Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Vinpocetine Exerts Neuroprotective Effects via Downregulating α-Syn in Rotenone-induced Cellular Models of Parkinson’s Disease

Author(s): Meng Ji*, Ji-Hua Xu, He-Yin Mi, Peng Jiang and Yue Li

Volume 21, Issue 14, 2024

Published on: 23 October, 2023

Page: [3060 - 3067] Pages: 8

DOI: 10.2174/0115701808274204231012111936

Price: $65

Abstract

Objective: Vinpocetine (Vinp), a derivative of alkaloid vincristine with anti-inflammatory and antioxidant effects, has been shown to have neuroprotective effects in Parkinson's disease (PD). Its role and mechanisms, however, are not fully understood. Therefore, the aim of this study was to investigate the effects and possible mechanisms of Vinp on PD cells.

Methods: SH-SY5Y cells were treated with Vinp and then with rotenone to induce a cellular model of PD. The proliferation level and apoptosis rate of SH-SY5Y cells after different treatments were detected by MTT and flow cytometry assays, respectively. Western blot was used to determine the relative protein expression of α-Synuclein (α-Syn) in differently treated cells. Additionally, commercial kits and ELISA were used to determine oxidative stress-related indicators (superoxide dismutase (SOD), malondialdehyde (MDA), and reactive oxygen species (ROS)) and inflammatory factors (tumor necrosis factor α [TNF-α], interleukin-5 (IL-5), and interleukin-1β (IL-1β)) in SH-SY5Y cells after different treatments, respectively.

Results: Vinp at different concentrations (5, 10, and 50 μM) had no significant effect on the proliferation and apoptosis of SH-SY5Y cells. For rotenone-induced SH-SY5Y cells, Vinp pretreatment could significantly reduce α-Syn expression, increased cell viability and decreased apoptosis, oxidative stress (downregulation of ROS and MDA levels and upregulation of SOD activity) and inflammation (increased levels of TNF-α, IL-5, and IL-1β). In contrast, overexpression of α-Syn in SHSY5Y cells with Vinp pretreatment and rotenone induction partially reversed the aforementioned protective effects of Vinp, causing a decrease in proliferation, an increase in apoptosis rate, inflammation, and oxidative stress.

Conclusion: Vinp exerted neuroprotective effects by downregulating α-Syn to promote proliferation, inhibit apoptosis, and inhibit oxidative stress and inflammation in rotenone-induced SH-SY5Y cells.

Keywords: Parkinson's disease, vinpocetine, α-synuclein, cytotoxicity, dopaminergic, polyvinylidene fluoride.

« Previous
[1]
Cabreira, V. Massano, J. Parkinson’s Disease: Clinical review and update. Acta Med. Port., 2019, 32(10), 661-670.
[http://dx.doi.org/10.20344/amp.11978] [PMID: 31625879]
[2]
Karuppagounder, S.S.; Wang, H.; Kelly, T.; Rush, R.; Nguyen, R.; Bisen, S.; Yamashita, Y.; Sloan, N.; Dang, B.; Sigmon, A.; Lee, H.W.; Marino Lee, S.; Watkins, L.; Kim, E.; Brahmachari, S.; Kumar, M.; Werner, M.H.; Dawson, T.M.; Dawson, V.L. The c-Abl inhibitor IkT-148009 suppresses neurodegeneration in mouse models of heritable and sporadic Parkinson’s disease. Sci. Transl. Med., 2023, 15(679), eabp9352.
[http://dx.doi.org/10.1126/scitranslmed.abp9352] [PMID: 36652533]
[3]
Dorsey, E.R.; Bloem, B.R. The parkinson pandemic-a call to action. JAMA Neurol., 2018, 75(1), 9-10.
[http://dx.doi.org/10.1001/jamaneurol.2017.3299] [PMID: 29131880]
[4]
Rajan, S.; Kaas, B. Parkinson’s disease: Risk factor modification and prevention. Semin. Neurol., 2022, 42(5), 626-638.
[http://dx.doi.org/10.1055/s-0042-1758780] [PMID: 36427528]
[5]
Maran, J.J.; Adesina, M.M.; Green, C.R.; Kwakowsky, A.; Mugisho, O.O. The central role of the NLRP3 inflammasome pathway in the pathogenesis of age-related diseases in the eye and the brain. Ageing Res. Rev., 2023, 88, 101954.
[http://dx.doi.org/10.1016/j.arr.2023.101954] [PMID: 37187367]
[6]
Li, Q.; Liu, S.; Yan, J.; Sun, M.Z.; Greenaway, F.T. The potential role of miR-124-3p in tumorigenesis and other related diseases. Mol. Biol. Rep., 2021, 48(4), 3579-3591.
[http://dx.doi.org/10.1007/s11033-021-06347-4] [PMID: 33877528]
[7]
Alexander, G.E. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci., 2004, 6(3), 259-280.
[http://dx.doi.org/10.31887/DCNS.2004.6.3/galexander] [PMID: 22033559]
[8]
Chang, A.; Fox, S.H. Psychosis in Parkinson’s Disease: Epidemiology, pathophysiology, and management. Drugs, 2016, 76(11), 1093-1118.
[http://dx.doi.org/10.1007/s40265-016-0600-5] [PMID: 27312429]
[9]
Wang, T.; Li, C.; Han, B.; Wang, Z.; Meng, X.; Zhang, L.; He, J.; Fu, F. Neuroprotective effects of Danshensu on rotenone-induced Parkinson’s disease models in vitro and in vivo. BMC Complement. Med. Ther., 2020, 20(1), 20.
[http://dx.doi.org/10.1186/s12906-019-2738-7] [PMID: 32020857]
[10]
Senek, M.; Nyholm, D. Continuous drug delivery in Parkinson’s disease. CNS Drugs, 2014, 28(1), 19-27.
[http://dx.doi.org/10.1007/s40263-013-0127-1] [PMID: 24323838]
[11]
Zhang, L.; Yang, L. Anti-inflammatory effects of vinpocetine in atherosclerosis and ischemic stroke: A review of the literature. Molecules, 2014, 20(1), 335-347.
[http://dx.doi.org/10.3390/molecules20010335] [PMID: 25549058]
[12]
Zhang, Y.S.; Li, J.D.; Yan, C. An update on vinpocetine: New discoveries and clinical implications. Eur. J. Pharmacol., 2018, 819, 30-34.
[13]
Szilagyi, G.; Nagy, Z.; Balkay, L. Effects of vinpocetine on the redistribution of cerebral blood flow and glucose metabolism in chronic ischemic stroke patients: A PET study. J. Neurol. Sci., 2005, 229-230, 275-284.
[14]
Abo-Elmatty, D.M.; Elshazly, S.M.; Zaitone, S.A. Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats. Indian J. Pharmacol., 2012, 44(6), 774-779.
[http://dx.doi.org/10.4103/0253-7613.103300] [PMID: 23248410]
[15]
Ping, Z.; Xiaomu, W.; Xufang, X.; Liang, S. Vinpocetine regulates levels of circulating TLRs in Parkinson’s disease patients. Neurol. Sci., 2019, 40(1), 113-120.
[http://dx.doi.org/10.1007/s10072-018-3592-y] [PMID: 30315378]
[16]
Ishola, I.O.; Awogbindin, I.O.; Olubodun-Obadun, T.G.; Olajiga, A.E. Adeyemi, OO Vinpocetine prevents rotenone-induced Parkinson disease motor and non-motor symptoms through attenuation of oxidative stress, neuroinflammation and alpha-synuclein expressions in rats. Neurotoxicology, 2023, 96, 37-52.
[17]
Zhou, Q.; Guo, D.; Li, X.; Wang, Y.; Ye, X.; Xue, S.; Wang, X. Anti-inflammatory effects of vinpocetine in LPS-stimulated microglia via activation of AMPK. An. Acad. Bras. Cienc., 2020, 92(4), e20200241.
[http://dx.doi.org/10.1590/0001-3765202020200241] [PMID: 33237143]
[18]
Liu, X.; Qu, L.; Zhang, N. Ndfip1 prevents rotenone-induced neurotoxicity and upregulation of alpha-Synuclein in SH-SY5Y cells. Front. Mol. Neurosci., 2020, 13, 613404.
[19]
Hester, K.; Kirrane, E.; Anderson, T.; Kulikowski, N.; Simmons, J.E.; Lehmann, D.M. Environmental exposure to metals and the development of tauopathies, synucleinopathies, and TDP-43 proteinopathies: A systematic evidence map protocol. Environ. Int., 2022, 169, 107528.
[20]
Ferreira, J.J.; Mestre, T.A.; Lyons, K.E.; Benito-León, J.; Tan, E.K.; Abbruzzese, G.; Hallett, M.; Haubenberger, D.; Elble, R.; Deuschl, G. MDS evidence‐based review of treatments for essential tremor. Mov. Disord., 2019, 34(7), 950-958.
[http://dx.doi.org/10.1002/mds.27700] [PMID: 31046186]
[21]
Heidari, A.; Yazdanpanah, N.; Rezaei, N. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. J. Neuroinflammation, 2022, 19(1), 135.
[http://dx.doi.org/10.1186/s12974-022-02496-w] [PMID: 35668422]
[22]
Greenamyre, J.T.; Betarbet, R.; Sherer, T.B. The rotenone model of Parkinson’s disease: Genes, environment and mitochondria. Parkinsonism Relat. Disord., 2003, 9(Suppl. 2), 59-64.
[http://dx.doi.org/10.1016/S1353-8020(03)00023-3] [PMID: 12915069]
[23]
Ibarra-Gutiérrez, M.T.; Serrano-García, N.; Orozco-Ibarra, M. Rotenone-induced model of Parkinson’s Disease: Beyond mitochondrial complex I inhibition. Mol. Neurobiol., 2023, 60(4), 1929-1948.
[http://dx.doi.org/10.1007/s12035-022-03193-8] [PMID: 36593435]
[24]
Sawada, H.; Oeda, T.; Kohsaka, M.; Umemura, A.; Tomita, S.; Park, K.; Mizoguchi, K.; Matsuo, H.; Hasegawa, K.; Fujimura, H.; Sugiyama, H.; Nakamura, M.; Kikuchi, S.; Yamamoto, K.; Fukuda, T.; Ito, S.; Goto, M.; Kiyohara, K.; Kawamura, T. Early use of donepezil against psychosis and cognitive decline in Parkinson’s disease: A randomised controlled trial for 2 years. J. Neurol. Neurosurg. Psychiatry, 2018, 89(12), 1332-1340.
[http://dx.doi.org/10.1136/jnnp-2018-318107] [PMID: 30076270]
[25]
Thomas, A.; Bonanni, L.; Gambi, F.; Di Iorio, A.; Onofrj, M. Pathological gambling in Parkinson disease is reduced by amantadine. Ann. Neurol., 2010, 68(3), 400-404.
[http://dx.doi.org/10.1002/ana.22029] [PMID: 20687121]
[26]
Peña, E.; Borrué, C.; Mata, M.; Martínez-Castrillo, J.; Alonso-Canovas, A.; Chico, J.; López-Manzanares, L.; Llanero, M.; Herreros-Rodríguez, J.; Esquivel, A.; Maycas-Cepeda, T.; Ruíz-Huete, C. Impact of SAfinamide on depressive symptoms in Parkinson’s disease patients (SADness-PD Study): A multicenter retrospective study. Brain Sci., 2021, 11(2), 232.
[http://dx.doi.org/10.3390/brainsci11020232] [PMID: 33668408]
[27]
Abdelmageed, N.; Twafik, W.A.; Seddek, A.L.; Morad, S.A.F. Vinpocetine-based therapy is an attractive strategy against oxidative stress-induced hepatotoxicity in vitro by targeting Nrf2/HO-1 pathway. EXCLI J., 2021, 20, 550-561.
[28]
Ishola, I.O.; Akinyede, A.A.; Adeluwa, T.P.; Micah, C. Novel action of vinpocetine in the prevention of paraquat-induced parkinsonism in mice: Involvement of oxidative stress and neuroinflammation. Metab. Brain Dis., 2018, 33(5), 1493-1500.
[http://dx.doi.org/10.1007/s11011-018-0256-9] [PMID: 29855979]
[29]
Sharma, S.; Deshmukh, R. Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats. Neuroscience, 2015, 286, 393-403.
[30]
Kalia, LV Diagnostic biomarkers for Parkinson’s disease: Focus on alpha-synuclein in cerebrospinal fluid. Parkinsonism Relat. Disord., 2019, 59, 21-25.
[http://dx.doi.org/10.1016/j.parkreldis.2018.11.016]
[31]
Kalsoom, I.; Wang, Y.; Li, B.; Wen, H. Research progress of α-Synuclein aggregation inhibitors for potential Parkinson’s disease treatment. Mini Rev. Med. Chem., 2023, 23(20), 1959-1974.
[http://dx.doi.org/10.2174/1389557523666230517163501] [PMID: 37198991]
[32]
Breydo, L.; Wu, J.W.; Uversky, V.N. α-Synuclein misfolding and Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(2), 261-285.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.002] [PMID: 22024360]
[33]
Huynh, V.A.; Takala, T.M.; Murros, K.E.; Diwedi, B.; Saris, P.E.J. Desulfovibrio bacteria enhance alpha-synuclein aggregation in a Caenorhabditis elegans model of Parkinson’s disease. Front. Cell. Infect. Microbiol., 2023, 13, 1181315.
[http://dx.doi.org/10.3389/fcimb.2023.1181315]
[34]
Zhang, J.; Li, X.; Li, J.D. The roles of post-translational modifications on alpha-synuclein in the pathogenesis of Parkinson’s diseases. Front. Neurosci., 2019, 13, 381.
[35]
Wakabayashi, K. Where and how alpha‐synuclein pathology spreads in Parkinson’s disease. Neuropathology, 2020, 40(5), 415-425.
[http://dx.doi.org/10.1111/neup.12691] [PMID: 32750743]
[36]
Sun, F.; Deng, Y.; Han, X. A secret that underlies Parkinson’s disease: The damaging cycle. Neurochem. Int., 2019, 129, 104484.
[37]
Lin, D.; Li, Y.; Huang, K. Exploration of the alpha-syn/T199678/miR-519-3p/KLF9 pathway in a PD-related alpha-syn pathology. Brain Res. Bull., 2022, 186, 50-61.
[38]
Yang, Q.; Wang, Y.; Zhao, C.; Pang, S.; Lu, J.; Chan, P. α‐Synuclein aggregation causes muscle atrophy through neuromuscular junction degeneration. J. Cachexia Sarcopenia Muscle, 2023, 14(1), 226-242.
[http://dx.doi.org/10.1002/jcsm.13123] [PMID: 36416282]
[39]
Al-Kuraishy, H.M.; Al-Gareeb, A.I. Role of vinpocetine in ischemic stroke and poststroke outcomes: A critical review. Brain Circ., 2020, 6(1), 1-10.

© 2024 Bentham Science Publishers | Privacy Policy