatri, C.K.; Chaturbhuj, G.U. Sulfated polyborate: An efficient and reusable catalyst for one pot synthesis of Hantzsch 1,4-dihydropyridines derivatives using ammonium carbonate under solvent free conditions. Tetrahedron Lett., 2017, 58(12), 1240-1244.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.038]
[79]
Zhang, D.; Chen, X.; Guo, X.; Zhang, Y.; Hou, Y.; Zhao, T.; Gu, Q. An efficient solvent-free synthesis of isoxazolyl-1,4-dihydropyridines on solid support SiO2 under microwave irradiation. Monatsh. Chem., 2016, 147(9), 1605-1614.
[http://dx.doi.org/10.1007/s00706-016-1657-2]
[80]
Sandjo, L.P.; Kuete, V.; Nana, F.; Kirsch, G.; Efferth, T. Synthesis and cytotoxicity of 1,4-dihydropyridines and an unexpected 1,3-oxazin-6-one. Helv. Chim. Acta, 2016, 99(4), 310-314.
[http://dx.doi.org/10.1002/hlca.201500265]
[81]
Roknaddini, M.; Sheikhhosseiny, E. Synthesis of 1, 4-dihydropyridines (DHP) catalyzed by Trichloroisocyanuric Acid (TCCA) in aqueous media. Sci. Iran., 2016, 23(6), 2756-2761.
[82]
Priede, E.; Zicmanis, A. One-pot three-component synthesis of Hantzsch 1,4-dihydropyridines promoted by dimethyl phosphate ionic liquids. Helv. Chim. Acta, 2015, 98(8), 1095-1103.
[http://dx.doi.org/10.1002/hlca.201500009]
[83]
He, J.Y.; Jia, H.Z.; Yao, Q.G.; Liu, S.J.; Yue, H.K.; Yu, H.W.; Hu, R.S. Ultrasound-mediated synthesis of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates catalyzed by 1-carboxymethyl-3-methylimidazolium tetrafluoroborate under solvent free condition. Ultrason. Sonochem., 2015, 22, 144-148.
[http://dx.doi.org/10.1016/j.ultsonch.2014.05.026] [PMID: 24974005]
[84]
Ghosh, P.P.; Paul, S.; Das, A.R. Light induced synthesis of symmetrical and unsymmetrical dihydropyridines in ethyl lactate–water under tunable conditions. Tetrahedron Lett., 2013, 54(2), 138-142.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.106]
[85]
Ghosh, P.P.; Mukherjee, P.; Das, A.R. Triton-X-100 catalyzed synthesis of 1,4-dihydropyridines and their aromatization to pyridines and a new one pot synthesis of pyridines using visible light in aqueous media. RSC Advances, 2013, 3(22), 8220-8226.
[http://dx.doi.org/10.1039/c3ra40706c]
[86]
Affeldt, R.F.; Benvenutti, E.V.; Russowsky, D. A new In–SiO2 composite catalyst in the solvent-free multicomponent synthesis of Ca2+ channel blockers nifedipine and nemadipine B. New J. Chem., 2012, 36(7), 1502-1511.
[http://dx.doi.org/10.1039/c2nj40060j]
[87]
Das, B.; Srilatha, M.; Veeranjaneyulu, B.; Shashi Kanth, B. Molybdenum- and tungsten-based coordination polymers as catalysts for an efficient and rapid synthesis of hexahydro-5-oxoquinoline-3-carboxylates and 1,4-dihydropyridine-3,5-dicarboxylates. Helv. Chim. Acta, 2011, 94(5), 885-891.
[http://dx.doi.org/10.1002/hlca.201000354]
[88]
Pajuste, K.; Plotniece, A.; Kore, K.; Intenberga, L.; Cekavicus, B.; Kaldre, D.; Duburs, G.; Sobolev, A. Use of pyridinium ionic liquids as catalysts for the synthesis of 3,5-bis(dodecyloxycarbonyl)-1,4-dihydropyridine derivative. Cent. Eur. J. Chem., 2011, 9(1), 143-148.
[89]
Panunzio, M.; Xia, Z.; Long, S.; Petroli, A.; Qin, W. The use of magnesium nitride for the synthesis of enantiomerically pure 1,4-dihydropyridines via the hantzsch reaction. Synthesis, 2011, 2011(7), 1071-1078.
[http://dx.doi.org/10.1055/s-0030-1258462]
[90]
Farhadi, A.; Hamoule, T.; Takassi, M.A.; Arizavipour, T. Catalytic synthesis of 1,4-dihydropyridine derivatives using hexagonal mesoporous silicate (HMS). Izv. Him., 2015, 47(1), 101-104.
[91]
Safari, J.; Zarnegar, Z.; Sadeghi, M.; Azizi, F. Chitosan-SO3H: An efficient and biodegradable catalyst for the green syntheses of 1,4-dihydropyridines. Curr. Org. Chem., 2016, 20(27), 2926-2932.
[http://dx.doi.org/10.2174/1385272820666160805112208]
[92]
Velu, R.; Ramakrishnan, V.T.; Ramamurthy, P. Colorimetric and fluorometric chemosensors for selective signaling toward Ca2+ and Mg2+ by aza-crown ether acridinedione-functionalized gold nanoparticles. Tetrahedron Lett., 2010, 51(33), 4331-4335.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.041]
[93]
Iqbal, N.; Ali, S.A.; Munir, I.; Khan, S.; Ayub, K.; al-Rashida, M.; Islam, M.; Shafiq, Z.; Ludwig, R.; Hameed, A. Acridinedione as selective flouride ion chemosensor: A detailed spectroscopic and quantum mechanical investigation. RSC Advances, 2018, 8(4), 1993-2003.
[http://dx.doi.org/10.1039/C7RA11974G] [PMID: 35542621]
[94]
Marjani, A.P.; Khalafy, J.; Mahmoodi, S. A simple one-pot synthesis of new 9-aroyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H)-acridinediones. Arkivoc, 2016, 2016(3), 262-270.
[http://dx.doi.org/10.3998/ark.5550190.p009.445]
[95]
To, Q.H.; Lee, Y.R.; Kim, S.H. Efficient one-pot synthesis of acridinediones by indium (III) triflate-catalyzed reactions of β-enaminones, aldehydes, and cyclic 1,3-dicarbonyls. Bull. Korean Chem. Soc., 2012, 33(4), 1170-1176.
[http://dx.doi.org/10.5012/bkcs.2012.33.4.1170]
[96]
Martinez Gomez, S.M.; Alzate Sanchez, D.M.; Rodríguez-Córdoba, W.; Sierra, C.A.; Ochoa-Puentes, C. Competitive one-pot reactions: Simultaneous synthesis of decahydroacridine-1,8-diones and 1,8-dioxo-octahydroxanthenes and photophysical characterization. Synth. Commun., 2014, 44(5), 648-659.
[http://dx.doi.org/10.1080/00397911.2013.831903]
[97]
Suresh Babu, N.; Sughanya, V.; Dhandapani, A.; Kalaivanan, R. Crystal structure, Hirshfeld surface and frontier molecular orbital analysis of 10-benzyl-9-(3-ethoxy-4-hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2 H, 5 H)-dione. Acta Crystallogr. E Crystallogr. Commun., 2020, 76(4), 585-588.
[http://dx.doi.org/10.1107/S2056989020004065] [PMID: 32280509]
[98]
Mohammadi, H.; Shaterian, H.R. Ferric (III) complex supported on superparamagnetic Fe3O4@SiO2 as a reusable Lewis acid catalyst: A new highly efficient protocol for the synthesis of acridinedione and spiroquinazolin-4(3H)-one derivatives. Res. Chem. Intermed., 2020, 46(1), 179-195.
[http://dx.doi.org/10.1007/s11164-019-03942-w]
[99]
Tiwari, K.N.; Uttam, M.R.; Kumari, P.; Vatsa, P.; Prabhakaran, S.M. Efficient synthesis of acridinediones in aqueous media. Synth. Commun., 2017, 47(10), 1013-1019.
[http://dx.doi.org/10.1080/00397911.2017.1304556]
[100]
Ashokkumar, P.; Ramakrishnan, V.T.; Ramamurthy, P. Fluorescence spectroscopic evidence for hydrogen bonding and deprotonation equilibrium between fluoride and a thiourea derivative. Chemistry, 2010, 16(44), 13271-13277.
[http://dx.doi.org/10.1002/chem.201000837] [PMID: 20922717]
[101]
Vijay Kumar, P.S.; Suresh, L.; Vinodkumar, T.; Chandramouli, G.V.P. Eu 2 O 3 modified CeO 2 nanoparticles as a heterogeneous catalyst for an efficient green multicomponent synthesis of novel phenyldiazenyl-acridinedione-carboxylic acid derivatives in aqueous medium. RSC Advances, 2016, 6(94), 91133-91140.
[http://dx.doi.org/10.1039/C6RA17990H]
[102]
Navarro, C.A.; Sierra, C.A.; Ochoa-Puentes, C. Evaluation of sodium acetate trihydrate–urea DES as a benign reaction media for the Biginelli reaction. Unexpected synthesis of methylenebis(3-hydroxy-5,5-dimethylcyclohex-2-enones), hexahydroxanthene-1,8-diones and hexahydroacridine-1,8-diones. RSC Advances, 2016, 6(70), 65355-65365.
[http://dx.doi.org/10.1039/C6RA13848A]
[103]
Kilbas, B.; Ergen, S.; Cakici, D. Highly efficient and reusable Pd/AlO(OH) catalyzed synthesis of acridinedione derivatives. Curr. Organocatal., 2019, 6(3), 257-265.
[http://dx.doi.org/10.2174/2213337206666190701130253]
[104]
Eyvazzadeh-Keihan, R.; Bahrami, N.; Taheri-Ledari, R.; Maleki, A. Highly facilitated synthesis of phenyl(tetramethyl)acridinedione pharmaceuticals by a magnetized nanoscale catalytic system, constructed of GO, Fe3O4 and creatine. Diamond Rel. Mater., 2020, 102, 107661.
[http://dx.doi.org/10.1016/j.diamond.2019.107661]
[105]
Ashokkumar, P.; Ramakrishnan, V.T.; Ramamurthy, P. Head-to-tail intermolecular hydrogen bonding of OH and NH groups with fluoride. ChemPhysChem, 2011, 12(2), 389-396.
[http://dx.doi.org/10.1002/cphc.201000463] [PMID: 21254318]
[106]
Aday, B.; Pamuk, H.; Kaya, M.; Sen, F. Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol., 2016, 16(6), 6498-6504.
[http://dx.doi.org/10.1166/jnn.2016.12432] [PMID: 27427743]
[107]
Ren, Y.; Yang, B.; Liao, X. Merging supramolecular catalysis and aminocatalysis: amino-appended β-cyclodextrins (ACDs) as efficient and recyclable supramolecular catalysts for the synthesis of tetraketones. RSC Adv., 2016, 6(26), 22034-22042.
[http://dx.doi.org/10.1039/C6RA01002D]
[108]
Tehfe, M.A.; Lalevée, J.; Morlet-Savary, F.; Blanchard, N.; Fries, C.; Graff, B.; Allonas, X.; Louërat, F.; Fouassier, J.P. Near UV–visible light induced cationic photopolymerization reactions: A three component photoinitiating system based on acridinedione/silane/iodonium salt. Eur. Polym. J., 2010, 46(11), 2138-2144.
[http://dx.doi.org/10.1016/j.eurpolymj.2010.09.014]
[109]
Mahesh, P.; Guruswamy, K.; Diwakar, B.S.; Devi, B.R.; Murthy, Y.L.N.; Kollu, P.; Pammi, S.V.N. Magnetically separable recyclable nano-ferrite catalyst for the synthesis of acridinediones and their derivatives under solvent-free conditions. Chem. Lett., 2015, 44(10), 1386-1388.
[http://dx.doi.org/10.1246/cl.150503]
[110]
Aday, B. Yıldız, Y.; Ulus, R.; Eris, S.; Sen, F.; Kaya, M. One-pot, efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide. New J. Chem., 2016, 40(1), 748-754.
[http://dx.doi.org/10.1039/C5NJ02098K]
[111]
Işık, A.; Aday, B.; Ulus, R.; Kaya, M. One-pot, facile, highly efficient, and green synthesis of acridinedione derivatives using vitamin B1. Synth. Commun., 2015, 45(24), 2823-2831.
[http://dx.doi.org/10.1080/00397911.2015.1109127]
[112]
Mohamed, S.K.; Abdelhamidb, A.A.; Maharramovb, A.M.; Khalilovb, A.N.; Gurbanovb, A.V.; Allahverdiyevb, M.A. Synthesis of hydroacridines and 1, 8-dioxooctahydroxanthenes using primary amino alcohols as reagent or catalysis via three-component condensation reactions. J. Chem. Pharm. Res., 2012, 4(2), 955-965.
[113]
Karimian, S.; Tajik, H. Synthesis of 1,8-dioxo-decahydroacridines using pyridinium hydrogen sulfate ionic liquid as an green, efficient and reusable catalyst. Lett. Org. Chem., 2016, 13(3), 163-170.
[http://dx.doi.org/10.2174/1570178613666160104232735]
[114]
Safaei, H.R.; Safaei, M.; Shekouhy, M. Sulfuric acid-modified poly(vinylpyrrolidone) ((PVP-SO3H)HSO4): A new highly efficient, bio-degradable and reusable polymeric catalyst for the synthesis of acridinedione derivatives. RSC Advances, 2015, 5(9), 6797-6806.
[http://dx.doi.org/10.1039/C4RA12219D]
[115]
Zarei, Z.; Akhlaghinia, B. ZnII doped and immobilized on functionalized magnetic hydrotalcite (Fe3O4/HT-SMTU-ZnII): A novel, green and magnetically recyclable bifunctional nanocatalyst for the one-pot multi-component synthesis of acridinediones under solvent-free conditions. New J. Chem., 2017, 41(24), 15485-15500.
[http://dx.doi.org/10.1039/C7NJ03281A]
[116]
Pugazhenthi, I.; Ghouse, S.M.; Nawaz Khan, F.R.; Jeong, E.D.; Bae, J.S.; Kim, J.P.; Chung, E.H.; Kumar, Y.S.; Dasaradhan, C. Water mediated reactions: TiO2 and ZnO nanoparticle catalyzed multi component domino reaction in the synthesis of tetrahydroacridinediones, acridindiones, xanthenones and xanthenes. RSC Advances, 2015, 5(22), 17257-17268.
[http://dx.doi.org/10.1039/C4RA13045F]
[117]
Okoro, C.O.; Ogunwale, M.A.; Siddiquee, T. Synthesis of some new fluorinated hexahydroquinoline and acridinedione derivatives in trifluoroethanol. Appl. Sci. (Basel), 2012, 2(2), 368-374.
[http://dx.doi.org/10.3390/app2020368]
[118]
Xia, J.J.; Zhang, K.H. Synthesis of N-substituted acridinediones and polyhydroquinoline derivatives in refluxing water. Molecules, 2012, 17(5), 5339-5345.
[http://dx.doi.org/10.3390/molecules17055339] [PMID: 22565483]
[119]
Xiao, P.; Dumur, F.; Tehfe, M.A.; Graff, B.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Difunctional acridinediones as photoinitiators of polymerization under UV and visible lights: Structural effects. Polymer (Guildf.), 2013, 54(14), 3458-3466.
[http://dx.doi.org/10.1016/j.polymer.2013.04.055]
[120]
Sureshbabu, N.; Sughanya, V. Crystal structure of 10-benzyl-9-(3,4-dimethoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8 (2H,5H)-dione. Acta Crystallogr. E Crystallogr. Commun., 2015, 71(9), o688-o689.
[http://dx.doi.org/10.1107/S2056989015014966] [PMID: 26396906]
[121]
Sharma, D. Bandna; Reddy, C.B.; Kumar, S.; Shil, A.K.; Guha, N.R.; Das, P. Microwave assisted solvent and catalyst free method for novel classes of β-enaminoester and acridinedione synthesis. RSC Advances, 2013, 3(26), 10335-10340.
[http://dx.doi.org/10.1039/c3ra23484c]
[122]
Alirezvani, Z.; Dekamin, M.G.; Valiey, E. New hydrogen-bond-enriched 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently functionalized MCM-41: An efficient and recoverable hybrid catalyst for convenient synthesis of acridinedione derivatives. ACS Omega, 2019, 4(24), 20618-20633.
[http://dx.doi.org/10.1021/acsomega.9b02755] [PMID: 31858048]
[123]
Ulus, R. Yıldız, Y.; Eriş S.; Aday, B.; Şen, F.; Kaya, M. Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. ChemistrySelect, 2016, 1(13), 3861-3865.
[http://dx.doi.org/10.1002/slct.201600719]
[124]
Jain, A.; Singh, S.; Tiwari, K.R.; Kumar, N.; Tomar, R. A Hantzsch condensation reaction/dihydropyridine cascade synthesis on zeolite substrate. Int. J. Mater. Sci., 2018, 13(3), 189-204.
[125]
Alam, M.M.; Mubarak, A.T.; Assiri, M.A.; Ahmed, S.M.; Fouda, A.M. A facile and efficient synthesis of 1,8-dioxodecahydroacridines derivatives catalyzed by cobalt–alanine metal complex under aqueous ethanol media. BMC Chem., 2019, 13(1), 40.
[http://dx.doi.org/10.1186/s13065-019-0545-3] [PMID: 31384788]
[126]
Pesyan, N.N.; Akhteh, N.; Batmani, H. Anıl, B.; Şahin, E. A facile and catalyst-free synthesis of hexahydroacridine-1,8(2H,5H)-dione and octahydroacridin-10(1H)-yl)thiourea derivatives: Inter- and intramolecular aza-michael addition. Heterocycl. Commun., 2020, 26(1), 26-32.
[http://dx.doi.org/10.1515/hc-2020-0005]
[127]
Hasaninejad, A.; Yousefy, T.; Firoozi, S. Aluminium dodecyl sulfate trihydrate [Al(DS)3]. 3H2O: An efficient Lewis acid-surfactant-combined catalyst for synthesis of 1,8-dioxo-octahydroxanthens and 1,8-dioxo-decahydro-acridines. Iran. J. Sci. Technol. Trans. A Sci., 2015, 39(2), 129-140.
[128]
Tiwari, S.K.; Shivhare, K.N.; Patel, M.K.; Yadav, V.; Nazeef, M.; Siddiqui, I.R. A metal free, hantzsch synthesis for privileged scaffold 1,4-dihydropyridines: A glycerol promoted sustainable protocol. Polycycl. Aromat. Compd., 2022, 42(4), 1035-1047.
[http://dx.doi.org/10.1080/10406638.2020.1764988]
[129]
Faroughi Niya, H.; Fatahpour, M.; Hazeri, N. A one-pot multicomponent synthesis of pyrroloacridine-1(2H)-one and 1,8-dioxodecahydroacridine derivatives catalyzed by salicylic acid in polyethylene glycol. Polycycl. Aromat. Compd., 2020, 40(3), 774-783.
[http://dx.doi.org/10.1080/10406638.2018.1481115]
[130]
Magyar, Á.; Hell, Z. An efficient one-pot four-component synthesis of 9-aryl-hexahydroacridine-1,8-dione derivatives in the presence of a molecular sieves supported iron catalyst. Catal. Lett., 2019, 149(9), 2528-2534.
[http://dx.doi.org/10.1007/s10562-019-02845-0]
[131]
Mohammadi Ziarani, G.; Mousavi, S.; Lashgari, N.; Badiei, A.; Shakiba, M. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H) in the green one-pot synthesis of polyhydroacridine libraries. Iran. J. Chem. Chem. Eng., 2013, 32(4), 9-16.
[132]
Pavithra, D.; Ethiraj, K.R. Facile synthesis of xanthenesdiones and acridinediones through TEMPO/CuCl2 catalyzed aerobic oxidation of benzyl alcohols and cyclization with cyclohexane-1,3-dicarbonyl compounds. Polycycl. Aromat. Compd., 2022, 42(4), 1078-1090.
[http://dx.doi.org/10.1080/10406638.2020.1768411]
[133]
Borhade, A.V.; Uphade, B.K.; Gadhave, A.G. Efficient, solvent-free synthesis of acridinediones catalyzed by CdO nanoparticles. Res. Chem. Intermed., 2015, 41(3), 1447-1458.
[http://dx.doi.org/10.1007/s11164-013-1284-z]
[134]
Chavan, P.N.; Pansare, D.N.; Shelke, R.N. Eco‐friendly, ultrasound‐assisted, and facile synthesis of one‐pot multicomponent reaction of acridine‐1,8(2H,5H)‐diones in an aqueous solvent. J. Chin. Chem. Soc. (Taipei), 2019, 66(8), 822-828.
[http://dx.doi.org/10.1002/jccs.201800411]
[135]
Zhu, A.; Liu, R.; Du, C.; Li, L. Betainium-based ionic liquids catalyzed multicomponent Hantzsch reactions for the efficient synthesis of acridinediones. RSC Advances, 2017, 7(11), 6679-6684.
[http://dx.doi.org/10.1039/C6RA25709G]
[136]
Mansoor, S.S.; Aswin, K.; Logaiya, K.; Sudhan, S.P.N. Aqua-mediated synthesis of acridinediones with reusable silica-supported sulfuric acid as an efficient catalyst. J. Taibah Univ. Sci., 2014, 8(3), 265-275.
[http://dx.doi.org/10.1016/j.jtusci.2014.03.003]
[137]
Yü, S.J.; Wu, S.; Zhao, X.M.; Lü, C.W. Green and efficient synthesis of acridine-1,8-diones and hexahydroquinolines via a KH2PO4 catalyzed Hantzsch-type reaction in aqueous ethanol. Res. Chem. Intermed., 2017, 43(5), 3121-3130.
[http://dx.doi.org/10.1007/s11164-016-2814-2]
[138]
Mazloumi, M.; Shirini, F. Introduction of a new catalyst containing an ionic liquid bridge on nanoporous Na+- montmorillonite for the synthesis of hexahydroquinolines and 1,8-dioxo-decahydroacridines via Hantzsch condensation. J. Mol. Struct., 2020, 1217, 128326.
[http://dx.doi.org/10.1016/j.molstruc.2020.128326]
[139]
Mousavi, S.R.; Rashidi Nodeh, H.; Foroumadi, A. Magnetically recoverable graphene-based nanoparticles for the one-pot synthesis of acridine derivatives under solvent-free conditions. Polycycl. Aromat. Compd., 2021, 41(4), 746-760.
[http://dx.doi.org/10.1080/10406638.2019.1616305]
[140]
Rostamizadeh, S.; Amirahmadi, A.; Shadjou, N.; Amani, A.M. MCM-41-SO3H as a nanoreactor for the one-pot, solvent-free synthesis of 1,8-dioxo-9-aryl decahydroacridines. J. Heterocycl. Chem., 2012, 49(1), 111-115.
[http://dx.doi.org/10.1002/jhet.692]
[141]
Rezaei, R.; Khalifeh, R.; Rajabzadeh, M.; Dorosty, L.; Doroodmand, M.M. Melamine-formaldehyde resin supported H+-catalyzed three-component synthesis of 1,8-dioxo-decahydroacridine derivatives in water and under solventfree conditions. hc, 2013, 19(1), 57-63.
[http://dx.doi.org/10.1515/hc-2012-0053]
[142]
Nasresfahani, Z.; Kassaee, M.Z. Mesoporous silica nanoparticles in an efficient, solvent-free, green synthesis of acridinediones. Catal. Commun., 2015, 60, 100-104.
[http://dx.doi.org/10.1016/j.catcom.2014.11.015]
[143]
Zeynizadeh, B.; Gilanizadeh, M. Microwave-promoted three-component Hantzsch synthesis of acridinediones under green conditions. Curr. Chem. Lett., 2020, 9(2), 71-78.
[http://dx.doi.org/10.5267/j.ccl.2019.8.001]
[144]
Sunkara, J.R.; Rallabhandi, M.; Prasangi, S.; Palla, M. One-pot facile synthesis of acridinediones and their derivatives by nano ferrite as a catalyst. Chem. Sci. Trans., 2016, 5(4), 1001-1007.
[145]
Banothu, J.; Bavantula, R.; Crooks, P.A. Poly(4-vinylpyridinium)hydrogen sulfate catalyzed an efficient and ecofriendly protocol for the one-pot multicomponent synthesis of 1,8-acridinediones in aqueous medium. J. Chem., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/850254]
[146]
Baghbanian, S.M.; Khanzad, G.; Vahdat, S.M.; Tashakkorian, H. p-Sulfonic acid calix[4]arene as an efficient and reusable catalyst for the synthesis of acridinediones and xanthenes. Res. Chem. Intermed., 2015, 41(12), 9951-9966.
[http://dx.doi.org/10.1007/s11164-015-2001-x]
[147]
Salama, S.K.; Darweesh, A.F.; Abdelhamid, I.A.; Elwahy, A.H.M. p-TSA catalyzed one-pot synthesis of some novel bis(hexahydroacridine-1,8-diones) and bis(tetrahydrodipyrazolo[3,4-b:4′3′-e]pyridines) derivatives. Polycycl. Aromat. Compd., 2021, 41(7), 1392-1405.
[http://dx.doi.org/10.1080/10406638.2019.1678184]
[148]
Javid, A.; Khojastehnezhad, A.; Heravi, M.; Bamoharram, F.F. Silica-supported preyssler nanoparticles catalyzed simple and efficient one-pot synthesis of 1,8-dioxodecahydroacridines in aqueous media. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2012, 42(1), 14-17.
[http://dx.doi.org/10.1080/15533174.2011.609221]
[149]
Zhang, Y.; Zhou, Z. Solvent-free one-pot synthesis of 1,8-dioxo-decahydroacridines by a [Et3NH,HSO4] catalyzed multicomponent reaction. Polycycl. Aromat. Compd., 2018, 38(4), 329-337.
[http://dx.doi.org/10.1080/10406638.2016.1207687]
[150]
Khodja, I.A.; Ghalem, W.; Dehimat, Z.I.; Boulcina, R.; Carboni, B.; Debache, A. Solvent-free synthesis of dihydropyridines and acridinediones via a salicylic acid–catalyzed hantzsch multicomponent reaction. Synth. Commun., 2014, 44(7), 959-967.
[http://dx.doi.org/10.1080/00397911.2013.838791]
[151]
Lavanya, G.; Venkatapathy, K.; Magesh, C.J.; Perumal, P.T.; Sathishkumar, R.; Amudha, P. The first recyclable, nanocrystalline cds thin film mediated eco‐benign synthesis of hantzsch 1,4dihyropyridines, 1,8‐dioxodeca-hydroacridine and polyhydroquinolines derivatives. Appl. Organomet. Chem., 2019, 33(9), e5026.
[http://dx.doi.org/10.1002/aoc.5026]
[152]
Jain, A.; Singh, S.; Tiwari, K.R.; Kumar, N.; Tomar, R. Synthesis and characterization of zeolite linde type L and its application in organic synthesis. Int. J. Curr. Res., 2018, 10(4), 68354-68360.
[153]
Balaskar, R.S.; Suralkar, R.S.; Manake, A.P. Starch sulphuric acid an effective catalyst for the synthesis of tetrahydroacridinone derivatives. J. Biol. Chem. Chron., 2019, 5(3), 95-99.
[154]
Imenshahidi, M.; Hadizadeh, F.; Firoozeh-Moghadam, A.; Seifi, M.; Shirinbak, A.; Gharedaghi, M.B. Synthesis and vasorelaxant effect of 9-aryl-1,8-acridinediones aspotassium channel openers in isolated rat aorta. Iran. J. Pharm. Res., 2012, 11(1), 229-233.
[PMID: 24250444]
[155]
Vahdat, S.M.; Khaksar, S.; Akbari, M.; Baghery, S. Sulfonated organic heteropolyacid salts as a highly efficient and green solid catalysts for the synthesis of 1,8-dioxo-decahydroacridine derivatives in water. Arab. J. Chem., 2019, 12(7), 1515-1521.
[http://dx.doi.org/10.1016/j.arabjc.2014.10.026]
[156]
Gilanizadeh, M.; Zeynizadeh, B. Synthesis of Acridinediones and Biscoumarins Using Fe3O4@SiO2@Ni–Zn–Fe LDH as an Efficient Magnetically Recoverable Mesoporous Catalyst. Polycycl. Aromat. Compd., 2021, 41(1), 15-32.
[http://dx.doi.org/10.1080/10406638.2019.1567560]
[157]
Rajanarendar, E.; Reddy, M.N.; Shaik, F.P. An efficient one-pot three component synthesis of new isoxazolyl polyhydroacridine-1,8-diones in an ionic liquid medium. Indian J. Chem. - B Org. Med. Chem., 2011, 50(2), 245-252.
[158]
Sudha, S.; Pasha, M.A. A facile synthesis of N-H- and N-substituted acridine-1,8-diones under sonic condition. ScientificWorldJournal, 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/930787] [PMID: 24501587]
[159]
Tang, Z-Q.; Chen, Y.; Liu, C-N.; Cai, K-Y.; Tu, S-J. A green procedure for the synthesis of 1,8-dioxodecahydroacridine derivatives under microwave irradiation in aqueous media without catalyst. J. Heterocycl. Chem., 2010, 47(2), 363-367.
[160]
Mahajabeen, P.; Chadha, A. A novel green route for the synthesis of N-phenylacetamides, benzimidazoles and acridinediones using Candida parapsilosis ATCC 7330. RSC Advances, 2013, 3(44), 21972-21980.
[http://dx.doi.org/10.1039/c3ra44058c]
[161]
Moeinpour, F.; Khojastehnezhad, A. An efficient one-pot synthesis of 1,8-dioxodecahydroacridines using silica-supported polyphosphoric acid (PPA-SiO2) under solvent-free conditions. E-J. Chem., 2012, 9(2), 504-509.
[http://dx.doi.org/10.1155/2012/214231]
[162]
Vahdat, S.M.; Akbari, M. An efficient one-pot synthesis of 1, 8-dioxo-decahydroacridines by ionic liquid with multi-SO3H groups under ambient temperature in water. Orient. J. Chem., 2011, 27(4), 1573.
[163]
Seyed, M.V.; Saeed, B. An efficient one-pot synthesis of 1, 8-dioxo-decahydroacridines by indium (III) chloride under ambient temperature in ethanol. Heterocycl. Lett., 2012, 2(1), 43-51.
[164]
Brahmachari, G.; Begam, S.; Nurjamal, K. Bismuth nitrate catalyzed one-pot multicomponent synthesis of a novel series of diversely substituted 1,8-dioxodecahydroacridines at room temperature. ChemistrySelect, 2017, 2(11), 3311-3316.
[http://dx.doi.org/10.1002/slct.201700265]
[165]
Sarkar, R.; Mukhopadhyay, C. Cross-dehydrogenative regioselective Csp3–Csp2 coupling of enamino-ketones followed by rearrangement: an amazing formation route to acridine-1,8-dione derivatives. Org. Biomol. Chem., 2016, 14(9), 2706-2715.
[http://dx.doi.org/10.1039/C5OB02655E] [PMID: 26837413]
[166]
Singh, S.K.; Singh, K.N. Eco-friendly and facile one-pot multicomponent synthesis of acridinediones in water under microwave. J. Heterocycl. Chem., 2011, 48(1), 69-73.
[http://dx.doi.org/10.1002/jhet.508]
[167]
Kumar, D.; Sandhu, J.S. Efficient, solvent-free, microwave-enhanced condensation of 5,5-dimethyl-1,3-cyclohexanedione with aldehydes and imines using LiBr as inexpensive, mild catalyst. Synth. Commun., 2010, 40(4), 510-517.
[http://dx.doi.org/10.1080/00397910902987792]
[168]
Abdelhamid, A.A.; Mohamed, S.K.; Maharramov, A.M.; Khalilov, A.N.; Allahverdiev, M.A. Facile and efficient synthesis of acridinediones from primary amino alcohols via three-component condensation reactions assisted by microwave irradiation. J. Saudi Chem. Soc., 2014, 18(5), 474-478.
[http://dx.doi.org/10.1016/j.jscs.2011.10.005]
[169]
Shirole, G.D.; Bhalekar, S.; Shelke, S.N. N-butylpyridinium heptachlorodialuminate: A convenient catalyst for the synthesis of acridine 1,8-diones derivatives by microwave assisted hantzsch reaction. Indian J. Chem. - B Org. Med. Chem., 2018, 57B(11), 1430-1435.
[170]
Vaid, R.; Gupta, M.; Gupta, V.K. Immobilization of organofunctionalized silica (SiMPTMS) with biphenyl-2,2′-dioic acid and investigation of its catalytic property for one-pot tandem synthesis of acridine-1,8-dione derivatives. J. Indian Chem. Soc., 2017, 14(10), 2199-2210.
[http://dx.doi.org/10.1007/s13738-017-1156-3]
[171]
Kumar, P.S.V.; Suresh, L.; Bhargavi, G.; Basavoju, S.; Chandramouli, G.V.P. Ionic liquid-promoted green protocol for the synthesis of novel naphthalimide-based acridine-1,8-dione derivatives via a multicomponent approach. ACS Sustain. Chem.& Eng., 2015, 3(11), 2944-2950.
[http://dx.doi.org/10.1021/acssuschemeng.5b00900]
[172]
Kaur, B.; Kumar, H. Methyltrioctylammonium chloride catalysed sonochemical synthesis of acridine diones. J. Chem. Sci., 2013, 125(5), 989-992.
[http://dx.doi.org/10.1007/s12039-013-0431-9]
[173]
Poursattar Marjani, A.; Khalafy, J.; Chitan, M.; Mahmoodi, S. Microwave-assisted synthesis of acridine-1,8(2H,5H)-diones via a one-pot, three component reaction. Iran. J. Chem. Chem. Eng., 2017, 36(2), 1-6.
[174]
Nasr-Esfahani, M.; Montazerozohori, M.; Abdizadeh, T. Nanorod vanadatesulfuric acid (VSA NRs)-catalyzed green synthesis of hexahydroacridine-1,8-diones in solvent-free conditions. C. R. Chim., 2015, 18(5), 547-553.
[http://dx.doi.org/10.1016/j.crci.2014.07.010]
[175]
Patil, D.; Chandam, D.; Mulik, A.; Patil, P.; Jagadale, S.; Kant, R.; Gupta, V.; Deshmukh, M. Novel brønsted acidic ionic liquid ([CMIM, CF3COO]) prompted multicomponent hantzsch reaction for the eco-friendly synthesis of acridinediones: an efficient and recyclable catalyst. Catal. Lett., 2014, 144(5), 949-958.
[http://dx.doi.org/10.1007/s10562-014-1202-z]
[176]
Kidwai, M.; Bhatnagar, D. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate. Chem. Pap., 2010, 64(6), 825-828.
[http://dx.doi.org/10.2478/s11696-010-0070-2]
[177]
Mokhtary, M.; Mirfarjood Langroudi, S.A. Polyvinylpolypyrrolidone-supported boron trifluoride: a mild and efficient catalyst for the synthesis of 1,8-dioxooctahydroxanthenes and 1,8-dioxodecahydroacridines. Monatsh. Chem., 2014, 145(9), 1489-1494.
[http://dx.doi.org/10.1007/s00706-014-1206-9]
[178]
Ramesh, K.B.; Pasha, M.A. Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1,8-diones using SiO2–I as a new heterogeneous catalyst and their anticancer activity. Bioorg. Med. Chem. Lett., 2014, 24(16), 3907-3913.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.047] [PMID: 25042338]
[179]
Jagadishbabu, N.; Shivashankar, K. One pot synthesis of acridine analogues from 1,2-diols as key reagents. RSC Advances, 2015, 5(115), 95240-95246.
[http://dx.doi.org/10.1039/C5RA19595K]
[180]
Senthilvelan, A.; Muthian, S.; Yepez, G.; Kore, A.R. Synthesis of acridine-1,8-dione substituted (E)-5-(3-aminoallyl)-uridine-5′-triphosphate: A new potential fluorogenic molecular probe. Tetrahedron Lett., 2016, 57(18), 2006-2008.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.089]
[181]
Nalini, V.; Girija, R. Biological studies of 9-aryl substituted acridinedione derivatives by hantzsh condensation. Int. J. Curr. Res., 2013, 5(10), 3076-3081.
[182]
Fekri, L.Z.; Nikpassan, M. Synthesis, experimental and dft studies on the crystal structure, FTIR, 1H NMR and 13C NMR spectra of derivatives of dihydropyridines. J. Chil. Chem. Soc., 2012, 57(4), 1415-1421.
[http://dx.doi.org/10.4067/S0717-97072012000400017]
[183]
Kour, D.; Patil, D.R.; Deshmukh, M.B.; Gupta, V.K.; Kant, R. Synthesis and crystal structure of 3,3,6,6-Me4-9-(3,4-Me2C6H3)-3,4,6,7,9,10-H6-acridine-1,8-dione. Eur. Chem. Bull., 2014, 3(2), 173-175.
[184]
Yaragorla, S.; Singh, G.; Pareek, A. Alkaline earth metal catalyzed, one-pot, multi-component approach for the synthesis of dihydropyridine, acridine and xanthene derivatives in water. Indian J. Chem. B Org. Med. Chem., 2015, 54B(11), 1321-1326.
[185]
Kardooni, R.; Kiasat, A.R.; Motamedi, H. Designing of a novel dual-function silica-iron oxide hybrid based nanocomposite, Fe3O4@SiO2PEG/NH2, and its application as an eco-catalyst for the solvent-free synthesis of polyhydroacridines and polyhydroquinolines. J. Taiwan Inst. Chem. Eng., 2017, 81, 373-382.
[http://dx.doi.org/10.1016/j.jtice.2017.10.013]
[186]
Otokesh, S.; Koukabi, N.; Kolvari, E.; Amoozadeh, A.; Malmir, M.; Azhar, S. A solvent-free synthesis of polyhydroquinolines via Hantzsch multicomponent condensation catalyzed by nanomagnetic-supported sulfonic acid. S. Afr. J. Chem., 2015, 68, 15-20.
[http://dx.doi.org/10.17159/0379-4350/2015/v68a3]
[187]
Khazaei, A.; Sarmasti, N.; Yousefi Seyf, J. Anchoring high density sulfonic acid based ionic liquid on the magnetic nano-magnetite (Fe3O4), application to the synthesis of hexahydroquinoline derivatives. J. Mol. Liq., 2018, 262, 484-494.
[http://dx.doi.org/10.1016/j.molliq.2018.04.125]
[188]
Nikoorazm, M.; Erfani, Z. Core–shell nanostructure (Fe3O4@MCM-41@Cu-P2C) as a highly efficient and recoverable nanocatalyst for the synthesis of polyhydroquinoline, 5-substituted 1H-tetrazoles and sulfides. Chem. Phys. Lett., 2019, 737, 136784.
[http://dx.doi.org/10.1016/j.cplett.2019.136784]
[189]
Nasr-Esfahani, M.; Hoseini, S.J.; Montazerozohori, M.; Mehrabi, R.; Nasrabadi, H. Magnetic Fe3O4 nanoparticles: Efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions. J. Mol. Catal. Chem., 2014, 382, 99-105.
[http://dx.doi.org/10.1016/j.molcata.2013.11.010]
[190]
Shiri, L.; Heidari, L.; Kazemi, M. Magnetic Fe3O4 nanoparticles supported imine/Thiophene-nickel (II) complex: A new and highly active heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3-dihydroquinazoline-4(1H)-ones. Appl. Organomet. Chem., 2018, 32(1), e3943.
[http://dx.doi.org/10.1002/aoc.3943]
[191]
Tamoradi, T.; Ghorbani-Choghamarani, A.; Ghadermazi, M.; Veisi, H. SBA-15@Glycine-M (M=Ni and Cu): Two green, novel and efficient catalysts for the one-pot synthesis of 5-substituted tetrazole and polyhydroquinoline derivatives. Solid State Sci., 2019, 91, 96-107.
[http://dx.doi.org/10.1016/j.solidstatesciences.2019.03.020]
[192]
Shiri, L.; Narimani, H.; Kazemi, M. Sulfamic acid immobilized on amino‐functionalized magnetic nanoparticles: A new and active magnetically recoverable catalyst for the synthesis of N‐heterocyclic compounds. Appl. Organomet. Chem., 2018, 32(2), e3999.
[http://dx.doi.org/10.1002/aoc.3999]
[193]
Azarifar, D.; Asadpoor, R.; Badalkhani, O.; Jaymand, M.; Tavakoli, E.; Bazouleh, M. Sulfamic‐acid‐functionalized Fe3‐xTixO4 nanoparticles as novel magnetic catalyst for the synthesis of hexahydroquinolines under solvent‐free condition. ChemistrySelect, 2018, 3(48), 13722-13728.
[http://dx.doi.org/10.1002/slct.201802505]
[194]
Bodaghifard, M.A. Bis sulfamic acid functionalized magnetic nanoparticles as a retrievable nanocatalyst for the green synthesis of polyhydroquinolines and tetrahydrobenzopyrans. J. Nanostruct., 2019, 9(1), 29-40.
[195]
Liao, H.Y.; Kang, L.Q.; Zhang, S.S.; Yan, J.H. Green synthesis of polyhydroquinolines catalyzed by silica‐supported ionic liquid Si–[SbSipim, PF6]. J. Chin. Chem. Soc. (Taipei), 2019, 66(11), 1518-1522.http://dx.doi.org/10.1002/jccs.201800301
[196]
Momeni, T.; Heravi, M.M.; Hosseinnejad, T.; Mirzaei, M.; Zadsirjan, V. H5BW12O40-Catalyzed syntheses of 1,4-dihydropyridines and polyhydroquinolines via Hantzsch reaction: Joint experimental and computational studies. J. Mol. Struct., 2020, 1199, 127011.
[http://dx.doi.org/10.1016/j.molstruc.2019.127011]
[197]
Ghorbani-Choghamarani, A.; Moradi, P.; Tahmasbi, B. Nickel(II) immobilized on dithizone–boehmite nanoparticles: As a highly efficient and recyclable nanocatalyst for the synthesis of polyhydroquinolines and sulfoxidation reaction. J. Indian Chem. Soc., 2019, 16(3), 511-521.
[http://dx.doi.org/10.1007/s13738-018-1526-5]
[198]
Maleki, B.; Alinezhad, H.; Atharifar, H.; Tayebee, R.; Mofrad, A.V. One-Pot synthesis of polyhydroquinolines catalyzed by ZnCl2 supported on nano Fe3O4@SiO2. Org. Prep. Proced. Int., 2019, 51(3), 301-309.
[http://dx.doi.org/10.1080/00304948.2019.1600132]
[199]
Raouf, H.; Allameh, S.; Beiramabadi, S.A.; Morsali, A. An efficient and facile synthesis of polyhydroquinolines through hantzsch reaction catalyzed by a novel and reusable Cu (II) complex. J. Biochem. Technol., 2018, 9(1), 61-64.
[200]
Rostamnia, S.; Alamgholiloo, H.; Jafari, M. Ethylene diamine post‐synthesis modification on open metal site Cr‐MOF to access efficient bifunctional catalyst for the Hantzsch condensation reaction. Appl. Organomet. Chem., 2018, 32(8), e4370.
[http://dx.doi.org/10.1002/aoc.4370]
[201]
Saghanezhad, S.J.; Sayahi, M.H.; Imanifar, I.; Mombeni, M.; Deris Hamood, S. Caffeine-H3PO4: A novel acidic catalyst for various one-pot multicomponent reactions. Res. Chem. Intermed., 2017, 43(11), 6521-6536.
[http://dx.doi.org/10.1007/s11164-017-3002-8]
[202]
Elhamifar, D.; Ardeshirfard, H. Phenyl and ionic liquid based bifunctional periodic mesoporous organosilica supported copper: An efficient nanocatalyst for clean production of polyhydroquinolines. J. Colloid Interface Sci., 2017, 505, 1177-1184.
[http://dx.doi.org/10.1016/j.jcis.2017.07.010] [PMID: 28715862]
[203]
Elhamifar, D.; Khanmohammadi, H.; Elhamifar, D. Nickel containing ionic liquid based ordered nanoporous organosilica: a powerful and recoverable catalyst for synthesis of polyhydroquinolines. RSC Advances, 2017, 7(86), 54789-54796.
[http://dx.doi.org/10.1039/C7RA10758G]
[204]
Sakram, B.; Sonyanaik, B.; Ashok, K.; Rambabu, S. Polyhydroquinolines: 1-sulfopyridinium chloride catalyzed an efficient one-pot multicomponent synthesis via Hantzsch condensation under solvent-free conditions. Res. Chem. Intermed., 2016, 42(10), 7651-7658.
[http://dx.doi.org/10.1007/s11164-016-2559-y]
[205]
Yaghoubi, A.; Dekamin, M.G. Periodic mesoporous organosilica functionalized sulfonic acids (PMO-ICS-SO3H) as an efficient and recyclable nanocatalyst for the unsymmetric Hantzsch reaction. In:20th International Electronic Conference on Synthetic Organic Chemistry (ECSOC), 2016.
[206]
Zhu, G.; Li, Y. Urease: a highly efficient biocatalyst for synthesis of polyhydroquinolines and polyhydroacridines from the ammonia formed in situ. Mol. Divers., 2021, 25(4), 2149-2159.
[http://dx.doi.org/10.1007/s11030-020-10109-y] [PMID: 32507980]
[207]
Aute, D.; Kshirsagar, A.; Uphade, B.; Gadhave, A. Aluminized polyborate-catalysed green and efficient synthesis of polyhydroquinolines under solvent-free conditions. Res. Chem. Intermed., 2020, 46(7), 3491-3508.
[http://dx.doi.org/10.1007/s11164-020-04158-z]
[208]
Ashraf, M.A.; Liu, Z.; Peng, W.X.; Gao, C. New copper complex on Fe3O4 nanoparticles as a highly efficient reusable nanocatalyst for synthesis of polyhydroquinolines in water. Catal. Lett., 2020, 150(3), 683-701.
[http://dx.doi.org/10.1007/s10562-019-02986-2]
[209]
Choudhury, P.; Ghosh, P.; Basu, B. Amine-functionalized graphene oxide nanosheets (AFGONs): An efficient bifunctional catalyst for selective formation of 1,4-dihydropyridines, acridinediones and polyhydroquinolines. Mol. Divers., 2020, 24(1), 283-294.
[http://dx.doi.org/10.1007/s11030-019-09949-0] [PMID: 30955149]
[210]
Ghanbarian, M.; Beheshtiha, S.Y.S.; Heravi, M.M.; Mirzaei, M.; Zadsirjan, V.; Lotfian, N. A Nano-sized Nd–Ag@polyoxometalate catalyst for catalyzing the multicomponent Hantzsch and Biginelli reactions. J. Cluster Sci., 2020, 31(6), 1295-1306.
[http://dx.doi.org/10.1007/s10876-019-01739-w]
[211]
Maleki, A.; Eskandarpour, V.; Rahimi, J.; Hamidi, N. Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydr. Polym., 2019, 208, 251-260.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.069] [PMID: 30658798]
[212]
Heidari, L.; Shiri, L. CoFe2O4@SiO2‐CPTES‐Guanidine‐Cu(II): A novel and reusable nanocatalyst for the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones and polyhydroquinolines and oxidation of sulfides. Appl. Organomet. Chem., 2019, 33(3), e4636.
[http://dx.doi.org/10.1002/aoc.4636]
[213]
Ghorbani-Choghamarani, A.; Heidarnezhad, Z.; Tahmasbi, B.; Azadi, G. TEDETA@BNPs as a basic and metal free nanocatalyst for Knoevenagel condensation and Hantzsch reaction. J. Indian Chem. Soc., 2018, 15(10), 2281-2293.
[http://dx.doi.org/10.1007/s13738-018-1417-9]
[214]
Maleki, A.; Hamidi, N.; Maleki, S.; Rahimi, J. Surface modified SPIONs-Cr(VI) ions-immobilized organic-inorganic hybrid as a magnetically recyclable nanocatalyst for rapid synthesis of polyhydroquinolines under solvent-free conditions at room temperature. Appl. Organomet. Chem., 2018, 32(4), e4245.
[http://dx.doi.org/10.1002/aoc.4245]
[215]
Dekamin, M.G.; Karimi, Z.; Latifidoost, Z.; Ilkhanizadeh, S.; Daemi, H.; Naimi-Jamal, M.R.; Barikani, M. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines. Int. J. Biol. Macromol., 2018, 108, 1273-1280.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.050] [PMID: 29137997]
[216]
Tamoradi, T.; Ghadermazi, M.; Ghorbani-Choghamarani, A. Ni(II)-Adenine complex coated Fe3O4 nanoparticles as high reusable nanocatalyst for the synthesis of polyhydroquinoline derivatives and oxidation reactions. Appl. Organomet. Chem., 2018, 32(1), e3974.
[http://dx.doi.org/10.1002/aoc.3974]
[217]
Yaghoubi, A.; Dekamin, M.G.; Karimi, B. Propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (PMO-ICS-PrSO3H): A highly efficient and recoverable nanoporous catalyst for the one-pot synthesis of substituted polyhydroquinolines. Catal. Lett., 2017, 147(10), 2656-2663.
[http://dx.doi.org/10.1007/s10562-017-2159-5]
[218]
Shiri, L.; Ghorbani-Choghamarani, A.; Kazemi, M. Synthesis and characterization of DETA/Cu(NO3)2 supported on magnetic nanoparticles: A highly active and recyclable catalyst for the solvent-free synthesis of polyhydroquinolines. Monatsh. Chem., 2017, 148(6), 1131-1139.
[http://dx.doi.org/10.1007/s00706-016-1906-4]
[219]
Davoodnia, A.; Nakhaei, A. Fast and solvent-free synthesis of polyhydroquinolines catalyzed by a keplerate type giant nanoporous isopolyoxomolybdate as a reusable catalyst. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46(7), 1073-1080.
[http://dx.doi.org/10.1080/15533174.2015.1004419]
[220]
Norouzi, M.; Ghorbani-Choghamarani, A.; Nikoorazm, M. Heterogeneous Cu(II)/L-His@Fe3O4 nanocatalyst: A novel, efficient and magnetically-recoverable catalyst for organic transformations in green solvents. RSC Advances, 2016, 6(95), 92387-92401.
[http://dx.doi.org/10.1039/C6RA19776K]
[221]
Yarie, M.; Zolfigol, M.A.; Bayat, Y.; Asgari, A.; Alonso, D.A.; Khoshnood, A. Novel magnetic nanoparticles with ionic liquid tags as a reusable catalyst in the synthesis of polyhydroquinolines. RSC Advances, 2016, 6(86), 82842-82853.
[http://dx.doi.org/10.1039/C6RA16459E]
[222]
Zarnegar, Z.; Safari, J.; Kafroudi, Z.M. Co3O4–CNT nanocomposites: a powerful, reusable, and stable catalyst for sonochemical synthesis of polyhydroquinolines. New J. Chem., 2015, 39(2), 1445-1451.
[http://dx.doi.org/10.1039/C4NJ01588F]
[223]
Abdollahi-Alibeik, M.; Rezaeipoor-Anari, A. MCM-41 functionalized with B-F bond: Preparation, characterization and catalytic application in the synthesis of polyhydroquinolines. Lett. Org. Chem., 2015, 12(9), 651-658.
[http://dx.doi.org/10.2174/1570178612666150724235806]
[224]
Zare, A.; Dashtizadeh, M.; Merajoddin, M. Melamine trisulfonic acid as a highly efficient catalyst for the synthesis of polyhydroquinolines under solvent-free conditions. Iran. Chem. Commun., 2015, 3, 208-217.
[225]
Li, B.L.; Zhong, A.G.; Ying, A.G. Novel SO3 H-functionalized ionic liquids - catalyzed facile and efficient synthesis of polyhydroquinoline derivatives via hantzsch condensation under ultrasound irradiation. J. Heterocycl. Chem., 2015, 52(2), 445-449.
[http://dx.doi.org/10.1002/jhet.2070]
[226]
Nasr-Esfahani, M.; Elhamifar, D.; Amadeh, T.; Karimi, B. Periodic mesoporous organosilica with ionic-liquid framework supported manganese: An efficient and recyclable nanocatalyst for the unsymmetric Hantzsch reaction. RSC Advances, 2015, 5(17), 13087-13094.
[http://dx.doi.org/10.1039/C4RA12673D]
[227]
Kidwai, M.; Chauhan, R.; Bhatnagar, D.; Singh, A.K.; Mishra, B.; Dey, S. Nafion-H®-catalyzed synthesis of polyhydroquinolines via the Hantzsch multicomponent reaction. Monatsh. Chem., 2012, 143(12), 1675-1680.
[http://dx.doi.org/10.1007/s00706-012-0742-4]
[228]
Saha, M.; Pal, A.K. Palladium(0) nanoparticles: an efficient catalyst for the one-pot synthesis of polyhydroquinolines. Tetrahedron Lett., 2011, 52(38), 4872-4877.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.031]
[229]
Katkar, S.S.; Mohite, P.H.; Gadekar, L.S.; Arbad, B.R.; Lande, M.K. ZnO-beta zeolite: As an effective and reusable heterogeneous catalyst for the one-pot synthesis of polyhydroquinolines. Green Chem. Lett. Rev., 2010, 3(4), 287-292.
[http://dx.doi.org/10.1080/17518253.2010.482065]
[230]
Katkar, S.S.; Arbad, B.R.; Lande, M.K. ZnO-beta zeolite catalyzed solvent-free synthesis of polyhydroquinoline derivatives under microwave irradiation. Arab. J. Sci. Eng., 2011, 36(1), 39-46.
[http://dx.doi.org/10.1007/s13369-010-0010-z]
[231]
Hong, M.; Cai, C.; Yi, W.B. Hafnium (IV) bis(perfluorooctane-sulfonyl)imide complex catalyzed synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction in fluorous medium. J. Fluor. Chem., 2010, 131(1), 111-114.
[http://dx.doi.org/10.1016/j.jfluchem.2009.10.009]
[232]
Purandhar, K.; Jyothi, V.; Reddy, P.P.; Chari, M.A.; Mukkanti, K. Aluminum phosphate [AlPO4(H)]: A mild and efficient recyclable catalyst for one-pot synthesis of polyhydroquinoline via the Hantzsch reaction under solvent-free conditions. J. Heterocycl. Chem., 2012, 49(1), 232-236.
[http://dx.doi.org/10.1002/jhet.793]
[233]
Tekale, S.U.; Pagore, V.P.; Kauthale, S.S.; Pawar, R.P. La2O3/TFE: An efficient system for room temperature synthesis of Hantzsch polyhydroquinolines. Chin. Chem. Lett., 2014, 25(8), 1149-1152.
[http://dx.doi.org/10.1016/j.cclet.2014.03.037]
[234]
Khaligh, N.G. One-pot multicomponent synthesis of unsymmetrical polyhydroquinoline derivatives with 1,1′-butylenebispyridinium hydrogen sulfate as an efficient, halogen-free and reusable Brönsted ionic liquid catalyst. Chin. J. Catal., 2014, 35(9), 1497-1503.
[http://dx.doi.org/10.1016/S1872-2067(14)60087-5]
[235]
Janardhan, B.; Rajitha, B.; Crooks, P.A. Poly(4-vinylpyridinium)hydrogen sulfate: An efficient heterogeneous catalyst for the one-pot synthesis of polyhydroquinolines via unsymmetrical Hantzsch reaction in aqueous medium. J. Saudi Chem. Soc., 2014, 18(5), 722-727.
[http://dx.doi.org/10.1016/j.jscs.2014.01.009]
[236]
Ahadi, N.; Mobinikhaledi, A.; Bodaghifard, M.A. One‐pot synthesis of 1,4‐dihydropyridines and N‐arylquinolines in the presence of copper complex stabilized on MnFe2O4(MFO) as a novel organic–inorganic hybrid material and magnetically retrievable catalyst. Appl. Organomet. Chem., 2020, 34(10), e5822.
[http://dx.doi.org/10.1002/aoc.5822]
[237]
Akbarpoor, T.; Khazaei, A.; Seyf, J.Y.; Sarmasti, N.; Gilan, M.M. One-pot synthesis of 2-amino-3-cyanopyridines and hexahydroquinolines using eggshell-based nano-magnetic solid acid catalyst via anomeric-based oxidation. Res. Chem. Intermed., 2020, 46(2), 1539-1554.
[http://dx.doi.org/10.1007/s11164-019-04049-y]
[238]
Kalhor, S.; Yarie, M.; Rezaeivala, M.; Zolfigol, M.A. Novel magnetic nanoparticles with morpholine tags as multirole catalyst for synthesis of hexahydroquinolines and 2-amino-4,6-diphenylnicotinonitriles through vinylogous anomeric-based oxidation. Res. Chem. Intermed., 2019, 45(6), 3453-3480.
[http://dx.doi.org/10.1007/s11164-019-03802-7]
[239]
Farrokhi, A.; Yavari, I.; Ghodrati, K. Fe3O4/SiO2/(CH2) 3N+ Me3Br3–core–shell nanoparticles: An efficient catalyst for the synthesis of functionalized 5-oxo-hexahydroquinolines. Iran. J. Catal., 2018, 8(1), 35-39.
[240]
Khazaei, A.; Tavasoli, M.; Jamshidi, V.; Ghalil, F.G.; Moosavi-Zare, A.R. Preparation and characterization of Cu (II) supported on poly(8-hydroxyquinoline-p-styrene sulphonate) and its application as catalyst for the synthesis of hexahydroquinolines. Appl. Organomet. Chem., 2018, 32(7), e4368.
[http://dx.doi.org/10.1002/aoc.4368]
[241]
Khazaei, A.; Mahmoudiani Gilan, M.; Sarmasti, N. Magnetic‐based picolinaldehyde–melamine copper complex for the one‐pot synthesis of hexahydroquinolines via Hantzsch four‐component reactions. Appl. Organomet. Chem., 2018, 32(3), e4151.
[http://dx.doi.org/10.1002/aoc.4151]
[242]
Pasinszki, T.; Krebsz, M.; Lajgut, G.G.; Kocsis, T.; Kótai, L.; Kauthale, S.; Tekale, S.; Pawar, R. Copper nanoparticles grafted on carbon microspheres as novel heterogeneous catalysts and their application for the reduction of nitrophenol and one-pot multicomponent synthesis of hexahydroquinolines. New J. Chem., 2018, 42(2), 1092-1098.
[http://dx.doi.org/10.1039/C7NJ03562D]
[243]
Khazaei, A.; Jafari-Ghalebabakhani, L.; Ghaderi, E.; Tavasoli, M.; Moosavi-Zare, A.R. Synthesis, characterization and application of nano-CoAl2O4 as an efficient catalyst in the preparation of hexahydroquinolines. Appl. Organomet. Chem., 2017, 31(12), e3815.
[http://dx.doi.org/10.1002/aoc.3815]
[244]
Moosavi-Zare, A.R.; Goudarziafshar, H.; Ghaffari, L. Nano-Mn-[4-nitrophenyl-salicylaldimine-methyl pyranopyrazole]Cl2 as a new nanostructured Schiff base complex and catalyst for the synthesis of hexahydroquinolines. Appl. Organomet. Chem., 2017, 31(12), e3845.
[http://dx.doi.org/10.1002/aoc.3845]
[245]
Sobhani, S.; Zarifi, F.; Skibsted, J. Ionic liquids grafted onto graphene oxide as a new multifunctional heterogeneous catalyst and its application in the one-pot multi-component synthesis of hexahydroquinolines. New J. Chem., 2017, 41(14), 6219-6225.
[http://dx.doi.org/10.1039/C7NJ00063D]
[246]
Yosefzadeh, M.; Mokhtary, M. Polyvinylpolypyrrolidone supported chlorosulfonic acid: An efficient catalyst for the one-pot synthesis of hexahydroquinolines. Iran. J. Catal., 2016, 6(2), 153-159.
[247]
Kakavand, R.; Azimi, S.C.; Jolodar, O.G.; Shirini, F.; Tajik, H. Morpholine stabilized on nano silica sulfuric acid: a novel reusable catalyst for the synthesis of triazoloquinazoline and polyhydroquinoline derivatives. J. Indian Chem. Soc., 2022, 19(7), 2929-2948.
[http://dx.doi.org/10.1007/s13738-022-02505-y]
[248]
Soleimani, M.; Khazaei, A.; Sarmasti, N.; Akbarpour, T. Synthesis of sulfonated melamine-functionalized Fe3O4@SiO2@Si–(CH2)3@melamine nanoparticles and its application in the synthesis of 4,4′-(aryl methylene)bis(3-methyl-1H-pyrazol-5-ol)s and hexahydroquinolines. J. Indian Chem. Soc., 2022, 19(5), 1849-1863.
[http://dx.doi.org/10.1007/s13738-021-02420-8]
[249]
Tajik, Z.; Ghafuri, H.; Ghanbari, N.; Hanifehnejad, P. Preparation And Characterization of g-C3N4 @ L-arginine as a highly - efficient and recyclable catalyst for the synthesis of 1, 4-dihydropyridine, 4H-chromene, and 2, 3-dihydro quinazoline derivatives. Research Square, 2021.
[http://dx.doi.org/10.21203/rs.3.rs-462994/v1]
[250]
Yarinia, R.; Shirini, F.; Langarudi, M.S.N.; Seyyedi, N. Introduction of a new nano sized ni-based salt for the acceleration of the synthesis of pyrano[2,3-d]pyrimidinone and 1,4-dihydropyridine derivatives. Polycycl. Aromat. Compd., 2021, 42(10), 1-15.
[http://dx.doi.org/10.1080/10406638.2021.1991393]
[251]
Ramish, S.M.; Ghorbani-Choghamarani, A.; Mohammadi, M. Microporous hierarchically Zn-MOF as an efficient catalyst for the Hantzsch synthesis of polyhydroquinolines. Sci. Rep., 2022, 12(1), 1479.
[http://dx.doi.org/10.1038/s41598-022-05411-8] [PMID: 35087116]
[252]
Lashkari, F.; Badri, R.; Tahanpesar, E. Immobilization of Mn(II) on Fe3O4@Schiff base as an efficient and recoverable magnetic nanocatalyst for the synthesis of hydroquinolines and Hantzsch reaction. React. Kinet. Mech. Catal., 2021, 134(1), 361-383.
[http://dx.doi.org/10.1007/s11144-021-02072-y]
[253]
Mohammadi, M.; Ghorbani-Choghamarani, A. Synthesis and characterization of novel hercynite@sulfuric acid and its catalytic applications in the synthesis of polyhydroquinolines and 2,3-dihydroquinazolin-4(1H)-ones. RSC Advances, 2022, 12(5), 2770-2787.
[http://dx.doi.org/10.1039/D1RA07381H] [PMID: 35425328]
[254]
Ghafuri, H.; Tajik, Z.; Ghanbari, N.; Hanifehnejad, P. Preparation and characterization of graphitic carbon nitride-supported l-arginine as a highly efficient and recyclable catalyst for the one-pot synthesis of condensation reactions. Sci. Rep., 2021, 11(1), 19792.
[http://dx.doi.org/10.1038/s41598-021-97360-x] [PMID: 34611176]
[255]
Farsi, R.; Mohammadi, M.K.; Saghanezhad, S.J. Sulfonamide-functionalized covalent organic framework (COF-SO3H): an efficient heterogeneous acidic catalyst for the one-pot preparation of polyhydroquinoline and 1,4-dihydropyridine derivatives. Res. Chem. Intermed., 2021, 47(3), 1161-1179.
[http://dx.doi.org/10.1007/s11164-020-04322-5]
[256]
Sam, M.; Dekamin, M.G.; Alirezvani, Z. Dendrons containing boric acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to silica-coated magnetite for the expeditious synthesis of Hantzsch esters. Sci. Rep., 2021, 11(1), 2399.
[http://dx.doi.org/10.1038/s41598-020-80884-z] [PMID: 33504833]
[257]
Roozifar, M.; Hazeri, N.; Faroughi Niya, H. Application of salicylic acid as an eco‐friendly and efficient catalyst for the synthesis of 2,4,6‐triaryl pyridine, 2‐amino‐3‐cyanopyridine, and polyhydroquinoline derivatives. J. Heterocycl. Chem., 2021, 58(5), 1117-1129.
[http://dx.doi.org/10.1002/jhet.4242]
[258]
Ghafuri, H.; Abbasi, B.; Ghanbari, N.; Rostami, Y.; Tajik, Z.; Akhgari, M. Benzene-1,3,5-tricarboxylic acid-functionalized cherry gum as a novel and recoverable nanocatalyst for efficient synthesis of 1,4-polyhydroquinoline derivatives. Chem. Proc., 2021, 8(1), 17.
[http://dx.doi.org/10.3390/ecsoc-25-11717]
[259]
Maleki, B.; Atharifar, H.; Reiser, O.; Sabbaghzadeh, R. Glutathione-coated magnetic nanoparticles for one-pot synthesis of 1,4-dihydropyridine derivatives. Polycycl. Aromat. Compd., 2021, 41(4), 721-734.
[http://dx.doi.org/10.1080/10406638.2019.1614639]
[260]
Askari, S.; Khodaei, M.M.; Jafarzadeh, M. Heterogenized phosphinic acid on UiO-66-NH2: A bifunctional catalyst for the synthesis of polyhydroquinolines. Catal. Lett., 2022, 152(5), 1517-1529.
[http://dx.doi.org/10.1007/s10562-021-03734-1]
[261]
Khodabakhshi, M.R.; Kiamehr, M.; Karimian, R. Efficient one-pot synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives using sulfanilic acid-functionalized boehmite nano-particles as an organic-inorganic hybrid catalyst. Polycycl. Aromat. Compd., 2022, 42(7), 4086-4100.
[http://dx.doi.org/10.1080/10406638.2021.1884100]
[262]
Sharma, S.; Singh, U.P.; Singh, A.P. Synthesis of MCM-41 supported cobalt (II) complex for the formation of polyhydroquinoline derivatives. Polyhedron, 2021, 199, 115102.
[http://dx.doi.org/10.1016/j.poly.2021.115102]
[263]
Bazdid-Vahdaty, N.; Mamaghani, M.; Khalili, B.; Tavakoli, F. Ag/CuO/MCM-48 as a potential catalyst for the synthesis of symmetrical and unsymmetrical polyhydroquinolines. J. Chil. Chem. Soc., 2021, 66(2), 5136-5141.
[http://dx.doi.org/10.4067/S0717-97072021000205136]
[264]
Nguyen, V.T.; Nguyen, H.T.; Tran, P.H. One-pot three-component synthesis of 1-amidoalkyl naphthols and polyhydroquinolines using a deep eutectic solvent: a green method and mechanistic insight. New J. Chem., 2021, 45(4), 2053-2059.
[http://dx.doi.org/10.1039/D0NJ05687A]
[265]
Behbahani, F.K.; Farahani, M. Iron(iii) phosphate-catalyzed synthesis of 7,10,11,12-tetrahydrobenzo[c]acridin-8(9H)-ones. Russ. Chem. Bull., 2015, 64(1), 151-153.
[http://dx.doi.org/10.1007/s11172-015-0835-4]
[266]
Poor Heravi, M.R.; Aghamohammadi, P. l-Proline-catalysed one-pot synthesis of tetrahydrobenzo[c]acridin-8(7H)-ones at room temperature. C. R. Chim., 2012, 15(5), 448-453.
[http://dx.doi.org/10.1016/j.crci.2011.12.001]
[267]
Zang, H.; Zhang, Y.; Zang, Y.; Cheng, B.W. An efficient ultrasound-promoted method for the one-pot synthesis of 7,10,11,12-tetrahydrobenzo[c]acridin-8(9H)-one derivatives. Ultrason. Sonochem., 2010, 17(3), 495-499.
[http://dx.doi.org/10.1016/j.ultsonch.2009.11.003] [PMID: 20006532]
[268]
Ghashang, M.; Mansoor, S.S.; Aswin, K. Succinimide-N-sulfonic acid: An efficient and recyclable catalyst for the one-pot synthesis of tetrahydrobenzo[c]acridine-8(7H)-one derivatives. J. Saudi Chem. Soc., 2017, 21, S44-S51.
[http://dx.doi.org/10.1016/j.jscs.2013.10.001]
[269]
Abdolmohammadi, S.; Mohammadnejad, M.; Shafaei, F. TiO2 nanoparticles as an efficient catalyst for the one-pot preparation of tetrahydrobenzo[c]acridines in aqueous media. Z. fur Naturforsch. B J. Chem., 2013, 68(4), 362-366.
[http://dx.doi.org/10.5560/znb.2013-2323]
[270]
Mohammadi Ziarani, G.; Mousavi, S.; Rahimifard, M.; Badiei, A. One-pot synthesis of benzo [c] acridine derivatives using SBA-Pr-SO3H as nano catalyst. J. Mex. Chem. Soc., 2014, 58(2), 168-172.
[http://dx.doi.org/10.29356/jmcs.v58i2.173]
[271]
Kumar, N.P.; Sharma, P.; Reddy, T.S.; Shankaraiah, N.; Bhargava, S.K.; Kamal, A. Microwave-assisted one-pot synthesis of new phenanthrene fused-tetrahydrodibenzo-acridinones as potential cytotoxic and apoptosis inducing agents. Eur. J. Med. Chem., 2018, 151, 173-185.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.069] [PMID: 29609122]
[272]
Ghorbani-Vaghei, R.; Malaekehpoor, S.M. One-pot facile synthesis of acridine derivatives under solvent-free condition. J. Indian Chem. Soc., 2010, 7(4), 957-964.
[http://dx.doi.org/10.1007/BF03246091]
[273]
Babaee, S.; Zolfigol, M.A.; Zarei, M.; Zamanian, J. 1,10‐phenanthroline‐based molten salt as a bifunctional sulfonic acid catalyst: application to the synthesis of N ‐heterocycle compounds via anomeric based oxidation. ChemistrySelect, 2018, 3(31), 8947-8954.
[http://dx.doi.org/10.1002/slct.201801476]
[274]
Heravi, M.M.; Alinejhad, H.; Derikvand, F.; Oskooie, H.A.; Baghernejad, B.; Bamoharram, F.F. NH2SO3H and H6P2W18O62•18H2O-catalyzed, three-component, one-pot synthesis of benzo[c]acridine derivatives. Synth. Commun., 2012, 42(14), 2033-2039.
[http://dx.doi.org/10.1080/00397911.2010.550704]
[275]
Poor Heravi, M.R.; Karami, H.; Mohammadi, B.; Azizkhani, V. Electrocatalytic multicomponent assembling of aldehydes, dimedone and 1-naphthylamine for synthesis of novel tetrahydrobenzo[c]acridin-8(7H)-one derivatives. J. Iran. Chem. Commun., 2019, 7(2), 90-98.
[276]
Behbahani, F.S.; Tabeshpour, J.; Mirzaei, S.; Golmakaniyoon, S.; Tayarani-Najaran, Z.; Ghasemi, A.; Ghodsi, R. Synthesis and biological evaluation of novel benzo[ c]acridine‐diones as potential anticancer agents and tubulin polymerization inhibitors. Arch. Pharm. (Weinheim), 2019, 352(6), 1800307.
[http://dx.doi.org/10.1002/ardp.201800307] [PMID: 31012156]
[277]
Zang, H.; Zhang, Y.; Mo, Y.; Cheng, B. Ultrasound-promoted one-pot synthesis of 7-Aryl-7,10,11,12-tetrahydrobenzo[c]acridin-8(9H)-one derivatives. Synth. Commun., 2011, 41(21), 3207-3214.
[http://dx.doi.org/10.1080/00397911.2010.517610]
[278]
Kozlov, N.G.; Zhiharko, Y.D.; Bondarev, S.L.; Baranovskii, A.V.; Knukshto, V.N.; Basalaeva, L.I. Spectral and luminescent properties of octahydroacridino[4,3-c]acridine-1,9(2H, 5H)dione derivatives. J. Appl. Spectrosc., 2017, 84(3), 369-375.
[http://dx.doi.org/10.1007/s10812-017-0478-3]
[279]
Yin, H.; Kong, F.; Wang, S.; Yao, Z.J. Assembly of pentacyclic pyrido[4,3,2-mn]acridin-8-ones via a domino reaction initiated by Au(I)-catalyzed 6-endo-dig cycloisomerization of N-propargylaminoquinones. Tetrahedron Lett., 2012, 53(52), 7078-7082.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.065]
[280]
Kozlov, N.G.; Basalaeva, L.I.; Odnoburtsev, B.A. Synthesis of 7-[4-alkoxy-3-methoxy(hydroxy)phenyl]-10,11-dihydrobenzo[c]acridin-8(7H,9H,12H)-ones and 4-(8-oxo-7,8,9,10,11,12-hexahydrobenzo[c]acridin-7-yl)-2-methoxy(ethoxy)phenyl esters of carboxylic acids. Russ. J. Org. Chem., 2010, 46(5), 740-745.
[http://dx.doi.org/10.1134/S1070428010050234]
[281]
Koval’skaya, S.S.; Kozlov, N.G.; Dikusar, E.A. Synthesis of chiral benzoacridinone derivatives by three-component condensation of [(1S,4S)-1,7,7-trimethylbicyclo[2.2.1]hept-2-ylidene]acetaldehyde with naphthalen-1-amine and cyclic β-diketones. Russ. J. Org. Chem., 2010, 46(8), 1121-1134.
[http://dx.doi.org/10.1134/S1070428010080038]
[282]
Souibgui, A.; Gaucher, A.; Marrot, J.; Bourdreux, F.; Aloui, F.; Ben Hassine, B.; Prim, D. New series of acridines and phenanthrolines: synthesis and characterization. Tetrahedron, 2014, 70(18), 3042-3048.
[http://dx.doi.org/10.1016/j.tet.2014.02.067]
[283]
Gajaganti, S.; Singh, S. Superoxide Ion Prompted One Pot Multicomponent Synthesis of 1,4-dihydropyridine derivatives. Mater. Today Proc., 2017, 4(9), 10653-10657.
[http://dx.doi.org/10.1016/j.matpr.2017.06.437]
[284]
Mahajan, S.; Khullar, S.; Mandal, S.K.; Singh, I.P. A one-pot, three-component reaction for the synthesis of novel 7-arylbenzo[c]acridine-5,6-diones. Chem. Commun. (Camb.), 2014, 50(70), 10078-10081.
[http://dx.doi.org/10.1039/C4CC03079F] [PMID: 25046767]
[285]
Gisbert, P.; Albert-Soriano, M.; Pastor, I.M. Effective and sustainable access to quinolines and acridines: A heterogeneous imidazolium salt mediates C–C and C–N bond formation. Eur. J. Org. Chem., 2019, 2019(30), 4928-4940.
[http://dx.doi.org/10.1002/ejoc.201900880]
[286]
Rocha, D.H.A.; Pinto, D.C.G.A.; Silva, A.M.S. Synthesis and cyclisation studies of (E)-2-aryl-1-methyl-3-styrylquinolin-4(1H)-ones. Tetrahedron, 2015, 71(40), 7717-7721.
[http://dx.doi.org/10.1016/j.tet.2015.07.058]
[287]
Zhao, Q.; Li, Y.; Wang, Z.; Wang, J.; Yan, B.; Yu, Y.; Li, J.; Lin, J.; Zhao, J.; Weng, J.; Zhao, X.; Gao, Y.; Huang, W. Crystallization induced enantiomer division (CIED) of π-expanded benzoacridine regioisomers. Dyes Pigments, 2019, 170, 107616.
[http://dx.doi.org/10.1016/j.dyepig.2019.107616]
[288]
Jin, J.; Zhang, J.; Liu, F.; Shang, W.; Xin, Y.; Zhu, S. One-pot preparation of fluorinated polyhydrobenzoacridine-1-one derivatives under microwave irradiation and solvent-free conditions. Chin. J. Chem., 2010, 28(7), 1217-1222.
[http://dx.doi.org/10.1002/cjoc.201090211]
[289]
Wu, J.; Zhang, J.; Soto-Acosta, R.; Mao, L.; Lian, J.; Chen, K.; Pillon, G.; Zhang, G.; Geraghty, R.J.; Zheng, S. One-pot synthesis of 1-hydroxyacridones from para-quinols and ortho-methoxycarbonylaryl isocyanates. J. Org. Chem., 2020, 85(6), 4515-4524.
[http://dx.doi.org/10.1021/acs.joc.9b03307] [PMID: 32070098]
[290]
Zhikharko, Y.D.; Kozlov, N.G.; Basalaeva, L.I. Synthesis of 8,16-diarylacridino[4,3-c]acridine-1,9-dione derivatives. Russ. J. Org. Chem., 2016, 52(3), 383-388.
[http://dx.doi.org/10.1134/S1070428016030155]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy