Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

State-of-art of Liquid Hydrogen Carriers: Trends in the Selection of Organic Molecules

Author(s): Sergey A. Stepanenko, Anton P. Koskin*, Roman G. Kukushkin and Petr M. Yeletsky

Volume 27, Issue 19, 2023

Published on: 25 October, 2023

Page: [1677 - 1682] Pages: 6

DOI: 10.2174/0113852728252151231013054148

Price: $65

Abstract

Nowadays, fossil fuels represent the main energy source. According to the BP Statistical Review of World Energy report, in 2021, global energy consumption amounted to 595.15 EJ of which 82% was generated from natural gas, oil and coal. The energy consumption growth, rapid depletion of fossil fuels and increasing pressure on the environment threaten the continued sustainability of the global energy system. In this context, renewable energy sources (RES), which now account for 6.7% are attracting increasing attention. The key obstacles to the introduction of RES (solar, wind geothermal, etc.) are their nonstationarity due to seasonality, meteorology and differences in geoclimatic conditions. In this regard, an important role is played by the development of technologies for efficient storage and transportation of renewable energy to consumers. One of the most promising storage technologies is the processing of renewable energy into hydrogen, which, due to the high mass energy intensity (120 MJ⋅kg-1) and environmental friendliness, can be considered a promising energy carrier. Nevertheless, the widespread use of hydrogen as a fuel is limited due to the low volumetric energy density and high explosiveness. Thus, along with the development of technologies for processing renewable energy sources into hydrogen (e.g., electrolysis), a large number of studies are focused on the development of technologies for storage and transportation. This study provides a brief overview of the state of the art of these technologies, with a focus on technology based on the use of liquid organic hydrogen carriers (LOHCs).

Keywords: Renewable energy sources (RES), hydrogen carriers (LOHCs), hydrogen storage methods, electrolysis, organic molecules, natural gas.

Graphical Abstract
[2]
Teichmann, D.; Arlt, W.; Schlücker, E.; Wasserscheid, P. Transport and storage of hydrogen via liquid organic hydrogen carrier (LOHC) systems. Hydrog. Sci. Eng. Mater. Process. Syst. Technol., 2016, 2, 811-830.
[http://dx.doi.org/10.1002/9783527674268.ch33]
[3]
Preuster, P.; Papp, C.; Wasserscheid, P. Liquid Organic Hydrogen Carriers (LOHCs): Toward a hydrogen-free hydrogen economy. Acc. Chem. Res., 2017, 50(1), 74-85.
[http://dx.doi.org/10.1021/acs.accounts.6b00474] [PMID: 28004916]
[4]
Sharma, S.; Ghoshal, S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev., 2015, 43, 1151-1158.
[http://dx.doi.org/10.1016/j.rser.2014.11.093]
[5]
Abdin, Z.; Tang, C.; Liu, Y.; Catchpole, K. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. iScience, 2021, 24(9), 102966.
[http://dx.doi.org/10.1016/j.isci.2021.102966] [PMID: 34466789]
[6]
Brückner, N.; Obesser, K.; Bösmann, A.; Teichmann, D.; Arlt, W.; Dungs, J.; Wasserscheid, P. Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems. ChemSusChem, 2014, 7(1), 229-235.
[http://dx.doi.org/10.1002/cssc.201300426] [PMID: 23956191]
[7]
Teichmann, D.; Arlt, W.; Schlücker, E.; Wasserscheid, P. Transport and Storage of Hydrogen via Liquid Organic Hydrogen Carrier (LOHC) Systems.Hydrogen Science and Engineering: Materials, Processes, Systems and Technology; Wiley: Hoboken, New Jersey, 2016.
[8]
Hong, X.; Thaore, V.B.; Karimi, I.A.; Farooq, S.; Wang, X.; Usadi, A.K.; Chapman, B.R.; Johnson, R.A. Techno-enviro-economic analyses of hydrogen supply chains with an ASEAN case study. Int. J. Hydrogen Energy, 2021, 46(65), 32914-32928.
[http://dx.doi.org/10.1016/j.ijhydene.2021.07.138]
[9]
Abdin, Z.; Khalilpour, K.R. Single and Polystorage Technologies for Renewable-Based Hybrid Energy Systems. Polygeneration with Polystorage for Chemical and Energy Hubs; Elsevier: Amsterdam, 2019, pp. 77-131.
[http://dx.doi.org/10.1016/B978-0-12-813306-4.00004-5]
[10]
Züttel, A.; Wenger, P.; Rentsch, S.; Sudan, P.; Mauron, P.; Emmenegger, C. LiBH4 a new hydrogen storage material. J. Power Sources, 2003, 118(1-2), 1-7.
[http://dx.doi.org/10.1016/S0378-7753(03)00054-5]
[11]
Abdin, Z. Components Models for Solar Hydrogen Hybrid Energy Systems Based on Metal Hydride Energy Storage Author School., Doctor of Philosophy (PhD); Griffith University, 2017.
[12]
Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy, 2019, 44(23), 11901-11919.
[http://dx.doi.org/10.1016/j.ijhydene.2019.03.063]
[13]
Stephens, F.H.; Pons, V.; Tom Baker, R. Ammonia-borane: The hydrogen source par excellence? Dalton Trans., 2007, 2(25), 2613-2626.
[http://dx.doi.org/10.1039/B703053C] [PMID: 17576485]
[14]
Guan, S.; Liu, Y.; Zhang, H.; Shen, R.; Wen, H.; Kang, N.; Zhou, J.; Liu, B.; Fan, Y.; Jiang, J.; Li, B. Recent advances and perspectives on supported catalysts for heterogeneous hydrogen production from ammonia borane. Adv. Sci. (Weinh.), 2023, 10(21), 2300726.
[http://dx.doi.org/10.1002/advs.202300726] [PMID: 37118857]
[15]
Smythe, N.C.; Gordon, J.C. Ammonia borane as a hydrogen carrier: Dehydrogenation and regeneration. Eur. J. Inorg. Chem., 2010, 2010(4), 509-521.
[http://dx.doi.org/10.1002/ejic.200900932]
[16]
Li, G.; Wei, N.; Wang, Y. Active clusters ensemble effect of bimetallic RuCo alloys for efficient hydrogen production from ammonia borane. Appl. Surf. Sci., 2023, 610, 155459.
[http://dx.doi.org/10.1016/j.apsusc.2022.155459]
[17]
Luo, W.; Li, G.; Cheng, W.; Wang, Y. SiO2-mediated fabrication of hydrophilic biomass-carbon and its expediting effect on Rh nanoparticles catalyzed dehydrogenation of ammonia borane. Fuel, 2023, 333, 126366.
[http://dx.doi.org/10.1016/j.fuel.2022.126366]
[18]
MacFarlane, D.R.; Cherepanov, P.V.; Choi, J.; Suryanto, B.H.R.; Hodgetts, R.Y.; Bakker, J.M.; Ferrero Vallana, F.M.; Simonov, A.N. A roadmap to the ammonia economy. Joule, 2020, 4(6), 1186-1205.
[http://dx.doi.org/10.1016/j.joule.2020.04.004]
[19]
Garg, N.; Sarkar, A.; Sundararaju, B. Recent developments on methanol as liquid organic hydrogen carrier in transfer hydrogenation reactions. Coord. Chem. Rev., 2021, 433, 213728.
[http://dx.doi.org/10.1016/j.ccr.2020.213728]
[20]
Iulianelli, A.; Ribeirinha, P.; Mendes, A.; Basile, A. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review. Renew. Sustain. Energy Rev., 2014, 29, 355-368.
[http://dx.doi.org/10.1016/j.rser.2013.08.032]
[21]
Sá, S.; Silva, H.; Brandão, L.; Sousa, J.M.; Mendes, A. Catalysts for methanol steam reforming-A review. Appl. Catal. B, 2010, 99(1-2), 43-57.
[http://dx.doi.org/10.1016/j.apcatb.2010.06.015]
[22]
Trincado, M.; Grützmacher, H.; Prechtl, M.H.G. CO2-Based Hydrogen Storage - Hydrogen Generation from Formaldehyde/Water. Hydrogen Storage; De Gruyter: Berlin, 2019.
[http://dx.doi.org/10.1515/9783110536423-004]
[23]
Heim, L.E.; Konnerth, H.; Prechtl, M.H.G. Future perspectives for formaldehyde: Pathways for reductive synthesis and energy storage. Green Chem., 2017, 19(10), 2347-2355.
[http://dx.doi.org/10.1039/C6GC03093A]
[24]
Loges, B.; Boddien, A.; Gärtner, F.; Junge, H.; Beller, M. Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials. Top. Catal., 2010, 53(13-14), 902-914.
[http://dx.doi.org/10.1007/s11244-010-9522-8]
[25]
Eppinger, J.; Huang, K.W. Formic acid as a hydrogen energy carrier. ACS Energy Lett., 2017, 2(1), 188-195.
[http://dx.doi.org/10.1021/acsenergylett.6b00574]
[26]
Cheng, W.; Zhao, X.; Hu, H.; Cai, J.; Wang, Y.; Liu, X.; Xu, D.; Luo, W.; Fan, G. Defect-dominated carbon deposited Pd nanoparticles enhanced catalytic performance of formic acid dehydrogenation. Appl. Surf. Sci., 2022, 597, 153590.
[http://dx.doi.org/10.1016/j.apsusc.2022.153590]
[27]
Nakajima, K.; Tominaga, M.; Waseda, M.; Miura, H.; Shishido, T. Highly efficient supported palladium-gold alloy catalysts for hydrogen storage based on ammonium bicarbonate/formate redox cycle. ACS Sustain. Chem.& Eng., 2019, 7(7), 6522-6530.
[http://dx.doi.org/10.1021/acssuschemeng.8b04698]
[28]
Boddien, A.; Gärtner, F.; Federsel, C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Beller, M. CO2-“neutral” hydrogen storage based on bicarbonates and formates. Angew. Chem. Int. Ed., 2011, 50(28), 6411-6414.
[http://dx.doi.org/10.1002/anie.201101995] [PMID: 21604349]
[29]
Su, J.; Yang, L.; Lu, M.; Lin, H. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts. ChemSusChem, 2015, 8(5), 813-816.
[http://dx.doi.org/10.1002/cssc.201403251] [PMID: 25663262]
[30]
Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J.P.; May, R.B.; Prakash, G.K.S.; Olah, G.A. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change. ChemSusChem, 2015, 8(8), 1442-1451.
[http://dx.doi.org/10.1002/cssc.201403458] [PMID: 25824142]
[31]
Zaidman, B.; Wiener, H.; Sasson, Y. Formate salts as chemical carriers in hydrogen storage and transportation. Int. J. Hydrogen Energy, 1986, 11(5), 341-347.
[http://dx.doi.org/10.1016/0360-3199(86)90154-0]
[32]
Song, J.; Yang, Y.; Yao, G.; Zhong, H.; He, R.; Jin, B.; Jing, Z.; Jin, F. Highly efficient synthesis of hydrogen storage material of formate from bicarbonate and water with general zn powder. Ind. Eng. Chem. Res., 2017, 56(22), 6349-6357.
[http://dx.doi.org/10.1021/acs.iecr.7b00190]
[33]
Masuda, S.; Shimoji, Y.; Mori, K.; Kuwahara, Y.; Yamashita, H. Interconversion of formate/bicarbonate for hydrogen storage/release: Improved activity following sacrificial surface modification of a Ag@Pd/TiO2 catalyst with a TiOx shell. ACS Appl. Energy Mater., 2020, 3(6), 5819-5829.
[http://dx.doi.org/10.1021/acsaem.0c00744]
[34]
Shao, X.; Miao, X.; Zhang, T.; Wang, W.; Wang, J.; Ji, X. Pd Nanoparticles supported on N- and P-Co-doped carbon as catalysts for reversible formate-based chemical hydrogen storage. ACS Appl. Nano Mater., 2020, 3(9), 9209-9217.
[http://dx.doi.org/10.1021/acsanm.0c01830]
[35]
Shao, X.; Xu, J.; Huang, Y.; Su, X.; Duan, H.; Wang, X.; Zhang, T. Pd@C3N4 nanocatalyst for highly efficient hydrogen storage system based on potassium bicarbonate/formate. AIChE J., 2016, 62(7), 2410-2418.
[http://dx.doi.org/10.1002/aic.15218]
[36]
Wang, F.; Xu, J.; Shao, X.; Su, X.; Huang, Y.; Zhang, T. Palladium on nitrogen-doped mesoporous carbon: A bifunctional catalyst for formate-based, carbon-neutral hydrogen storage. ChemSusChem, 2016, 9(3), 246-251.
[http://dx.doi.org/10.1002/cssc.201501376] [PMID: 26763714]
[37]
Calabrese, M.; Russo, D.; di Benedetto, A.; Marotta, R.; Andreozzi, R. Formate/bicarbonate interconversion for safe hydrogen storage: A review. Renew. Sustain. Energy Rev., 2023, 173, 113102.
[http://dx.doi.org/10.1016/j.rser.2022.113102]
[38]
Li, L.; Mu, X.; Liu, W.; Mi, Z.; Li, C.J. Simple and efficient system for combined solar energy harvesting and reversible hydrogen storage. J. Am. Chem. Soc., 2015, 137(24), 7576-7579.
[http://dx.doi.org/10.1021/jacs.5b03505] [PMID: 26059734]
[39]
Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. Hybrid catalysis enabling room-temperature hydrogen gas release from N-heterocycles and tetrahydronaphthalenes. J. Am. Chem. Soc., 2017, 139(6), 2204-2207.
[http://dx.doi.org/10.1021/jacs.7b00253] [PMID: 28139917]
[40]
Sekine, Y.; Higo, T. Recent trends on the dehydrogenation catalysis of liquid organic hydrogen carrier (LOHC): A review. Top. Catal., 2021, 64(7-8), 470-480.
[http://dx.doi.org/10.1007/s11244-021-01452-x]
[41]
Promoting effect of Zn in high-loading Zn/Ni-SiO2 catalysts for selective hydrogen evolution from methylcyclohexane. Dalton Trans., 2022, 51, 6068-6085.
[http://dx.doi.org/10.1039/D2DT00332E]
[42]
Gulyaeva, Y.; Alekseeva Bykova, M.; Bulavchenko, O.; Kremneva, A.; Saraev, A.; Gerasimov, E.; Selishcheva, S.; Kaichev, V.; Yakovlev, V. Ni-Cu high-loaded sol-gel catalysts for dehydrogenation of liquid organic hydrides: insights into structural features and relationship with catalytic activity. Nanomaterials (Basel), 2021, 11(8), 2017.
[http://dx.doi.org/10.3390/nano11082017] [PMID: 34443848]
[43]
Martynenko, E.A.; Pimerzin, A.A.; Savinov, A.A.; Verevkin, S.P.; Pimerzin, A.A. Hydrogen release from decalin by catalytic dehydrogenation over supported platinum catalysts. Top. Catal., 2020, 63(1-2), 178-186.
[http://dx.doi.org/10.1007/s11244-020-01228-9]
[44]
Kwak, Y.; Moon, S.; Ahn, C.; Kim, A.R.; Park, Y.; Kim, Y.; Sohn, H.; Jeong, H.; Nam, S.W.; Yoon, C.W.; Jo, Y.S. Effect of the support properties in dehydrogenation of biphenyl-based eutectic mixture as liquid organic hydrogen carrier (LOHC) over Pt/Al2O3 catalysts. Fuel, 2021, 284, 119285.
[http://dx.doi.org/10.1016/j.fuel.2020.119285]
[45]
Sisáková, K.; Podrojková, N.; Oriňaková, R.; Oriňak, A. Novel catalysts for dibenzyltoluene as a potential liquid organic hydrogen carrier use-A mini-review. Energy Fuels, 2021, 35(9), 7608-7623.
[http://dx.doi.org/10.1021/acs.energyfuels.1c00692]
[46]
Xie, Y.; Milstein, D. Pd catalyzed, acid accelerated, rechargeable, liquid organic hydrogen carrier system based on methylpyridines/methyl-piperidines. ACS Appl. Energy Mater., 2019, 2(6), 4302-4308.
[http://dx.doi.org/10.1021/acsaem.9b00523]
[47]
Cui, Y.; Kwok, S.; Bucholtz, A.; Davis, B.; Whitney, R.A.; Jessop, P.G. The effect of substitution on the utility of piperidines and octahydroindoles for reversible hydrogen storage. New J. Chem., 2008, 32(6), 1027-1037.
[http://dx.doi.org/10.1039/b718209k]
[48]
Zhou, L.; Sun, L.; Xu, L.; Wan, C.; An, Y.; Ye, M. Recent developments of effective catalysts for hydrogen storage technology using N-ethylcarbazole. Catalysts, 2020, 10(6), 648.
[49]
Stepanenko, S.A.; Shivtsov, D.M.; Koskin, A.P.; Koskin, I.P.; Kukushkin, R.G.; Yeletsky, P.M.; Yakovlev, V.A. N-heterocyclic molecules as potential liquid organic hydrogen carriers: reaction routes and dehydrogenation efficacy. Catalysts, 2022, 12(10), 1260.
[http://dx.doi.org/10.3390/catal12101260]
[50]
Shivtsov, D.M.; Koskin, A.P.; Stepanenko, S.A.; Ilyina, E.V.; Ayupov, A.B.; Bedilo, A.F.; Yakovlev, V.A. Hydrogen production by n-heterocycle dehydrogenation over Pd supported on aerogel-prepared Mg-Al oxides. Catalysts, 2023, 13(2), 334.
[http://dx.doi.org/10.3390/catal13020334]
[51]
Zhu, Q.L.; Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci., 2015, 8(2), 478-512.
[http://dx.doi.org/10.1039/C4EE03690E]
[52]
Zhou, Q.Q.; Zou, Y.Q.; Ben-David, Y.; Milstein, D. A Reversible liquid‐to‐liquid organic hydrogen carrier system based on ethylene glycol and ethanol. Chemistry, 2020, 26(67), 15487-15490.
[http://dx.doi.org/10.1002/chem.202002749] [PMID: 33459426]
[53]
Zou, Y.Q.; von Wolff, N.; Anaby, A.; Xie, Y.; Milstein, D. Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier. Nat. Catal., 2019, 2(5), 415-422.
[http://dx.doi.org/10.1038/s41929-019-0265-z] [PMID: 31406959]
[54]
Garg, N.; Paira, S.; Sundararaju, B. Efficient transfer hydrogenation of ketones using methanol as liquid organic hydrogen carrier. ChemCatChem, 2020, 12(13), 3472-3476.
[http://dx.doi.org/10.1002/cctc.202000228]
[55]
Kothandaraman, J.; Kar, S.; Sen, R.; Goeppert, A.; Olah, G.A.; Prakash, G.K.S. Efficient reversible hydrogen carrier system based on amine reforming of methanol. J. Am. Chem. Soc., 2017, 139(7), 2549-2552.
[http://dx.doi.org/10.1021/jacs.6b11637] [PMID: 28151661]
[56]
Shao, Z.; Li, Y.; Liu, C.; Ai, W.; Luo, S.P.; Liu, Q. Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation. Nat. Commun., 2020, 11(1), 591.
[http://dx.doi.org/10.1038/s41467-020-14380-3] [PMID: 32001679]
[57]
Zhang, X.; He, N.; Lin, L.; Zhu, Q.; Wang, G.; Guo, H. Study of the carbon cycle of a hydrogen supply system over a supported Pt catalyst: Methylcyclohexane-toluene-hydrogen cycle. Catal. Sci. Technol., 2020, 10(4), 1171-1181.
[http://dx.doi.org/10.1039/C9CY01999E]
[58]
Jorschick, H.; Preuster, P.; Bösmann, A.; Wasserscheid, P. Hydrogenation of aromatic and heteroaromatic compounds - A key process for future logistics of green hydrogen using liquid organic hydrogen carrier systems. Sustain. Energy Fuels, 2021, 5(5), 1311-1346.
[http://dx.doi.org/10.1039/D0SE01369B]
[59]
Chen, X.; Gierlich, C.H.; Schötz, S.; Blaumeiser, D.; Bauer, T.; Libuda, J.; Palkovits, R. Hydrogen production based on liquid organic hydrogen carriers through sulfur doped platinum catalysts supported on TiO2. ACS Sustain. Chem.& Eng., 2021, 9(19), 6561-6573.
[http://dx.doi.org/10.1021/acssuschemeng.0c09048]
[60]
Müller, K.; Aslam, R.; Fischer, A.; Stark, K.; Wasserscheid, P.; Arlt, W. Experimental assessment of the degree of hydrogen loading for the dibenzyl toluene based LOHC system. Int. J. Hydrogen Energy, 2016, 41(47), 22097-22103.
[http://dx.doi.org/10.1016/j.ijhydene.2016.09.196]
[61]
Fikrt, A.; Brehmer, R.; Milella, V.O.; Müller, K.; Bösmann, A.; Preuster, P.; Alt, N.; Schlücker, E.; Wasserscheid, P.; Arlt, W. Dynamic power supply by hydrogen bound to a liquid organic hydrogen carrier. Appl. Energy, 2017, 194, 1-8.
[http://dx.doi.org/10.1016/j.apenergy.2017.02.070]
[62]
Modisha, P.; Gqogqa, P.; Garidzirai, R.; Ouma, C.N.M.; Bessarabov, D. Evaluation of catalyst activity for release of hydrogen from liquid organic hydrogen carriers. Int. J. Hydrogen Energy, 2019, 44(39), 21926-21935.
[http://dx.doi.org/10.1016/j.ijhydene.2019.06.212]
[63]
Shi, L.; Qi, S.; Qu, J.; Che, T.; Yi, C.; Yang, B. Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier. Int. J. Hydrogen Energy, 2019, 44(11), 5345-5354.
[http://dx.doi.org/10.1016/j.ijhydene.2018.09.083]
[64]
Bulgarin, A.; Jorschick, H.; Preuster, P.; Bösmann, A.; Wasserscheid, P. Purity of hydrogen released from the liquid organic hydrogen carrier compound perhydro dibenzyltoluene by catalytic dehydrogenation. Int. J. Hydrogen Energy, 2020, 45(1), 712-720.
[http://dx.doi.org/10.1016/j.ijhydene.2019.10.067]
[65]
Lee, S.; Lee, J.; Kim, T.; Han, G.; Lee, J.; Lee, K.; Bae, J. Pt/CeO2 catalyst synthesized by combustion method for dehydrogenation of perhydro-dibenzyltoluene as liquid organic hydrogen carrier: Effect of pore size and metal dispersion. Int. J. Hydrogen Energy, 2021, 46(7), 5520-5529.
[http://dx.doi.org/10.1016/j.ijhydene.2020.11.038]
[66]
Modisha, P.; Bessarabov, D. Stress tolerance assessment of dibenzyltoluene-based liquid organic hydrogen carriers. Sustain. Energy Fuels, 2020, 4(9), 4662-4670.
[http://dx.doi.org/10.1039/D0SE00625D]
[67]
Jorschick, H.; Geißelbrecht, M.; Eßl, M.; Preuster, P.; Bösmann, A.; Wasserscheid, P. Benzyltoluene/dibenzyltoluene-based mixtures as suitable liquid organic hydrogen carrier systems for low temperature applications. Int. J. Hydrogen Energy, 2020, 45(29), 14897-14906.
[http://dx.doi.org/10.1016/j.ijhydene.2020.03.210]
[68]
Geißelbrecht, M.; Mrusek, S.; Müller, K.; Preuster, P.; Bösmann, A.; Wasserscheid, P. Highly efficient, low-temperature hydrogen release from perhydro-benzyltoluene using reactive distillation. Energy Environ. Sci., 2020, 13(9), 3119-3128.
[http://dx.doi.org/10.1039/D0EE01155J]
[69]
Gu, Y.; Liu, H.; Yang, M.; Ma, Z.; Zhao, L.; Xing, W.; Wu, P. Highly stable phosphine modi FiEdVOx/Al2O3 catalyst in propane dehydrogenation. Applied.Catalysis B Environmental , 2020, 274, 1-11.
[70]
Hodoshima, S.; Arai, H.; Takaiwa, S.; Saito, Y. Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle. Int. J. Hydrogen Energy, 2003, 28(11), 1255-1262.
[http://dx.doi.org/10.1016/S0360-3199(02)00250-1]
[71]
Hodoshima, S.; Takaiwa, S.; Shono, A.; Satoh, K.; Saito, Y. Hydrogen storage by decalin/naphthalene pair and hydrogen supply to fuel cells by use of superheated liquid-film-type catalysis. Appl. Catal. A Gen., 2005, 283(1-2), 235-242.
[http://dx.doi.org/10.1016/j.apcata.2005.01.010]
[72]
Lee, G.; Jeong, Y.; Kim, B.G.; Han, J.S.; Jeong, H.; Na, H.B.; Jung, J.C. Hydrogen production by catalytic decalin dehydrogenation over carbon-supported platinum catalyst: Effect of catalyst preparation method. Catal. Commun., 2015, 67, 40-44.
[http://dx.doi.org/10.1016/j.catcom.2015.04.002]
[73]
Kim, K.; Oh, J.; Kim, T.W.; Park, J.H.; Han, J.W.; Suh, Y.W. Different catalytic behaviors of Pd and Pt metals in decalin dehydrogenation to naphthalene. Catal. Sci. Technol., 2017, 7(17), 3728-3735.
[http://dx.doi.org/10.1039/C7CY00569E]
[74]
Qi, S.; Li, Y.; Yue, J.; Chen, H.; Yi, C.; Yang, B. Hydrogen production from decalin dehydrogenation over Pt-Ni/C bimetallic catalysts. Chin. J. Catal., 2014, 35(11), 1833-1839.
[http://dx.doi.org/10.1016/S1872-2067(14)60178-9]
[75]
Sotoodeh, F.; Smith, K.J. Structure sensitivity of dodecahydro-N-ethylcarbazole dehydrogenation over Pd catalysts. J. Catal., 2011, 279(1), 36-47.
[http://dx.doi.org/10.1016/j.jcat.2010.12.022]
[76]
Sotoodeh, F.; Zhao, L.; Smith, K.J. Kinetics of H2 recovery from dodecahydro-N-ethylcarbazole over a supported Pd catalyst. Appl. Catal. A Gen., 2009, 362(1-2), 155-162.
[http://dx.doi.org/10.1016/j.apcata.2009.04.039]
[77]
Yang, M.; Dong, Y.; Fei, S.; Ke, H.; Cheng, H. A comparative study of catalytic dehydrogenation of perhydro-N-ethylcarbazole over noble metal catalysts. Int. J. Hydrogen Energy, 2014, 39(33), 18976-18983.
[http://dx.doi.org/10.1016/j.ijhydene.2014.09.123]
[78]
Zhu, M.; Xu, L.; Du, L.; An, Y.; Wan, C. Palladium supported on carbon nanotubes as a high-performance catalyst for the dehydrogenation of dodecahydro-N-ethylcarbazole. Catalysts, 2018, 8(12), 638.
[79]
Jiang, Z.; Gong, X.; Wang, B.; Wu, Z.; Fang, T. A experimental study on the dehydrogenation performance of dodecahydro-N-ethylcarbazole on M/TiO2 catalysts. Int. J. Hydrogen Energy, 2019, 44(5), 2951-2959.
[http://dx.doi.org/10.1016/j.ijhydene.2018.11.236]
[80]
Yang, M.; Cheng, G.; Xie, D.; Zhu, T.; Dong, Y.; Ke, H.; Cheng, H. Study of hydrogenation and dehydrogenation of 1-methylindole for reversible onboard hydrogen storage application. Int. J. Hydrogen Energy, 2018, 43(18), 8868-8876.
[http://dx.doi.org/10.1016/j.ijhydene.2018.03.134]
[81]
Forberg, D.; Schwob, T.; Zaheer, M.; Friedrich, M.; Miyajima, N.; Kempe, R. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nat. Commun., 2016, 7(1), 13201.
[http://dx.doi.org/10.1038/ncomms13201] [PMID: 27762267]
[82]
Rao, P.; Yoon, M. Potential liquid-organic hydrogen carrier (LOHC) systems: A review on recent progress. Energies, 2020, 13(22), 6040.
[http://dx.doi.org/10.3390/en13226040]
[83]
[84]
Hank, C.; Sternberg, A.; Köppel, N.; Holst, M.; Smolinka, T.; Schaadt, A.; Hebling, C.; Henning, H.M. Energy efficiency and economic assessment of imported energy carriers based on renewable electricity. Sustain. Energy Fuels, 2020, 4(5), 2256-2273.
[http://dx.doi.org/10.1039/D0SE00067A]
[85]
Lee, S.; Kim, T.; Han, G.; Kang, S.; Yoo, Y.S.; Jeon, S.Y.; Bae, J. Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis. Renew. Sustain. Energy Rev., 2021, 150, 111447.
[http://dx.doi.org/10.1016/j.rser.2021.111447]
[86]
Teichmann, D.; Stark, K.; Müller, K.; Zöttl, G.; Wasserscheid, P.; Arlt, W. Energy storage in residential and commercial buildings via Liquid Organic Hydrogen Carriers (LOHC). Energy Environ. Sci., 2012, 5(10), 9044-9054.
[http://dx.doi.org/10.1039/c2ee22070a]
[87]
Eypasch, M.; Schimpe, M.; Kanwar, A.; Hartmann, T.; Herzog, S.; Frank, T.; Hamacher, T. Model-based techno-economic evaluation of an electricity storage system based on liquid organic hydrogen carriers. Appl. Energy, 2017, 185, 320-330.
[http://dx.doi.org/10.1016/j.apenergy.2016.10.068]
[88]
Müller, K.; Thiele, S.; Wasserscheid, P. Evaluations of concepts for the integration of fuel cells in liquid organic hydrogen carrier systems. Energy Fuels, 2019, 33(10), 10324-10330.
[http://dx.doi.org/10.1021/acs.energyfuels.9b01939]
[89]
Jorschick, H.; Preuster, P.; Dürr, S.; Seidel, A.; Müller, K.; Bösmann, A.; Wasserscheid, P. Hydrogen storage using a hot pressure swing reactor. Energy Environ. Sci., 2017, 10(7), 1652-1659.
[http://dx.doi.org/10.1039/C7EE00476A]
[90]
Aakko-Saksa, P.T.; Cook, C.; Kiviaho, J.; Repo, T. Liquid organic hydrogen carriers for transportation and storing of renewable energy - Review and discussion. J. Power Sources, 2018, 396, 803-823.
[http://dx.doi.org/10.1016/j.jpowsour.2018.04.011]
[91]
Zhu, D.; Jiang, H.; Zhang, L.; Zheng, X.; Fu, H.; Yuan, M.; Chen, H.; Li, R. Aqueous phase hydrogenation of quinoline to decahydroquinoline catalyzed by ruthenium nanoparticles supported on glucose-derived carbon spheres. ChemCatChem, 2014, 6(10), 2954-2960.
[http://dx.doi.org/10.1002/cctc.201402519]
[92]
Oh, J.; Bathula, H.B.; Park, J.H.; Suh, Y.W. A sustainable mesoporous palladium-alumina catalyst for efficient hydrogen release from N-heterocyclic liquid organic hydrogen carriers. Commun. Chem., 2019, 2(1), 68.
[http://dx.doi.org/10.1038/s42004-019-0167-7]
[93]
Deraedt, C.; Ye, R.; Ralston, W.T.; Toste, F.D.; Somorjai, G.A. Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles. J. Am. Chem. Soc., 2017, 139(49), 18084-18092.
[http://dx.doi.org/10.1021/jacs.7b10768] [PMID: 29144751]
[94]
Kaneda, K.; Mikami, Y.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Reversible dehydrogenation-hydrogenation of tetrahydroquinoline-quinoline using a supported cooper nanoparticle catalyst. Heterocycles, 2010, 82(2), 1371-1377.
[http://dx.doi.org/10.3987/COM-10-S(E)90]
[95]
Zhang, J.W.; Li, D.D.; Lu, G.P.; Deng, T.; Cai, C. Reversible dehydrogenation and hydrogenation of N‐heterocycles catalyzed by bimetallic nanoparticles encapsulated in MIL‐100(Fe). ChemCatChem, 2018, 10(21), 4966-4972.
[http://dx.doi.org/10.1002/cctc.201801311]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy