Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Routes and Pharmacological Activities of Purine Derivatives: A Review

Author(s): Soukaina Benkirane, Houria Misbahi, Meriem Boudkhili, Youssef Kandri Rodi, Nada Kheira Sebbar* and El Mokhtar Essassi

Volume 27, Issue 19, 2023

Published on: 01 November, 2023

Page: [1683 - 1696] Pages: 14

DOI: 10.2174/0113852728260602231018040338

Price: $65

Abstract

The Purine moiety is regarded as the ubiquitous nitrogen-containing heterocycle in nature and is recognized as a privileged scaffold in medicinal chemistry. Moreover, the purine derivatives are heterocyclic aromatic compounds consisting of conjoined pyrimidine and imidazole moieties. Purine derivatives are involved in various metabolic processes as cofactors associated with a wide variety of enzymes and receptors. Therefore, many synthetic ways to obtain purine derivatives were developed using different reagents such as pyrimidine, imidazole, and some acyclic precursors. This article review focuses on the synthetic methodologies of purine derivatives from its first synthesis in the 19th century to this last decade and also reports a variety of proven pharmacological applications for the purine derivatives. This review offers a panoply of synthetic routes that medicinal and organic chemistry researchers can use in the preparation and design of new purine derivatives.

Keywords: Purine derivatives, imidazo[4, 5-d]pyrimidine, biological activities, pyrimidine, imidazole, anticancer activity, antiviral activity.

Graphical Abstract
[1]
Scheele, K.W. Examen chemicum calculi urinarix. Opuscula., 1776, 2, 73-79.
[2]
Fischer, E. Ber. Purine synthesis. Dtsch. Chem. Ges., 1899, 32, 2550.
[http://dx.doi.org/10.1002/cber.18990320171]
[3]
Rosemeyer, H. The chemodiversity of purine as a constituent of natural products. Chem. Biodivers., 2004, 1(3), 361-401.
[http://dx.doi.org/10.1002/cbdv.200490033] [PMID: 17191854]
[4]
Debnath, P. Recent developments towards the synthesis of pyrimidopyrimidine and purine derivatives. Chem. Select., 2023, 8(26), e202300998.
[5]
Mooney, D.T.; Moore, P.R.; Lee, A.L. Direct minisci-type C–H amidation of purine bases. Org. Lett., 2022, 24(43), 8008-8013.
[http://dx.doi.org/10.1021/acs.orglett.2c03206] [PMID: 36285836]
[6]
Laufer, S.A.; Domeyer, D.M.; Scior, T.R.F.; Albrecht, W.; Hauser, D.R.J. Synthesis and biological testing of purine derivatives as potential ATP-competitive kinase inhibitors. J. Med. Chem., 2005, 48(3), 710-722.
[http://dx.doi.org/10.1021/jm0408767] [PMID: 15689155]
[7]
Legraverend, M. Recent advances in the synthesis of purine derivatives and their precursors. Tetrahedron, 2008, 64(37), 8585-8603.
[http://dx.doi.org/10.1016/j.tet.2008.05.115]
[8]
Legraverend, M.; Grierson, D.S. The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg. Med. Chem., 2006, 14(12), 3987-4006.
[http://dx.doi.org/10.1016/j.bmc.2005.12.060] [PMID: 16503144]
[9]
Seley-Radtke, K.L.; Yates, M.K.; Mary, K.Y. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res., 2018, 154, 66-86.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.004] [PMID: 29649496]
[10]
Gruzdev, D.A.; Dmitry, A. Purine derivatives with antituberculosis activity. Russ. Chem. Rev., 2018, 87(6), 604.
[http://dx.doi.org/10.1070/RCR4772]
[11]
Grazia Martina, M.; Giannessi, L.; Radi, M. Multicomponent synthesis of purines and pyrimidines: From the origin of life to new sustainable approaches for drug‐discovery applications. Eur. J. Org. Chem., 2023, 26(2), e202201288.
[http://dx.doi.org/10.1002/ejoc.202201288]
[12]
Bayoumy, A.B.; Simsek, M.; Seinen, M.L.; Mulder, C.J.J.; Ansari, A.; Peters, G.J.; De Boer, N.K. The continuous rediscovery and the benefit–risk ratio of thioguanine, a comprehensive review. Expert Opin. Drug Metab. Toxicol., 2020, 16(2), 1-13.
[http://dx.doi.org/10.1080/17425255.2020.1719996] [PMID: 32090622]
[13]
Gupta, A.; Vyas, R.K.; Gupta, A.B. Occurrence of acyclovir in the aquatic environment, its removal and research perspectives: A review. J. Water Process Eng., 2021, 39, 101855.
[http://dx.doi.org/10.1016/j.jwpe.2020.101855]
[14]
Ruel, N.M.; Nguyen, K.H.; Vilas, G.; Hammond, J.R. Characterization of 6-mercaptopurine transport by the SLC43A3-encoded nucleobase transporter. Mol. Pharmacol., 2019, 95(6), 584-596.
[http://dx.doi.org/10.1124/mol.118.114389] [PMID: 30910793]
[15]
Burchenal, J.H.; Murphy, M.L.; Ellison, R.R.; Sykes, M.P.; Tan, T.C.; Leone, L.A.; Karnof-Sky, D.A.; Craver, L.F.; Dargeon, H.W.; Rhoads, C.P. Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in the treatment of leukemia and allied diseases. Blood, 1953, 8(11), 965-999.
[http://dx.doi.org/10.1182/blood.V8.11.965.965] [PMID: 13105700]
[16]
Elion, G.B. The purine path to chemotherapy. Science, 1989, 244(4900), 41-47.
[http://dx.doi.org/10.1126/science.2649979] [PMID: 2649979]
[17]
De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol., 2004, 30(2), 115-133.
[http://dx.doi.org/10.1016/j.jcv.2004.02.009] [PMID: 15125867]
[18]
Traube, W. Der synthetische aufbau der harnsäure, des xanthins, theobromins, theophyllins und caffeïns aus der cyanessigsäure. Ber. Dtsch. Chem. Ges., 1900, 33(3), 3035-3056.
[http://dx.doi.org/10.1002/cber.19000330352]
[19]
Traube, W. Ueber eine neue Synthese des Guanins und Xanthins. Ber. Dtsch. Chem. Ges., 1900, 33(1), 1371-1383.
[http://dx.doi.org/10.1002/cber.190003301236]
[20]
Gangjee, A.; Vasudevan, A.; Queener, S.F. Conformationally restricted analogues of trimethoprim: 2,6-diamino-8-substituted purines as potential dihydrofolate reductase inhibitors from Pneumocystis carinii and Toxoplasma gondii. J. Med. Chem., 1997, 40(19), 3032-3039.
[http://dx.doi.org/10.1021/jm970271t] [PMID: 9301665]
[21]
Müller, C.E.; Sandoval-Ramírez, J. A new versatile synthesis of xanthines with variable substituents in the 1-, 3-, 7- and 8-positions. Synthesis, 1995, 1995(10), 1295-1299.
[http://dx.doi.org/10.1055/s-1995-4082]
[22]
Dang, Q.; Brown, B.S.; Erion, M.D. Efficient synthesis of purine analogues: an FeCl3–SiO2-promoted cyclization reaction of 4,5-diaminopyrimidines with aldehydes leading to 6,8,9-trisubstituted purines. Tetrahedron Lett., 2000, 41(34), 6559-6562.
[http://dx.doi.org/10.1016/S0040-4039(00)01074-1]
[23]
Zelli, R.; Zeinyeh, W.; Haudecoeur, R.; Alliot, J.; Boucherle, B.; Callebaut, I.; Décout, J.L. A one-pot synthesis of highly functionalized purines. Org. Lett., 2017, 19(23), 6360-6363.
[http://dx.doi.org/10.1021/acs.orglett.7b03209] [PMID: 29125774]
[24]
Zhong, Q.F.; Sun, L.P. An efficient synthesis of 6,9-disubstituted purin-8-ones via copper-catalyzed coupling/cyclization. Tetrahedron, 2010, 66(27-28), 5107-5111.
[http://dx.doi.org/10.1016/j.tet.2010.04.106]
[25]
Shao, Y.; Cole, A.G.; Brescia, M.R.; Qin, L.Y.; Duo, J.; Stauffer, T.M.; Rokosz, L.L.; McGuinness, B.F.; Henderson, I. Synthesis and SAR studies of trisubstituted purinones as potent and selective adenosine A2A receptor antagonists. Bioorg. Med. Chem. Lett., 2009, 19(5), 1399-1402.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.042] [PMID: 19181527]
[26]
Gaulon, C.; Dijkstra, H.P.; Springer, C.J. General and facile route to new trisubstituted purin-8-ones. Synthesis, 2005, 13, 2227-2233.
[27]
Dejmek, M.; Kovačková, S.; Zborníková, E.; Hřebabecký, H.; Šála, M.; Dračínský, M.; Nencka, R. One-pot build-up procedure for the synthesis of variously substituted purine derivatives. RSC Advances, 2012, 2(17), 6970-6980.
[http://dx.doi.org/10.1039/c2ra20842c]
[28]
Ibrahim, N.; Legraverend, M. Synthesis of 6,7,8-trisubstituted purines via a copper-catalyzed amidation reaction. J. Org. Chem., 2009, 74(1), 463-465.
[http://dx.doi.org/10.1021/jo802248g] [PMID: 19012431]
[29]
Ibrahim, N.; Legraverend, M. High-yielding two-step synthesis of 6,8-disubstituted N-9-unprotected purines. J. Comb. Chem., 2009, 11(4), 658-666.
[http://dx.doi.org/10.1021/cc900066v] [PMID: 19530688]
[30]
LaBeaume, P.; Dong, M.; Sitkovsky, M.; Jones, E.V.; Thomas, R.; Sadler, S.; Kallmerten, A.E.; Jones, G.B. An efficient route to xanthine based A2A adenosine receptor antagonists and functional derivatives. Org. Biomol. Chem., 2010, 8(18), 4155-4157.
[http://dx.doi.org/10.1039/c003382k] [PMID: 20652178]
[31]
Bandyopadhyay, P.; Agrawal, S.K.; Sathe, M.; Sharma, P.; Kaushik, M.P. A facile and rapid one-step synthesis of 8-substituted xanthine derivatives via tandem ring closure at room temperature. Tetrahedron, 2012, 68(20), 3822-3827.
[http://dx.doi.org/10.1016/j.tet.2012.03.050]
[32]
Mekheimer, R.A.; Hayallah, A.M.; Moustafa, M.S.; Al-Mousawi, S.M.; Abd-Elmonem, M.; Mostafa, S.M.; Abo Elsoud, F.A.; Sadek, K.U. Microwave-assisted reactions: Efficient and versatile one-step synthesis of 8-substituted xanthines and substituted pyrimidopteridine-2,4,6,8-tetraones under controlled microwave heating. Green Proc. Synt., 2021, 10(1), 201-207.
[http://dx.doi.org/10.1515/gps-2021-0014]
[33]
He, H.; Zatorska, D.; Kim, J.; Aguirre, J.; Llauger, L.; She, Y.; Wu, N.; Immormino, R.M.; Gewirth, D.T.; Chiosis, G. Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. J. Med. Chem., 2006, 49(1), 381-390.
[http://dx.doi.org/10.1021/jm0508078] [PMID: 16392823]
[34]
Tao, H.; Kang, Y.; Taldone, T.; Chiosis, G. Microwave-assisted one step synthesis of 8-arylmethyl-9H-purin-6-amines. Bioorg. Med. Chem. Lett., 2009, 19(2), 415-417.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.057] [PMID: 19058963]
[35]
Dias, A.M.; Vila-Cha, A.S.; Cabral, I.M.; Proenca, M.F. A versatile synthetic approach to isoguanine derivatives. Synlett, 2007, 08, 1231-1234.
[36]
Iaroshenko, V.O.; Volochnyuk, D.M.; Yan, W.; Vovk, M.V.; Boiko, V.J.; Rusanov, E.B.; Groth, U.M.; Tolmachev, A.A. Synthesis of fluorinated purines and thiapurines. Synthesis, 2007, 3309-3318.
[37]
Bollier, M.; Klupsch, F.; Six, P.; Dubuquoy, L.; Azaroual, N.; Millet, R.; Leleu-Chavain, N. One- or two-step synthesis of c-8 and n-9 substituted purines. J. Org. Chem., 2018, 83(1), 422-430.
[http://dx.doi.org/10.1021/acs.joc.7b02269] [PMID: 29192784]
[38]
Yamada, H.; Okamoto, T. A One-step synthesis of purine ring from formamide. Chem. Pharm. Bull., 1972, 20(3), 623-624.
[http://dx.doi.org/10.1248/cpb.20.623]
[39]
Huang, X.F.; Cao, Y.J.; Zhen, J.; Zhang, D.W.; Kong, R.; Jiang, W.T.; Xuc, Y.; Songa, G.Q.; Ked, H.M.; Liu, L. Design, synthesis of novel purin-6-one derivatives as PDE2 inhibitors: The neuroprotective and anxiolytic-like effects. Bioorg. Med. Chem. Lett., 2019, 29(3), 481-486.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.018] [PMID: 30554955]
[40]
Kuo, T.C.; Li, L.W.; Pan, S.H.; Fang, J.M.; Liu, J.H.; Cheng, T.J.; Wang, C.J.; Hung, P.F.; Chen, H.Y.; Hong, T.M.; Hsu, Y.L.; Wong, C.H.; Yang, P.C. Purine-type compounds induce microtubule fragmentation and lung cancer cell death through interaction with katanin. J. Med. Chem., 2016, 59(18), 8521-8534.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00797] [PMID: 27536893]
[41]
Huang, N.Y.; Liang, Y.J.; Ding, M.W.; Fu, L.W.; He, H.W. Efficient synthesis and biological evaluation of 1,2,9-trisubstituted 1,9-dihydro-6H-purin-6-ones. Bioorg. Med. Chem. Lett., 2009, 19(3), 831-833.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.007] [PMID: 19117758]
[42]
Lin, Y.; Xiang, L.; Ming, L. Synthesis and biological activity of novel 6-substituted purine derivatives. J. Mex. Chem. Soc., 2010, 54(2), 74-78.
[43]
Vlková, K.; Gucký, T.; Peřina, M.; Řezníčková, E.; Kryštof, V. Synthesis and biological activity evaluation of novel 2,6,9-trisubstituted purine conjugates as potential protein kinases inhibitors. Bioorg. Med. Chem. Lett., 2022, 60, 128603.
[http://dx.doi.org/10.1016/j.bmcl.2022.128603] [PMID: 35124201]
[44]
Trova, M.P.; Barnes, K.D.; Barford, C.; Benanti, T.; Bielaska, M.; Burry, L.; Lehman, J.M.; Murphy, C.; O’Grady, H.; Peace, D.; Salamone, S.; Smith, J.; Snider, P.; Toporowski, J.; Tregay, S.; Wilson, A.; Wyle, M.; Zheng, X.; Friedrich, T.D. Biaryl purine derivatives as potent antiproliferative agents: Inhibitors of cyclin dependent kinases. Part I. Bioorg. Med. Chem. Lett., 2009, 19(23), 6608-6612.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.025] [PMID: 19846305]
[45]
Nadaf, A.Q.A.; Najare, M.S.; Garbhagudi, M.; Mantur, S.; Sunagar, M.G.; Gaonkar, S. Synthesis of 6‐[4‐(4‐propoxyphenyl) piperazin‐1‐yl]‐9h‐purine derivatives as antimycobacterial and antifungal agents: in vitro evaluation and in silico study. Chem. Biodivers., 2020, 17(5), e2000053.
[46]
Verma, V.A.; Halu, B.; Saundane, A.R.; Meti, R.S. Synthesis, biological validation, and docking studies of novel purine derivatives containing pyridopyrimidine, pyrazolopyridine, and pyranonapthyridine rings†. Polycycl. Aromat. Compd., 2022, 42(6), 3694-3716.
[http://dx.doi.org/10.1080/10406638.2020.1871384]
[47]
Finger, V.; Kucera, T.; Kafkova, R.; Muckova, L.; Dolezal, R.; Kubes, J.; Novak, M.; Prchal, L.; Lakatos, L.; Andrs, M.; Hympanova, M.; Marek, J.; Kufa, M.; Spiwok, V.; Soukup, O.; Mezeiova, E.; Janousek, J.; Nevosadova, L.; Benkova, M.; Kitson, R.R.A.; Kratky, M.; Bősze, S.; Mikusova, K.; Hartkoorn, R.; Roh, J.; Korabecny, J. 2,6-disubstituted 7-(naphthalen-2-ylmethyl)-7H-purines as a new class of potent antitubercular agents inhibiting DprE1. Eur. J. Med. Chem., 2023, 258, 115611.
[http://dx.doi.org/10.1016/j.ejmech.2023.115611] [PMID: 37421887]
[48]
Krasnov, V.P.; Zarubaev, V.V.; Gruzdev, D.A.; Vozdvizhenskaya, O.A.; Vakarov, S.A.; Musiyak, V.V.; Chulakov, E.N.; Volobueva, A.S.; Sinegubova, E.O.; Ezhikova, M.A.; Kodess, M.I.; Levit, G.L.; Charushin, V.N. Novel purine conjugates with N-heterocycles: Synthesis and anti-influenza activity. Chem. Heterocycl. Compd., 2021, 57(4), 498-504.
[http://dx.doi.org/10.1007/s10593-021-02930-6]
[49]
Mohamed, A.R.; Mostafa, A.; El Hassab, M.A.; Hedeab, G.M.; Mahmoud, S.H.; George, R.F.; Georgey, H.H.; Abdel Gawad, N.M.; El-Ashrey, M.K. Insights into targeting SARS-CoV-2: design, synthesis, in silico studies and antiviral evaluation of new dimethylxanthine derivatives. RSC Med. Chem., 2023, 14(5), 899-920.
[http://dx.doi.org/10.1039/D3MD00056G] [PMID: 37252103]
[50]
Ramana, K.V.; Sreevani, I.; Raju, C.N.; Subbaiah, K.V. Synthesis of novel phosphorylated derivatives of Tenefovir intermediate and their antiviral activity; NVEO, 2021, pp. 8410-8416.
[51]
Zygmunt, M.; Ślusarczyk, M.; Jankowska, A.; Świerczek, A.; Bryła, A.; Mogilski, S.; Kazek, G.; Sapa, J.; Wyska, E.; Chłoń-Rzepa, G. Evaluation of analgesic and anti-inflammatory activity of purine-2,6-dione-based TRPA1 antagonists with PDE4/7 inhibitory activity. Pharmacol. Rep., 2022, 74(5), 982-997.
[http://dx.doi.org/10.1007/s43440-022-00397-6] [PMID: 35930193]
[52]
Załuski, M.; Łażewska, D.; Jaśko, P.; Honkisz-Orzechowska, E.; Kuder, K.J.; Brockmann, A.; Latacz, G.; Zygmunt, M.; Kaleta, M.; Greser, B.A.; Olejarz-Maciej, A.; Jastrzebska-Wiesek, M.; Vielmuth, C.; Müller, C.E.; Kieć-Kononowicz, K. Anti-inflammatory activities of 8-benzyl-aminoxanthines showing high adenosine A2A and dual A1/A2A receptor affinity. Int. J. Mol. Sci., 2023, 24(18), 13707.
[53]
Chłoń-Rzepa, G.; Jankowska, A.; Ślusarczyk, M.; Świerczek, A.; Pociecha, K.; Wyska, E.; Bucki, A.; Gawalska, A.; Kołaczkowski, M.; Pawłowski, M. Novel butanehydrazide derivatives of purine-2,6-dione as dual PDE4/7 inhibitors with potential anti-inflammatory activity: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 146, 381-394.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.068] [PMID: 29407965]
[54]
Cros-Perrial, E.; Saulnier, S.; Raza, M.Z.; Charmelot, R.; Egron, D.; Dumontet, C.; Chaloin, L.; Peyrottes, S.; Jordheim, L.P. Cytotoxic and antitumoral activity of N-(9H-purin-6-yl) benzamide derivatives and related water-soluble prodrugs. Curr. Mol. Pharmacol., 2022, 15(6), 883-894.
[http://dx.doi.org/10.2174/1874467214666211014164406] [PMID: 34649495]
[55]
Kul, P.; Tuncbilek, M.; Ergul, M.; Yenilmez, T.E.N.; Tutar, Y. A novel 6, 8, 9- trisubstituted purine analogue drives breast cancer luminal a subtype MCF-7 to apoptosis and senescence through Hsp70 inhibition. Anticancer. Agents Med. Chem., 2023, 23(5), 585-598.
[56]
Yang, S.; Yoon, N.G.; Park, M.A.; Yun, J.; Im, J.Y.; Kang, B.H.; Kang, S. Triphenylphosphonium conjugation to a TRAP1 inhibitor, 2-amino-6-chloro-7,9-dihydro-8H-purin-8-one increases antiproliferative activity. Bioorg. Chem., 2022, 126, 105856.
[http://dx.doi.org/10.1016/j.bioorg.2022.105856] [PMID: 35661618]
[57]
Tomanová, M.; Kozlanská, K.; Jorda, R.; Jedinák, L.; Havlíková, T.; Řezníčková, E.; Peřina, M.; Klener, P.; Dolníková, A.; Cankař, P.; Kryštof, V. Synthesis and structural optimization of 2,7,9-trisubstituted purin-8-ones as FLT3-ITD inhibitors. Int. J. Mol. Sci., , 2022, 23(24), 16169-, 24-16169.
[http://dx.doi.org/10.3390/ijms232416169] [PMID: 36555810]
[58]
Zatloukal, M.; Jorda, R.; Gucký, T.; Řezníčková, E.; Voller, J.; Pospíšil, T.; Malínková, V.; Adamcová, H.; Kryštof, V.; Strnad, M. Synthesis and in vitro biological evaluation of 2,6,9-trisubstituted purines targeting multiple cyclin-dependent kinases. Eur. J. Med. Chem., 2013, 61, 61-72.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.036] [PMID: 22770608]
[59]
Patel, P.R.; Ramalingan, C.; Park, Y.T. Synthesis and antimicrobial evaluation of guanylsulfonamides. Bioorg. Med. Chem. Lett., 2007, 17(23), 6610-6614.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.060] [PMID: 17942305]
[60]
Tunçbilek, M.; Ateş-Alagöz, Z.; Altanlar, N.; Karayel, A.; Özbey, S. Synthesis and antimicrobial evaluation of some new substituted purine derivatives. Bioorg. Med. Chem., 2009, 17(4), 1693-1700.
[http://dx.doi.org/10.1016/j.bmc.2008.12.050] [PMID: 19150600]
[61]
Ashour, F.A.; Rida, S.M.; El-Hawash, S.A.M.; ElSemary, M.M.; Badr, M.H. Synthesis, anticancer, anti-HIV-1, and antimicrobial activity of some tricyclic triazino and triazolo[4,3-e]purine derivatives. Med. Chem. Res., 2012, 21(7), 1107-1119.
[http://dx.doi.org/10.1007/s00044-011-9612-6]
[62]
Sen, P.; Barton, S.E. Genital herpes and its management. BMJ, 2007, 334(7602), 1048-1052.
[http://dx.doi.org/10.1136/bmj.39189.504306.55] [PMID: 17510153]
[63]
Cernik, C.; Gallina, K.; Brodell, R.T. The treatment of herpes simplex infections: An evidence-based review. Arch. Intern. Med., 2008, 168(11), 1137-1144.
[http://dx.doi.org/10.1001/archinte.168.11.1137] [PMID: 18541820]
[64]
Zhu, M.; Dong, B.; Zhang, G.N.; Wang, J.X.; Cen, S.; Wang, Y.C. Synthesis and biological evaluation of new HIV-1 protease inhibitors with purine bases as P2-ligands. Bioorg. Med. Chem. Lett., 2019, 29(12), 1541-1545.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.049] [PMID: 31014912]
[65]
He, F.; Shi, J.; Wang, Y.; Wang, S.; Chen, J.; Gan, X.; Song, B.; Hu, D. Synthesis, antiviral activity, and mechanisms of purine nucleoside derivatives containing a sulfonamide moiety. J. Agric. Food Chem., 2019, 67(31), 8459-8467.
[http://dx.doi.org/10.1021/acs.jafc.9b02681] [PMID: 31339701]
[66]
Wang, S.B.; Deng, X.Q.; Liu, D.C.; Zhang, H.J.; Quan, Z.S. Synthesis and evaluation of anticonvulsant and antidepressant activities of 7-alkyl-7H-tetrazolo[1,5-g]purine derivatives. Med. Chem. Res., 2014, 23(10), 4619-4626.
[http://dx.doi.org/10.1007/s00044-014-1030-0]
[67]
Wang, S.B.; Jin, P.; Li, F.N.; Quan, Z.S. Synthesis and anticonvulsant activity of novel purine derivatives. Eur. J. Med. Chem., 2014, 84, 574-583.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.074] [PMID: 25062008]
[68]
Zygmunt, M.; Chłoń-Rzepa, G.; Sapa, J.; Pawłowski, M. Analgesic activity of new 8-methoxy-1,3-dimethyl-2,6-dioxo-purin-7-yl derivatives with carboxylic, ester or amide moieties. Pharmacol. Rep., 2015, 67(1), 9-16.
[http://dx.doi.org/10.1016/j.pharep.2014.07.018] [PMID: 25560569]
[69]
Trávníček, Z.; Štarha, P.; Vančo, J.; Šilha, T.; Hošek, J.; Suchý, P., Jr; Pražanová, G. Anti-inflammatory active gold(I) complexes involving 6-substituted-purine derivatives. J. Med. Chem., 2012, 55(10), 4568-4579.
[http://dx.doi.org/10.1021/jm201416p] [PMID: 22541000]
[70]
Hošek, J.; Vančo, J.; Štarha, P.; Paráková, L.; Trávníček, Z. Effect of 2-chloro- substitution of adenine moiety in mixed-ligand gold(I) triphenylphosphine complexes on anti-inflammatory activity: The discrepancy between the in vivo and in vitro models. PLoS One, 2013, 8(11), e82441.
[71]
Elion, G.B.; Hitchings, G.H. Antineoplastic and immunosuppressive agents. Handb. Exp. Pharmacol., 1975, 38(2), 404-425.
[72]
Wang, Y.; Metcalf, C.A., III; Shakespeare, W.C.; Sundaramoorthi, R.; Keenan, T.P.; Bohacek, R.S.; van Schravendijk, M.R.; Violette, S.M.; Narula, S.S.; Dalgarno, D.C.; Haraldson, C.; Keats, J.; Liou, S.; Mani, U.; Pradeepan, S.; Ram, M.; Adams, S.; Weigele, M.; Sawyer, T.K. Bone-targeted 2,6,9-trisubstituted purines: Novel inhibitors of Src tyrosine kinase for the treatment of bone diseases. Bioorg. Med. Chem. Lett., 2003, 13(18), 3067-3070.
[http://dx.doi.org/10.1016/S0960-894X(03)00648-6] [PMID: 12941335]
[73]
Cohen, M.H.; Johnson, J.R.; Justice, R.; Pazdur, R. FDA drug approval summary: Nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist, 2008, 13(6), 709-714.
[http://dx.doi.org/10.1634/theoncologist.2006-0017] [PMID: 18586926]
[74]
Furman, R.R.; Sharman, J.P.; Coutre, S.E.; Cheson, B.D.; Pagel, J.M.; Hillmen, P.; Barrientos, J.C.; Zelenetz, A.D.; Kipps, T.J.; Flinn, I.; Ghia, P.; Eradat, H.; Ervin, T.; Lamanna, N.; Coiffier, B.; Pettitt, A.R.; Ma, S.; Stilgenbauer, S.; Cramer, P.; Aiello, M.; Johnson, D.M.; Miller, L.L.; Li, D.; Jahn, T.M.; Dansey, R.D.; Hallek, M.; O’Brien, S.M. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med., 2014, 370(11), 997-1007.
[http://dx.doi.org/10.1056/NEJMoa1315226] [PMID: 24450857]
[75]
Adkins, J.C.; Peters, D.H.; Markham, A. Fludarabine. An update of its pharmacology and use in the treatment of haematological malignancies. Drugs, 1997, 53(6), 1005-1037.
[PMID: 9179529]
[76]
Robak, T. Cladribine in the treatment of chronic lymphocytic leukemia. Leuk. Lymphoma, 2001, 40(5-6), 551-564.
[http://dx.doi.org/10.3109/10428190109097654] [PMID: 11426528]
[77]
Conejo-García, A.; García-Rubiño, M.E.; Marchal, J.A.; Núñez, M.C.; Ramírez, A.; Cimino, S.; García, M.Á.; Aránega, A.; Gallo, M.A.; Campos, J.M. Synthesis and anticancer activity of (RS)-9-(2,3-dihydro-1,4-benzoxaheteroin-2-ylmethyl)-9H-purines. Eur. J. Med. Chem., 2011, 46(9), 3795-3801.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.046] [PMID: 21645946]
[78]
Khazir, J.; Mir, B.A.; Chashoo, G.; Pilcher, L.; Riley, D. Synthesis and anticancer activity of N-9- and N-7-substituted 1,2,3 triazole analogues of 2,6-di-substituted purine. Med. Chem. Res., 2020, 29(1), 33-45.
[http://dx.doi.org/10.1007/s00044-019-02456-9]
[79]
Chaudhary, V.; Das, S.; Nayak, A.; Guchhait, S.K.; Kundu, C.N. Scaffold-hopping and hybridization based design and building block strategic synthesis of pyridine-annulated purines: Discovery of novel apoptotic anticancer agents. RSC Advances, 2015, 5(33), 26051-26060.
[http://dx.doi.org/10.1039/C5RA00052A]
[80]
De Kouchkovsky, I.; Abdul-Hay, M. Acute myeloid leukemia: A comprehensive review and 2016 update. Blood Cancer J., 2016, 6(7), e441.
[http://dx.doi.org/10.1038/bcj.2016.50]
[81]
Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; Levine, R.L.; Lo-Coco, F.; Naoe, T.; Niederwieser, D.; Ossenkoppele, G.J.; Sanz, M.; Sierra, J.; Tallman, M.S.; Tien, H.F.; Wei, A.H.; Löwenberg, B.; Bloomfield, C.D. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood, 2017, 129(4), 424-447.
[http://dx.doi.org/10.1182/blood-2016-08-733196] [PMID: 27895058]
[82]
Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016, 127(20), 2391-2405.
[http://dx.doi.org/10.1182/blood-2016-03-643544] [PMID: 27069254]
[83]
Abbas, H.A.; Alfayez, M.; Kadia, T.; Ravandi-Kashani, F.; Daver, N. Midostaurin in acute myeloid leukemia: An evidence-based review and patient selection. Cancer Manag. Res., 2019, 11, 8817-8828.
[http://dx.doi.org/10.2147/CMAR.S177894] [PMID: 31632141]
[84]
Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev., 2009, 109(7), 2880-2893.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[85]
Wang, D.; Yu, C.; Xu, L.; Shi, L.; Tong, G.; Wu, J.; Liu, H.; Yan, D.; Zhu, X. Nucleoside analogue-based supramolecular nanodrugs driven by molecular recognition for synergistic cancer therapy. J. Am. Chem. Soc., 2018, 140(28), 8797-8806.
[http://dx.doi.org/10.1021/jacs.8b04556] [PMID: 29940110]
[86]
Zimm, S.; Collins, J.M.; O’Neill, D.; Chabner, B.A.; Poplack, D.G. Inhibition of first-pass metabolism in cancer chemotherapy: Interaction of 6-mercaptopurine and allopurinol. Clin. Pharmacol. Ther., 1983, 34(6), 810-817.
[http://dx.doi.org/10.1038/clpt.1983.254] [PMID: 6580097]
[87]
Gucký, T.; Řezníčková, E.; Radošová Muchová, T.; Jorda, R.; Klejová, Z.; Malínková, V.; Berka, K.; Bazgier, V.; Ajani, H.; Lepšík, M.; Divoký, V.; Kryštof, V. Discovery of N2-(4-Amino-cyclohexyl)-9-cyclopentyl-N6-(4-morpholin-4-ylmethyl-phenyl)- 9H -purine-2,6-diamine as a Potent FLT3 kinase inhibitor for acute myeloid leukemia with FLT3 mutations. J. Med. Chem., 2018, 61(9), 3855-3869.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01529] [PMID: 29672049]
[88]
Chiosis, G.; Lucas, B.; Huezo, H.; Solit, D.; Basso, A.; Rosen, N. Development of purine-scaffold small molecule inhibitors of Hsp90. Curr. Cancer Drug Targets, 2003, 3(5), 371-376.
[http://dx.doi.org/10.2174/1568009033481778] [PMID: 14529388]
[89]
Llauger, L.; He, H.; Kim, J.; Aguirre, J.; Rosen, N.; Peters, U.; Davies, P.; Chiosis, G. Evaluation of 8-arylsulfanyl, 8-arylsulfoxyl, and 8-arylsulfonyl adenine derivatives as inhibitors of the heat shock protein 90. J. Med. Chem., 2005, 48(8), 2892-2905.
[http://dx.doi.org/10.1021/jm049012b] [PMID: 15828828]
[90]
Baraldi, P.G.; Preti, D.; Tabrizi, M.A.; Fruttarolo, F.; Romagnoli, R.; Zaid, N.A.; Moorman, A.R.; Merighi, S.; Varani, K.; Borea, P.A. New pyrrolo[2,1-f]purine-2,4-dione and imidazo[2,1-f]purine-2,4-dione derivatives as potent and selective human A3 adenosine receptor antagonists. J. Med. Chem., 2005, 48(14), 4697-4701.
[http://dx.doi.org/10.1021/jm058008c] [PMID: 16000006]
[91]
Gahr, S.; Peter, G.; Wissniowski, T.T.; Hahn, E.G.; Herold, C.; Ocker, M. The histone-deacetylase inhibitor MS-275 and the CDK-inhibitor CYC-202 promote anti-tumor effects in hepatoma cell lines. Oncol. Rep., 2008, 20(5), 1249-1256.
[PMID: 18949429]
[92]
Yu, Y.; Ran, D.; Jiang, J.; Pan, T.; Dan, Y.; Tang, Q.; Li, W.; Zhang, L.; Gan, L.; Gan, Z. Discovery of novel 9H-purin derivatives as dual inhibitors of HDAC1 and CDK2. Bioorg. Med. Chem. Lett., 2019, 29(16), 2136-2140.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.059] [PMID: 31272794]
[93]
Cheng, C.; Yun, F.; Ullah, S.; Yuan, Q. Discovery of novel cyclin-dependent kinase (CDK) and histone deacetylase (HDAC) dual inhibitors with potent in vitro and in vivo anticancer activity. Eur. J. Med. Chem., 2020, 189, 112073.
[http://dx.doi.org/10.1016/j.ejmech.2020.112073] [PMID: 31991336]
[94]
Yun, F.; Cheng, C.; Ullah, S.; Yuan, Q. Design, synthesis and biological evaluation of novel histone deacetylase1/2 (HDAC1/2) and cyclin-dependent Kinase2 (CDK2) dual inhibitors against malignant cancer. Eur. J. Med. Chem., 2020, 198, 112322.
[http://dx.doi.org/10.1016/j.ejmech.2020.112322] [PMID: 32361064]
[95]
Moi, D.; Bonanni, D.; Belluti, S.; Linciano, P.; Citarella, A.; Franchini, S.; Sorbi, C.; Imbriano, C.; Pinzi, L.; Rastelli, G. Discovery of potent pyrrolo-pyrimidine and purine HDAC inhibitors for the treatment of advanced prostate cancer. Eur. J. Med. Chem., 2023, 260, 115730.
[http://dx.doi.org/10.1016/j.ejmech.2023.115730] [PMID: 37633202]
[96]
Nepali, K.; Chang, T.Y.; Lai, M.J.; Hsu, K.C.; Yen, Y.; Lin, T.E.; Lee, S.B.; Liou, J.P. Purine/purine isoster based scaffolds as new derivatives of benzamide class of HDAC inhibitors. Eur. J. Med. Chem., 2020, 196, 112291.
[http://dx.doi.org/10.1016/j.ejmech.2020.112291] [PMID: 32325365]
[97]
Zhao, Q.; Xiong, S.S.; Chen, C.; Zhu, H.P.; Xie, X.; Peng, C.; He, G.; Han, B. Discovery of spirooxindole-derived small-molecule compounds as novel HDAC/MDM2 dual inhibitors and investigation of their anticancer activity. Front. Oncol., 2022, 12, 972372.
[http://dx.doi.org/10.3389/fonc.2022.972372] [PMID: 35992773]
[98]
Zhou, Z.Z.; Shi, X.D.; Feng, H.F.; Cheng, Y.F.; Wang, H.T.; Xu, J.P. Discovery of novel 9H-purins as potential tubulin polymerization inhibitors. Eur. J. Med. Chem., 2017, 138, 1126-1134.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.054] [PMID: 28763647]
[99]
Zhang, Q.; Hu, X.; Wan, G.; Wang, J.; Li, L.; Wu, X.; Liu, Z.; Yu, L. Discovery of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives as novel tubulin polymerization inhibitors for treatment of cancer. Eur. J. Med. Chem., 2019, 184, 111728.
[http://dx.doi.org/10.1016/j.ejmech.2019.111728] [PMID: 31610375]
[100]
Sunagar, M.G.; Gaonkar, S.; Sunagar, S.G.; Deshapande, N.; Belavagi, N.S.; Khazi, I.A.M. Synthesis of novel N-9 substituted 6-(4-(4-propoxyphenyl)piperazin-1-yl)-9H-purine derivatives as inducers of apoptosis in MCF-7 breast cancer cells. RSC Adv., 2016, 6(19), 15286-15297.
[http://dx.doi.org/10.1039/C5RA23242B]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy