Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

miR-628-5p is a Potential Novel Prognosis Biomarker, Associated with Immune Infiltration in Bladder Urothelial Carcinoma

Author(s): Hong Huang, Qingchun Xu, Yonghai Zhang*, Yizhou Zhou, Kaiqun Ma and Yingxun Luo

Volume 29, Issue 31, 2023

Published on: 24 October, 2023

Page: [2477 - 2488] Pages: 12

DOI: 10.2174/0113816128254621231017062923

Price: $65

Abstract

Background: microRNA-628-5p (miR-628-5p) has a significant impact on certain types of cancer. The precise function of miR-628-5p in the context of bladder urothelial carcinoma (BLCA) remains ambiguous.

Objective: We aimed to investigate the role of miR-628-5p in BLCA.

Methods: The samples were collected from The Cancer Genome Atlas (TCGA). Statistics were employed to evaluate the correlation and predictive significance of miR-628-5p. We analyzed the target genes and regulatory network of miR-628-5p and the correlation between miR-628-5p and immune infiltration. The expression of miR-628-5p in BLCA cells was confirmed by quantitative reverse-transcription PCR (qRT-PCR).

Results: miR-628-5p exhibited differential expression across various types of cancer. There was a significant association between high expression of miR-628-5p and primary therapy outcome (p < 0.05). High expression of miR-628-5p was observed to be associated with poorer overall survival (HR: 1.42; 95% CI: 1.06-1.90; p = 0.02), progress free survival (HR: 1.57; 95% CI: 1.17-2.11; p = 0.003), and disease specific survival (HR: 1.83; 95% CI: 1.28-2.62; p = 0.001) in BLCA. miR-628-5p was an independent prognostic factor in BLCA and may be involved in the development of the disease through various pathways, including focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathway, and MAPK signaling pathway, and among others. miR-628-5p expression was significantly correlated with immune infiltration in BLCA patients. Compared to normal bladder epithelial cells, BLCA cell lines exhibited a significant upregulation of miR-628-5p.

Conclusion: It is possible that miR-628-5p could serve as a hopeful therapeutic target and prognostic biomarker for individuals with BLCA.

Keywords: microRNA-628-5p, bladder urothelial carcinoma (BLCA), prognosis, immune infiltration, gene expression, pathway, PI3K-Akt.

[1]
Yousef PG, Gabril MY. An update on the molecular pathology of urinary bladder tumors. Pathol Res Pract 2018; 214(1): 1-6.
[http://dx.doi.org/10.1016/j.prp.2017.11.003] [PMID: 29254798]
[2]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[3]
Martinez Rodriguez RH, Buisan Rueda O, Ibarz L. Tumor vesical: Presente y futuro. Med Clin 2017; 149(10): 449-55.
[http://dx.doi.org/10.1016/j.medcli.2017.06.009] [PMID: 28736063]
[4]
Huang M, Zhong Z, Lv M, Shu J, Tian Q, Chen J. Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma. Oncotarget 2016; 7(30): 47186-200.
[http://dx.doi.org/10.18632/oncotarget.9706] [PMID: 27363013]
[5]
Wang J, Zhang C, Wu Y, He W, Gou X. Identification and analysis of long non-coding RNA related miRNA sponge regulatory network in bladder urothelial carcinoma. Cancer Cell Int 2019; 19(1): 327.
[http://dx.doi.org/10.1186/s12935-019-1052-2] [PMID: 31827401]
[6]
Guo F, Xue J. MicroRNA-628-5p inhibits cell proliferation and induces apoptosis in colorectal cancer through downregulating CCND1 expression levels. Mol Med Rep 2020; 21(3): 1481-90.
[http://dx.doi.org/10.3892/mmr.2020.10945] [PMID: 32016467]
[7]
Li B, Xie D, Zhang H. MicroRNA-101-3p advances cisplatin sensitivity in bladder urothelial carcinoma through targeted silencing EZH2. J Cancer 2019; 10(12): 2628-34.
[http://dx.doi.org/10.7150/jca.33117] [PMID: 31258770]
[8]
Ding Y, Wu W, Ma Z, Shao X, Zhang M, Wang Z. Potential value of MicroRNA-21 as a biomarker for predicting the prognosis of patients with breast cancer. Medicine 2021; 100(22): e25964.
[http://dx.doi.org/10.1097/MD.0000000000025964] [PMID: 34087839]
[9]
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15(6): 321-33.
[http://dx.doi.org/10.1038/nrc3932] [PMID: 25998712]
[10]
Yang L, Sun HF, Guo LQ, Cao HB. MiR-10a-5p: A promising biomarker for early diagnosis and prognosis evaluation of bladder cancer. Cancer Manag Res 2021; 13: 7841-50.
[http://dx.doi.org/10.2147/CMAR.S326732] [PMID: 34703308]
[11]
Shi Z, Kadeer A, Wang M. et al. The deregulation of miR-133b is associated with poor prognosis in bladder cancer. Pathol Res Pract 2019; 215(2): 354-7.
[http://dx.doi.org/10.1016/j.prp.2018.11.018] [PMID: 30591241]
[12]
Wang S, Xue S, Dai Y. et al. Reduced expression of microRNA-100 confers unfavorable prognosis in patients with bladder cancer. Diagn Pathol 2012; 7(1): 159.
[http://dx.doi.org/10.1186/1746-1596-7-159] [PMID: 23173870]
[13]
Wang JY, Wang JQ, Lu SB. miR-628-5p promotes growth and migration of osteosarcoma by targeting IFI44L. Biochem Cell Biol 2020; 98(2): 99-105.
[http://dx.doi.org/10.1139/bcb-2019-0001] [PMID: 31018104]
[14]
Prior C, Perez-Gracia JL, Garcia-Donas J. et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS One 2014; 9(1): e86263.
[http://dx.doi.org/10.1371/journal.pone.0086263] [PMID: 24475095]
[15]
Sommerová L, Ďuríková H, Podhorec J, Hrstka R. MicroRNA analysis in epithelial ovarian cancer. Clin Oncol 2017; 30(1): 180-3.
[16]
Srivastava A, Goldberger H, Dimtchev A. et al. Circulatory miR-628-5p is downregulated in prostate cancer patients. Tumour Biol 2014; 35(5): 4867-73.
[http://dx.doi.org/10.1007/s13277-014-1638-1] [PMID: 24477576]
[17]
Li M, Wang X, Liu J. et al. Identification of core prognosis-related candidate genes in chinese gastric cancer population based on integrated bioinformatics. BioMed Res Int 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/8859826] [PMID: 33381592]
[18]
Lyu G, Li D, Xiong H. et al. Quantitative proteomic analyses identify STO/BBX24 -related proteins induced by UV-B. Int J Mol Sci 2020; 21(7): 2496.
[http://dx.doi.org/10.3390/ijms21072496] [PMID: 32260266]
[19]
Yang Y, Gu X, Li Z. et al. Whole-exome sequencing of rectal cancer identifies locally recurrent mutations in the Wnt pathway. Aging 2021; 13(19): 23262-83.
[http://dx.doi.org/10.18632/aging.203618] [PMID: 34642262]
[20]
Lin Z, Huang W, Yi Y. et al. LncRNA ADAMTS9-AS2 is a prognostic biomarker and correlated with immune infiltrates in lung adenocarcinoma. Int J Gen Med 2021; 14: 8541-55.
[http://dx.doi.org/10.2147/IJGM.S340683] [PMID: 34849000]
[21]
Yi W, Shen H, Sun D. et al. Low expression of long noncoding RNA SLC26A4 Antisense RNA 1 is an independent prognostic biomarker and correlate of immune infiltrates in breast cancer.. Med Sci Monit 2021; 27: e934522.
[PMID: 34880202]
[22]
Chen J, Tang H, Li T. et al. Comprehensive analysis of the expression, prognosis, and biological significance of OVOLs in breast cancer. Int J Gen Med 2021; 14: 3951-60.
[http://dx.doi.org/10.2147/IJGM.S326402] [PMID: 34345183]
[23]
Yang D, Liu M, Jiang J. et al. Comprehensive analysis of DMRT3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma. Cancers 2022; 14(24): 6220.
[http://dx.doi.org/10.3390/cancers14246220] [PMID: 36551704]
[24]
Han Q, Cui Z, Wang Q, Pang F, Li D, Wang D. Upregulation of OTX2-AS1 is associated with immune infiltration and predicts prognosis of gastric cancer. Technol Cancer Res Treat 2023; 22: 15330338231154091.
[http://dx.doi.org/10.1177/15330338231154091] [PMID: 36740995]
[25]
Liang W, Lu Y, Pan X. et al. Decreased expression of a novel lncRNA FAM181A-AS1 is associated with poor prognosis and immune infiltration in lung adenocarcinoma. Pharm Genomics Pers Med 2022; 15: 985-98.
[http://dx.doi.org/10.2147/PGPM.S384901] [PMID: 36482943]
[26]
Yuan X, Zhang Y, Yu Z. Expression and clinical significance of miR-3615 in hepatocellular carcinoma. J Int Med Res 2021; 49(1): 0300060520981547.
[http://dx.doi.org/10.1177/0300060520981547] [PMID: 33435769]
[27]
Lu X, Jing L, Liu S, Wang H, Chen B. miR-149-3p is a potential prognosis biomarker and correlated with immune infiltrates in uterine corpus endometrial carcinoma. Int J Endocrinol 2022; 2022: 1-15.
[http://dx.doi.org/10.1155/2022/5006123] [PMID: 35719192]
[28]
Liu J, Lichtenberg T, Hoadley KA. et al. An integrated tcga pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 2018; 173(2): 400-416.e11.
[http://dx.doi.org/10.1016/j.cell.2018.02.052] [PMID: 29625055]
[29]
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: e05005.
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[30]
Chiang HR, Schoenfeld LW, Ruby JG. et al. Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev 2010; 24(10): 992-1009.
[http://dx.doi.org/10.1101/gad.1884710] [PMID: 20413612]
[31]
Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 2019; 20(1): 18.
[http://dx.doi.org/10.1186/s13059-019-1629-z] [PMID: 30670076]
[32]
Krek A, Grün D, Poy MN. et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5): 495-500.
[http://dx.doi.org/10.1038/ng1536] [PMID: 15806104]
[33]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[34]
Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013; 14(1): 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[35]
Lu X, Li G, Liu S, Wang H, Zhang Z, Chen B. Bioinformatics analysis of KIF1A expression and gene regulation network in ovarian carcinoma. Int J Gen Med 2021; 14: 3707-17.
[http://dx.doi.org/10.2147/IJGM.S323591] [PMID: 34321916]
[36]
Bindea G, Mlecnik B, Tosolini M. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39(4): 782-95.
[http://dx.doi.org/10.1016/j.immuni.2013.10.003] [PMID: 24138885]
[37]
Lyu G, Li D, Li S, Hu H. STO and GA negatively regulate UV-B-induced Arabidopsis root growth inhibition. Plant Signal Behav 2019; 14(12): 1675471.
[http://dx.doi.org/10.1080/15592324.2019.1675471] [PMID: 31595819]
[38]
Li DB, Lyu G, Jiang Y, Niu H, Wang X, Yin J. A radish ( Raphanus sativus L.) E3 ubiquitin ligase gene rha2b enhances seed dormancy and tolerance to preharvest sprouting in transgenic wheat ( Triticum aestivum L.). Appl Ecol Environ Res 2019; 17(6): 13273-88.
[http://dx.doi.org/10.15666/aeer/1706_1327313288]
[39]
Li DB, Lyu G, Jiang Y, Niu H, Wang X, Yin J. Effects of exogenous RsRHA2b gene on key enzyme activities and expression of related genes in grain the filling stage of wheat ( Triticum aestivum L.). Appl Ecol Environ Res 2019; 17(6): 15073-86.
[http://dx.doi.org/10.15666/aeer/1706_1507315086]
[40]
Lu X, Li G, Liu S, Wang H, Chen B. MiR-585-3p suppresses tumor proliferation and migration by directly targeting CAPN9 in high grade serous ovarian cancer. J Ovarian Res 2021; 14(1): 90.
[http://dx.doi.org/10.1186/s13048-021-00841-w] [PMID: 34238324]
[41]
Wang H, Men CP. Correlation of increased expression of MicroRNA-155 in bladder cancer and prognosis. Lab Med 2015; 46(2): 118-22.
[http://dx.doi.org/10.1309/LMWR9CEA2K2XVSOX] [PMID: 25918190]
[42]
Chen Y, Zhang W, Kadier A, Zhang H, Yao X. MicroRNA‐769‐5p suppresses cell growth and migration viatargeting NUSAP1 in bladder cancer. J Clin Lab Anal 2020; 34(5): e23193.
[http://dx.doi.org/10.1002/jcla.23193] [PMID: 31901150]
[43]
Chen L, Long Y, Han Z. et al. MicroRNA-101 inhibits cell migration and invasion in bladder cancer via targeting FZD4. Exp Ther Med 2019; 17(2): 1476-85.
[PMID: 30680031]
[44]
Lin T, Zhou S, Gao H, Li Y, Sun L. MicroRNA-325 is a potential biomarker and tumor regulator in human bladder cancer. Technol Cancer Res Treat 2018; 17: 1533033818790536.
[http://dx.doi.org/10.1177/1533033818790536] [PMID: 30176759]
[45]
Ma L, Xu Z, Xu C, Jiang X. MicroRNA-148a represents an independent prognostic marker in bladder cancer. Tumour Biol 2016; 37(6): 7915-20.
[http://dx.doi.org/10.1007/s13277-015-4688-0] [PMID: 26700670]
[46]
Zhou L, Jiao X, Peng X, Yao X, Liu L, Zhang L. MicroRNA‐628‐5p inhibits invasion and migration of human pancreatic ductal adenocarcinoma via suppression of the AKT/NF‐kappa B pathway. J Cell Physiol 2020; 235(11): 8141-54.
[http://dx.doi.org/10.1002/jcp.29468] [PMID: 31957029]
[47]
Chen Y, Wu Y, Yu S. et al. Deficiency of microRNA-628-5p promotes the progression of gastric cancer by upregulating PIN1. Cell Death Dis 2020; 11(7): 559.
[http://dx.doi.org/10.1038/s41419-020-02766-6] [PMID: 32703934]
[48]
Ding DX, Li Q, Shi K, Li H, Guo Q, Zhang YQ. LncRNA NEAT1-miR-101-3p/miR-335-5p/miR-374a-3p/miR-628-5p-TRIM6 axis identified as the prognostic biomarker for lung adenocarcinoma via bioinformatics and meta-analysis. Transl Cancer Res 2021; 10(11): 4870-83.
[http://dx.doi.org/10.21037/tcr-21-2181] [PMID: 35116339]
[49]
Li M, Qian Z, Ma X. et al. MiR-628-5p decreases the tumorigenicity of epithelial ovarian cancer cells by targeting at FGFR2. Biochem Biophys Res Commun 2018; 495(2): 2085-91.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.049] [PMID: 29229394]
[50]
Wu X, Lei J, Zhou B. et al. MiR-628-5p inhibits cervical carcinoma proliferation and promotes apoptosis by targeting VEGF. Am J Med Sci 2021; 361(4): 499-508.
[http://dx.doi.org/10.1016/j.amjms.2020.11.031] [PMID: 33775424]
[51]
Tong S, Yin H, Fu J, Li Y. Niban apoptosis regulator 1 promotes gemcitabine resistance by activating the focal adhesion kinase signaling pathway in bladder cancer. J Cancer 2022; 13(4): 1103-18.
[http://dx.doi.org/10.7150/jca.66248] [PMID: 35281857]
[52]
Chi M, Liu J, Mei C. et al. TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer. J Exp Clin Cancer Res 2022; 41(1): 175.
[http://dx.doi.org/10.1186/s13046-022-02377-3] [PMID: 35581606]
[53]
Song F, Kotolloshi R, Gajda M, Hölzer M, Grimm MO, Steinbach D. Reduced IQGAP2 promotes bladder cancer through regulation of MAPK/ERK pathway and cytokines. Int J Mol Sci 2022; 23(21): 13508.
[http://dx.doi.org/10.3390/ijms232113508] [PMID: 36362301]
[54]
Fu B, Wang Y, Zhang X. et al. miR-221-induced PUMA silencing mediates immune evasion of bladder cancer cells. Int J Oncol 2015; 46(3): 1169-80.
[http://dx.doi.org/10.3892/ijo.2015.2837] [PMID: 25585941]
[55]
Chi LJ, Lu HT, Li GL. et al. Involvement of T helper type 17 and regulatory T cell activity in tumour immunology of bladder carcinoma. Clin Exp Immunol 2010; 161(3): 480-9.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04215.x] [PMID: 20646003]
[56]
Satyam A, Singh P, Badjatia N, Seth A, Sharma A. A disproportion of TH1/TH2 cytokines with predominance of TH2, in urothelial carcinoma of bladder. Urol Oncol 2011; 29(1): 58-65.
[http://dx.doi.org/10.1016/j.urolonc.2009.06.002] [PMID: 19837616]
[57]
Rao Q, Chen Y, Yeh CR. et al. Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERβ/CCL2/CCR2 EMT/MMP9 signals. Oncotarget 2016; 7(7): 7842-55.
[http://dx.doi.org/10.18632/oncotarget.5467] [PMID: 26556868]
[58]
Wagner JA, Rosario M, Romee R. et al. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest 2017; 127(11): 4042-58.
[http://dx.doi.org/10.1172/JCI90387] [PMID: 28972539]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy