Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Editorial

Perspectives in Future Applications and Advancements of NMR Spectroscopy

Author(s): Feng Wang*

Volume 27, Issue 18, 2023

Published on: 07 September, 2023

Page: [1563 - 1566] Pages: 4

DOI: 10.2174/1385272827666230619162355

conference banner
Next »
[1]
Giunta, C.J.; Mainz, V.V. Discovery of nuclear magnetic resonance: Rabi, purcell, and bloch. In: Pioneers of Magnetic Resonance; American Chemical Society: Washington, DC, 2020; pp. 1-18.
[http://dx.doi.org/10.1021/bk-2020-1349.ch001]
[2]
The Nobel Prize in Physics 1944.. 1944. Available from https://www.nobelprize.org/prizes/physics/1944/summary/
[3]
The Nobel Prize in Physics 1952.. 2023. Available from https://www.nobelprize.org/prizes/physics/1952/summary/
[4]
Spiess, H.W. 50th anniversary perspective: The importance of NMR spectroscopy to macromolecular science. Macromolecules, 2017, 50(5), 1761-1777.
[http://dx.doi.org/10.1021/acs.macromol.6b02736]
[5]
Agrawal, P. NMR spectroscopy in drug discovery and development. Methods, 2015, 6, 3.
[6]
Huck, C.W. Selected latest applications of molecular spectroscopy in natural product analysis. Phytochem. Lett., 2017, 20, 491-498.
[http://dx.doi.org/10.1016/j.phytol.2016.12.028]
[7]
Hertzog, J.; Garnier, C.; Mase, C.; Mariette, S.; Serve, O.; Hubert-Roux, M.; Afonso, C.; Giusti, P.; Barrère-Mangote, C. Fractionation by flash chromatography and molecular characterization of bio-oil by ultra-high-resolution mass spectrometry and NMR spectroscopy. J. Anal. Appl. Pyrolysis, 2022, 166, 105611.
[http://dx.doi.org/10.1016/j.jaap.2022.105611]
[8]
Vozka, P.; Kilaz, G. A review of aviation turbine fuel chemical composition-property relations. Fuel, 2020, 268, 117391.
[http://dx.doi.org/10.1016/j.fuel.2020.117391]
[9]
Ure, A.D.; O’Brien, J.E.; Dooley, S. Quantitative NMR spectroscopy for the analysis of fuels: A case study of FACE gasoline F. Energy Fuels, 2019, 33(11), 11741-11756.
[http://dx.doi.org/10.1021/acs.energyfuels.9b01019]
[10]
Cory, D.G.; Fahmy, A.F.; Havel, T.F. Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 1997, 94(5), 1634-1639.
[http://dx.doi.org/10.1073/pnas.94.5.1634] [PMID: 9050830]
[11]
Pellecchia, M.; Bertini, I.; Cowburn, D.; Dalvit, C.; Giralt, E.; Jahnke, W.; James, T.L.; Homans, S.W.; Kessler, H.; Luchinat, C.; Meyer, B.; Oschkinat, H.; Peng, J.; Schwalbe, H.; Siegal, G. Perspectives on NMR in drug discovery: A technique comes of age. Nat. Rev. Drug Discov., 2008, 7(9), 738-745.
[http://dx.doi.org/10.1038/nrd2606] [PMID: 19172689]
[12]
Zhang, J.; Wang, F.; Zhang, Y. Molecular dynamics studies on the NMR structures of rabbit prion protein wild type and mutants: Surface electrostatic charge distributions. J. Biomol. Struct. Dyn., 2015, 33(6), 1326-1335.
[http://dx.doi.org/10.1080/07391102.2014.947325] [PMID: 25105226]
[13]
Buda, S.; Nawój, M.; Mlynarski, J. Chapter four - Recent advances in NMR studies of carbohydrates. In: Annual Reports on NMR Spectroscopy; Webb, G.A. Ed. Academic Press, 2016; 89, pp. 185-223.
[14]
Shen, S.M.; Appendino, G.; Guo, Y.W. Pitfalls in the structural elucidation of small molecules. A critical analysis of a decade of structural misassignments of marine natural products. Nat. Prod. Rep., 2022, 39(9), 1803-1832.
[http://dx.doi.org/10.1039/D2NP00023G] [PMID: 35770685]
[15]
Wang, F. Future of computational molecular spectroscopy-from supporting interpretation to leading the innovation. Phys. Chem. Chem. Phys., 2023, 25(10), 7090-7105.
[http://dx.doi.org/10.1039/D3CP00192J] [PMID: 36826794]
[16]
Hill, A.; Wang, F. Intramolecular O···H hydrogen bonding of salicylic acid: Further insights from O 1s XPS and 1 H NMR spectra using DFT calculations. J. Phys. Chem. A, 2023, 127(12), 2705-2716.
[http://dx.doi.org/10.1021/acs.jpca.2c08981] [PMID: 36939708]
[17]
Elyashberg, M.; Williams, A.J. Computer-based structure elucidation from spectral data; Springer, 2015, Vol. 89, .
[http://dx.doi.org/10.1007/978-3-662-46402-1]
[18]
Chhetri, B.K.; Lavoie, S.; Sweeney-Jones, A.M.; Kubanek, J. Recent trends in the structural revision of natural products. Nat. Prod. Rep., 2018, 35(6), 514-531.
[http://dx.doi.org/10.1039/C8NP00011E] [PMID: 29623331]
[19]
Mompeán, M.; Sánchez-Donoso, R.M.; de la Hoz, A.; Saggiomo, V.; Velders, A.H.; Gomez, M.V. Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photo-chemically induced dynamic nuclear polarization. Nat. Commun., 2018, 9(1), 108.
[http://dx.doi.org/10.1038/s41467-017-02575-0] [PMID: 29317665]
[20]
Ardenkjaer-Larsen, J.H.; Boebinger, G.S.; Comment, A.; Duckett, S.; Edison, A.S.; Engelke, F.; Griesinger, C.; Griffin, R.G.; Hilty, C.; Maeda, H.; Parigi, G.; Prisner, T.; Ravera, E.; van Bentum, J.; Vega, S.; Webb, A.; Luchinat, C.; Schwalbe, H.; Frydman, L. Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. Angew. Chem. Int. Ed., 2015, 54(32), 9162-9185.
[http://dx.doi.org/10.1002/anie.201410653] [PMID: 26136394]
[21]
Bryant, R.G. The NMR time scale. J. Chem. Educ., 1983, 60(11), 933.
[http://dx.doi.org/10.1021/ed060p933]
[22]
Najbauer, E.E.; Andreas, L.B. Correcting for magnetic field drift in magic-angle spinning NMR datasets. J. Magn. Reson., 2019, 305, 1-4.
[http://dx.doi.org/10.1016/j.jmr.2019.05.005] [PMID: 31158790]
[23]
Reif, B.; Ashbrook, S.E.; Emsley, L.; Hong, M. Solid-state NMR spectroscopy. Nat. Rev. Methods Primers, 2021, 1(1), 2.
[http://dx.doi.org/10.1038/s43586-020-00002-1] [PMID: 34368784]
[24]
Zaragoza, J.P.T.; Offenbacher, A.R.; Hu, S.; Gee, C.L.; Firestein, Z.M.; Minnetian, N.; Deng, Z.; Fan, F.; Iavarone, A.T.; Klinman, J.P. Temporal and spatial resolution of distal protein motions that activate hydrogen tunneling in soybean lipoxygenase. Proc. Natl. Acad. Sci. USA, 2023, 120(10), e2211630120.
[http://dx.doi.org/10.1073/pnas.2211630120] [PMID: 36867685]
[25]
Kweon, J.J.; Kim, H-I.; Lee, S.; Kim, J.; Lee, S.K. Quantitative probing of hydrogen environments in quasicrystals by high-resolution NMR spectroscopy. Acta Mater., 2022, 226, 117657.
[http://dx.doi.org/10.1016/j.actamat.2022.117657]
[26]
Bertram, H.C.; Malmendal, A.; Petersen, B.O.; Madsen, J.C.; Pedersen, H.; Nielsen, N.C.; Hoppe, C.; Mølgaard, C.; Michaelsen, K.F.; Duus, J.Ø. Effect of magnetic field strength on NMR-based metabonomic human urine data. Comparative study of 250, 400, 500, and 800 MHz. Anal. Chem., 2007, 79(18), 7110-7115.
[http://dx.doi.org/10.1021/ac070928a] [PMID: 17702531]
[27]
Yanagisawa, Y.; Nakagome, H.; Tennmei, K.; Hamada, M.; Yoshikawa, M.; Otsuka, A.; Hosono, M.; Kiyoshi, T.; Takahashi, M.; Yamazaki, T.; Maeda, H. Operation of a 500 MHz high temperature superconducting NMR: Towards an NMR spectrometer operating beyond 1 GHz. J. Magn. Reson., 2010, 203(2), 274-282.
[http://dx.doi.org/10.1016/j.jmr.2010.01.007] [PMID: 20149698]
[28]
Blahut, J.; Brandl, M.J.; Pradhan, T.; Reif, B.; Tošner, Z. Sensitivity-enhanced multidimensional solid-state NMR spectroscopy by optimal-control-based transverse mixing sequences. J. Am. Chem. Soc., 2022, 144(38), 17336-17340.
[http://dx.doi.org/10.1021/jacs.2c06568] [PMID: 36074981]
[29]
Qi, G.; Wang, Q.; Xu, J.; Deng, F. Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. Chem. Soc. Rev., 2021, 50(15), 8382-8399.
[http://dx.doi.org/10.1039/D0CS01130D] [PMID: 34115080]
[30]
Kong, N.; Zhou, J.; Park, J.; Xie, S.; Ramström, O.; Yan, M. Quantitative fluorine NMR to determine carbohydrate density on glyconanomaterials synthesized from perfluorophenyl azide-functionalized silica nanoparticles by click reaction. Anal. Chem., 2015, 87(18), 9451-9458.
[http://dx.doi.org/10.1021/acs.analchem.5b02507] [PMID: 26280598]
[31]
De Almeida, N.E.; Harris, K.J.; Samoson, A.; Goward, G.R. 1 H– 1 H double quantum NMR investigation of proton dynamics in solid acids. J. Phys. Chem. C, 2016, 120(36), 19961-19969.
[http://dx.doi.org/10.1021/acs.jpcc.6b04394]
[32]
Paz Ramos, A.; Lagüe, P.; Lamoureux, G.; Lafleur, M. Effect of saturated very long-chain fatty acids on the organization of lipid membranes: A study combining 2H NMR spectroscopy and molecular dynamics simulations. J. Phys. Chem. B, 2016, 120(28), 6951-6960.
[http://dx.doi.org/10.1021/acs.jpcb.6b04958] [PMID: 27351151]
[33]
Blagg, R.J. X-Nuclei NMR Spectroscopy; Oxford Instruments, 2021.
[34]
Mureddu, L.; Vuister, G.W. Simple high-resolution NMR spectroscopy as a tool in molecular biology. FEBS J., 2019, 286(11), 2035-2042.
[http://dx.doi.org/10.1111/febs.14771] [PMID: 30706658]
[35]
Bornet, A.; Maucourt, M.; Deborde, C.; Jacob, D.; Milani, J.; Vuichoud, B.; Ji, X.; Dumez, J.N.; Moing, A.; Bodenhausen, G.; Jannin, S.; Giraudeau, P. Highly repeatable dissolution dynamic nuclear polarization for heteronuclear NMR metabolomics. Anal. Chem., 2016, 88(12), 6179-6183.
[http://dx.doi.org/10.1021/acs.analchem.6b01094] [PMID: 27253320]
[36]
He, P.; Lucier, B.E.G.; Terskikh, V.V.; Shi, Q.; Dong, J.; Chu, Y.; Zheng, A.; Sutrisno, A.; Huang, Y. Spies within metal-organic frameworks: Investigating metal centers using solid-state NMR. J. Phys. Chem. C, 2014, 118(41), 23728-23744.
[http://dx.doi.org/10.1021/jp5063868]
[37]
Fargher, H.A. Sherbow, T.J.; Haley, M.M.; Johnson, D.W.; Pluth, M.D. C–H S hydrogen bonding interactions. Chem. Soc. Rev., 2022, 51(4), 1454-1469.
[http://dx.doi.org/10.1039/D1CS00838B] [PMID: 35103265]
[38]
Wang, F.; Chatterjee, S. Dominant carbons in trans- and cis-resveratrol isomerization. J. Phys. Chem. B, 2017, 121(18), 4745-4755.
[http://dx.doi.org/10.1021/acs.jpcb.7b02115] [PMID: 28402662]
[39]
Backler, F.; Wang, F. Switching on/off the intramolecular hydrogen bonding of 2-methoxyphenol conformers: An NMR study. Aust. J. Chem., 2020, 73(3), 222-229.
[http://dx.doi.org/10.1071/CH19600]
[40]
Schönherr, H.; Cernak, T. Profound methyl effects in drug discovery and a call for new C-H methylation reactions. Angew. Chem. Int. Ed., 2013, 52(47), 12256-12267.
[http://dx.doi.org/10.1002/anie.201303207] [PMID: 24151256]
[41]
Nagana Gowda, G.A.; Raftery, D. NMR metabolomics methods for investigating disease. Anal. Chem., 2023, 95(1), 83-99.
[http://dx.doi.org/10.1021/acs.analchem.2c04606] [PMID: 36625102]
[42]
Barik, S.; Mahapatra, A.; Jena, D.; Sarkar, M. Assessing the impact of increase in the number of hydroxyl groups on the microscopic behaviors of ammonium-based room temperature ionic liquids: A combined fluorescence up-conversion, fluorescence correlation and NMR spectroscopic study. J. Photochem. Photobiol. Chem., 2023, 437, 114505.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114505]
[43]
Zhao, N.; Wang, L.; Zhang, W.; Peng, Y.; Sima, L. Investigation of pore structure characteristics in marine deep-water high-temperature and high-pressure sandstone: A comprehensive characterization combining various experimental techniques. Geoenergy Sci. Eng., 2023, 222, 211433.
[http://dx.doi.org/10.1016/j.geoen.2023.211433]
[44]
Leopold, J.; Engel, K.M.; Prabutzki, P. Combined use of maldi-tof mass spectrometry and 31p NMR spectroscopy for the analysis of (Phospho) lipids. In: Lipidomics. Methods in Molecular Biology; Humana: New York, NY, 2023; pp. 183-200.
[45]
Jonas, E.; Kuhn, S.; Schlörer, N. Prediction of chemical shift in NMR: A review. Magn. Reson. Chem., 2022, 60(11), 1021-1031.
[http://dx.doi.org/10.1002/mrc.5234] [PMID: 34787335]
[46]
Provasi, P.F.; Modesto-Costa, L.; Sampaio, F.; Silva, T.; da Cunha, A.R.; Andrade-Filho, T.; Gester, R. The importance of the density functional theory exchange–correlation hartree–fock term in magnetic resonance: Application to an aqueous environment. J. Phys. Chem. A, 2023, 127(3), 619-626.
[http://dx.doi.org/10.1021/acs.jpca.2c05623] [PMID: 36648308]
[47]
Backler, F.; Wang, F. Impact of intramolecular hydrogen bonding of gallic acid conformers on chemical shift through NMR spectroscopy. J. Mol. Graph. Model., 2020, 95, 107486.
[http://dx.doi.org/10.1016/j.jmgm.2019.107486] [PMID: 31744771]
[48]
Cobas, C. NMR signal processing, prediction, and structure verification with machine learning techniques. Magn. Reson. Chem., 2020, 58(6), 512-519.
[http://dx.doi.org/10.1002/mrc.4989] [PMID: 31912547]
[49]
Dorai, K. Arvind, NMR Quantum information processing: Indian contributions and perspectives. J. Indian Inst. Sci., 2023, 1-21.
[http://dx.doi.org/10.1007/s41745-022-00353-6]

© 2024 Bentham Science Publishers | Privacy Policy