Review Article

LncRNA MEG3:靶向代谢性疾病的分子机制和致病原因

卷 31, 期 37, 2024

发表于: 19 October, 2023

页: [6140 - 6153] 页: 14

弟呕挨: 10.2174/0109298673268051231009075027

价格: $65

conference banner
摘要

背景:非编码RNA (Non-coding RNA)是一种不编码蛋白质的RNA,分布在rRNA、tRNA、snRNA、snoRNA、microRNA等具有鉴定功能的RNA中,其中长链非编码RNA (Long Non-coding RNA, lncRNA)的核苷酸长度在200以上。LncRNAs参与了人体多种生物过程,包括癌细胞的侵袭转移、细胞凋亡、细胞自噬、炎症等。近年来,越来越多的研究证实lncrna与肥胖及肥胖诱导的胰岛素抵抗和NAFLD存在关联,其中MEG3与葡萄糖代谢如胰岛素抵抗有关。此外,MEG3已被证明在多种癌症的病理过程中,如介导炎症、心血管疾病、肝脏疾病和其他代谢性疾病。 目的:探讨lncRNA MEG3在代谢性疾病中的调控作用。为临床治疗或实验研究提供了新的思路。 方法:为了获得足够的数据,本文对PubMed数据库中的数据进行了整合和分析。 结果:LncRNA MEG3可以调节多种代谢疾病,如胰岛素抵抗、NAFLD、炎症等。 结论:LncRNA MEG3在多种目前难以完全治愈的代谢性疾病中具有调控作用,MEG3是治疗这些疾病的潜在靶点。本文就lncRNA MEG3在人类代谢性疾病中的作用机制和生物学功能进行综述。

关键词: MEG3,长链非编码RNA,代谢性疾病,炎症,癌症,胰腺β细胞。

[1]
Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The master regulator of glucose metabolism. Metabolism, 2022, 129, 155142.
[http://dx.doi.org/10.1016/j.metabol.2022.155142] [PMID: 35066003]
[2]
Hou, J.C.; Min, L.; Pessin, J.E. Insulin granule biogenesis, trafficking and exocytosis. Vitam. Horm., 2009, 80, 473-506.
[http://dx.doi.org/10.1016/S0083-6729(08)00616-X] [PMID: 19251047]
[3]
Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev., 2018, 98(4), 2133-2223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[4]
Yang, W.; Lyu, Y.; Xiang, R.; Yang, J. Long noncoding RNAs in the pathogenesis of insulin resistance. Int. J. Mol. Sci., 2022, 23(24), 16054.
[http://dx.doi.org/10.3390/ijms232416054] [PMID: 36555704]
[5]
Bozgeyik, E.; Bozgeyik, I. Non-coding RNA variations in oral cancers: A comprehensive review. Gene, 2023, 851, 147012.
[http://dx.doi.org/10.1016/j.gene.2022.147012] [PMID: 36349577]
[6]
Chang, W.; Wang, J. Exosomes and their noncoding rna cargo are emerging as new modulators for diabetes mellitus. Cells, 2019, 8(8), 853.
[http://dx.doi.org/10.3390/cells8080853] [PMID: 31398847]
[7]
Zhang, Y.Y.; Feng, H.M. MEG3 suppresses human pancreatic neuroendocrine tumor cells growth and metastasis by down-regulation of Mir-183. Cell. Physiol. Biochem., 2017, 44(1), 345-356.
[http://dx.doi.org/10.1159/000484906] [PMID: 29132136]
[8]
Pan, T.; Ding, H.; Jin, L.; Zhang, S.; Wu, D.; Pan, W.; Dong, M.; Ma, X.; Chen, Z. DNMT1-mediated demethylation of lncRNA MEG3 promoter suppressed breast cancer progression by repressing Notch1 signaling pathway. Cell Cycle, 2022, 21(21), 2323-2337.
[http://dx.doi.org/10.1080/15384101.2022.2094662] [PMID: 35822955]
[9]
Yan, H.; Luo, B.; Wu, X.; Guan, F.; Yu, X.; Zhao, L.; Ke, X.; Wu, J.; Yuan, J. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int. J. Biol. Sci., 2021, 17(10), 2606-2621.
[http://dx.doi.org/10.7150/ijbs.60292] [PMID: 34326697]
[10]
Du, Y.; Geng, G.; Zhao, C.; Gao, T.; Wei, B. LncRNA MEG3 promotes cisplatin sensitivity of cervical cancer cells by regulating the miR-21/PTEN axis. BMC Cancer, 2022, 22(1), 1145.
[http://dx.doi.org/10.1186/s12885-022-10188-0] [PMID: 36344947]
[11]
Zhou, Y.; Zhang, X.; Klibanski, A. MEG3 noncoding RNA: A tumor suppressor. J. Mol. Endocrinol., 2012, 48(3), R45-R53.
[http://dx.doi.org/10.1530/JME-12-0008] [PMID: 22393162]
[12]
Miyoshi, N.; Wagatsuma, H.; Wakana, S.; Shiroishi, T.; Nomura, M.; Aisaka, K.; Kohda, T.; Surani, M.A.; Kaneko-Ishino, T.; Ishino, F. Identification of an imprinted gene, Meg3 / Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells, 2000, 5(3), 211-220.
[http://dx.doi.org/10.1046/j.1365-2443.2000.00320.x] [PMID: 10759892]
[13]
Zhang, X.; Zhou, Y.; Mehta, K.R.; Danila, D.C.; Scolavino, S.; Johnson, S.R.; Klibanski, A. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab., 2003, 88(11), 5119-5126.
[http://dx.doi.org/10.1210/jc.2003-030222] [PMID: 14602737]
[14]
Al-Rugeebah, A.; Alanazi, M.; Parine, N.R. MEG3: An oncogenic long non-coding RNA in different cancers. Pathol. Oncol. Res., 2019, 25(3), 859-874.
[http://dx.doi.org/10.1007/s12253-019-00614-3] [PMID: 30793226]
[15]
Oh, K.J.; Han, H.S.; Kim, M.J.; Koo, S.H. CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep., 2013, 46(12), 567-574.
[http://dx.doi.org/10.5483/BMBRep.2013.46.12.248] [PMID: 24238363]
[16]
Zhu, X.; Wu, Y.B.; Zhou, J.; Kang, D.M. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem. Biophys. Res. Commun., 2016, 469(2), 319-325.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.048] [PMID: 26603935]
[17]
Ghafouri-Fard, S.; Abak, A.; Tondro Anamag, F.; Shoorei, H.; Majidpoor, J.; Taheri, M. The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed. Pharmacother., 2021, 137, 111279.
[http://dx.doi.org/10.1016/j.biopha.2021.111279] [PMID: 33493969]
[18]
Li, H.; Meng, Q.; Xiao, F.; Chen, S.; Du, Y.; Yu, J.; Wang, C.; Guo, F. ATF4 deficiency protects mice from high-carbohydrate-diet-induced liver steatosis. Biochem. J., 2011, 438(2), 283-289.
[http://dx.doi.org/10.1042/BJ20110263] [PMID: 21644928]
[19]
Zhu, X.; Li, H.; Wu, Y.; Zhou, J.; Yang, G.; Wang, W. lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int. J. Mol. Med., 2019, 43(1), 345-357.
[PMID: 30431065]
[20]
Zhu, X.; Li, H.; Wu, Y.; Zhou, J.; Yang, G.; Wang, W.; Kang, D.; Ye, S. CREB-upregulated lncRNA MEG3 promotes hepatic gluconeogenesis by regulating miR-302a-3p-CRTC2 axis. J. Cell. Biochem., 2019, 120(3), 4192-4202.
[http://dx.doi.org/10.1002/jcb.27706] [PMID: 30260029]
[21]
Rui, L.; Yuan, M.; Frantz, D.; Shoelson, S.; White, M.F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem., 2002, 277(44), 42394-42398.
[http://dx.doi.org/10.1074/jbc.C200444200] [PMID: 12228220]
[22]
Chen, D.L.; Shen, D.Y.; Han, C.K.; Tian, Y. LncRNA MEG3 aggravates palmitate-induced insulin resistance by regulating miR-185-5p/Egr2 axis in hepatic cells. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5456-5467.
[PMID: 31298399]
[23]
Shihabudeen Haider Ali, M.S.; Cheng, X.; Moran, M.; Haemmig, S.; Naldrett, M.J.; Alvarez, S.; Feinberg, M.W.; Sun, X. LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res., 2019, 47(3), 1505-1522.
[http://dx.doi.org/10.1093/nar/gky1190] [PMID: 30476192]
[24]
Cheng, X.; Shihabudeen Haider Ali, M.S.; Moran, M.; Viana, M.P.; Schlichte, S.L.; Zimmerman, M.C.; Khalimonchuk, O.; Feinberg, M.W.; Sun, X. Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biol., 2021, 40, 101863.
[http://dx.doi.org/10.1016/j.redox.2021.101863] [PMID: 33508742]
[25]
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[26]
Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol., 2015, 62(1)(Suppl.), S47-S64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[27]
Huang, P.; Huang, F.; Liu, H.; Zhang, T.; Yang, M.; Sun, C. LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism, 2019, 94, 1-8.
[http://dx.doi.org/10.1016/j.metabol.2019.01.018] [PMID: 30711569]
[28]
Zou, D.; Liu, L.; Zeng, Y.; Wang, H.; Dai, D.; Xu, M. LncRNA MEG3 up-regulates SIRT6 by ubiquitinating EZH2 and alleviates nonalcoholic fatty liver disease. Cell Death Discov., 2022, 8(1), 103.
[http://dx.doi.org/10.1038/s41420-022-00889-7] [PMID: 35256601]
[29]
Zhong, X.; Huang, M.; Kim, H.G.; Zhang, Y.; Chowdhury, K.; Cai, W.; Saxena, R.; Schwabe, R.F.; Liangpunsakul, S.; Dong, X.C. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells. Cell. Mol. Gastroenterol. Hepatol., 2020, 10(2), 341-364.
[http://dx.doi.org/10.1016/j.jcmgh.2020.04.005] [PMID: 32305562]
[30]
Maity, S.; Muhamed, J.; Sarikhani, M.; Kumar, S.; Ahamed, F.; Spurthi, K.M.; Ravi, V.; Jain, A.; Khan, D.; Arathi, B.P.; Desingu, P.A.; Sundaresan, N.R. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. J. Biol. Chem., 2020, 295(2), 415-434.
[http://dx.doi.org/10.1074/jbc.RA118.007212] [PMID: 31744885]
[31]
Hao, L.; Bang, I.H.; Wang, J.; Mao, Y.; Yang, J.D.; Na, S.Y.; Seo, J.K.; Choi, H.S.; Bae, E.J.; Park, B.H. ERRγ suppression by Sirt6 alleviates cholestatic liver injury and fibrosis. JCI Insight, 2020, 5(17), e137566.
[http://dx.doi.org/10.1172/jci.insight.137566] [PMID: 32701506]
[32]
Kim, H.G.; Huang, M.; Xin, Y.; Zhang, Y.; Zhang, X.; Wang, G.; Liu, S.; Wan, J.; Ahmadi, A.R.; Sun, Z.; Liangpunsakul, S.; Xiong, X.; Dong, X.C. The epigenetic regulator SIRT6 protects the liver from alcohol-induced tissue injury by reducing oxidative stress in mice. J. Hepatol., 2019, 71(5), 960-969.
[http://dx.doi.org/10.1016/j.jhep.2019.06.019] [PMID: 31295533]
[33]
Xin, Y.; Xu, L.; Zhang, X.; Yang, C.; Wang, Q.; Xiong, X. Sirtuin 6 ameliorates alcohol-induced liver injury by reducing endoplasmic reticulum stress in mice. Biochem. Biophys. Res. Commun., 2021, 544, 44-51.
[http://dx.doi.org/10.1016/j.bbrc.2021.01.061] [PMID: 33516881]
[34]
Tarantino, G.; Finelli, C.; Scopacasa, F.; Pasanisi, F.; Contaldo, F.; Capone, D.; Savastano, S. Circulating levels of sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in obese patients suffering from NAFLD, with normal or slightly increased liver enzymes. Oxid. Med. Cell. Longev., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/920676] [PMID: 25045415]
[35]
Wu, Y.Y.; Wu, S.; Li, X.F.; Luo, S.; Wang, A.; Yin, S.Q.; Huang, C.; Li, J. LncRNA MEG3 reverses CCl4-induced liver fibrosis by targeting NLRC5. Eur. J. Pharmacol., 2021, 911, 174462.
[http://dx.doi.org/10.1016/j.ejphar.2021.174462] [PMID: 34536366]
[36]
Zhang, W.; Conway, S.J.; Liu, Y.; Snider, P.; Chen, H.; Gao, H.; Liu, Y.; Isidan, K.; Lopez, K.J.; Campana, G.; Li, P.; Ekser, B.; Francis, H.; Shou, W.; Kubal, C. Heterogeneity of hepatic stellate cells in fibrogenesis of the liver: Insights from single-cell transcriptomic analysis in liver injury. Cells, 2021, 10(8), 2129.
[http://dx.doi.org/10.3390/cells10082129] [PMID: 34440898]
[37]
Yu, F.; Geng, W.; Dong, P.; Huang, Z.; Zheng, J. LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis., 2018, 9(10), 1014.
[http://dx.doi.org/10.1038/s41419-018-1068-x] [PMID: 30282972]
[38]
Marchesini, G.; Brizi, M.; Bianchi, G.; Tomassetti, S.; Bugianesi, E.; Lenzi, M.; McCullough, A.J.; Natale, S.; Forlani, G.; Melchionda, N. Nonalcoholic fatty liver disease: A feature of the metabolic syndrome. Diabetes, 2001, 50(8), 1844-1850.
[http://dx.doi.org/10.2337/diabetes.50.8.1844] [PMID: 11473047]
[39]
Ekstedt, M.; Franzén, L.E.; Mathiesen, U.L.; Thorelius, L.; Holmqvist, M.; Bodemar, G.; Kechagias, S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology, 2006, 44(4), 865-873.
[http://dx.doi.org/10.1002/hep.21327] [PMID: 17006923]
[40]
Tarantino, G.; Crocetto, F.; Di Vito, C.; Creta, M.; Martino, R.; Pandolfo, S.D.; Pesce, S.; Napolitano, L.; Capone, D.; Imbimbo, C. Association of NAFLD and insulin resistance with non metastatic bladder cancer patients: A cross-sectional retrospective study. J. Clin. Med., 2021, 10(2), 346.
[http://dx.doi.org/10.3390/jcm10020346] [PMID: 33477579]
[41]
Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; Elkind, M.S.V.; Evenson, K.R.; Eze-Nliam, C.; Ferguson, J.F.; Generoso, G.; Ho, J.E.; Kalani, R.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Levine, D.A.; Lewis, T.T.; Liu, J.; Loop, M.S.; Ma, J.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Poudel, R.; Rezk-Hanna, M.; Roth, G.A.; Schroeder, E.B.; Shah, S.H.; Thacker, E.L.; VanWagner, L.B.; Virani, S.S.; Voecks, J.H.; Wang, N.Y.; Yaffe, K.; Martin, S.S. Heart disease and stroke statistics—2022 update: A report from the american heart association. Circulation, 2022, 145(8), e153-e639.
[http://dx.doi.org/10.1161/CIR.0000000000001052] [PMID: 35078371]
[42]
Zhang, J.; Liang, Y.; Huang, X.; Guo, X.; Liu, Y.; Zhong, J.; Yuan, J. STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci. Rep., 2019, 9(1), 460.
[http://dx.doi.org/10.1038/s41598-018-36369-1] [PMID: 30679521]
[43]
Cao, Y.; Wen, J.; Li, Y.; Chen, W.; Wu, Y.; Li, J.; Huang, G. Uric acid and sphingomyelin enhance autophagy in iPS cell-originated cardiomyocytes through lncRNA MEG3/miR-7-5p/EGFR axis. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3774-3785.
[http://dx.doi.org/10.1080/21691401.2019.1667817] [PMID: 31559872]
[44]
Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; Li, J.; Ju, J.; Cai, B.; Xu, C.; Yang, B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res., 2018, 64(2), e12449.
[http://dx.doi.org/10.1111/jpi.12449] [PMID: 29024030]
[45]
Liu, X.; Hou, L.; Huang, W.; Gao, Y.; Lv, X.; Tang, J. The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: Mediated by miR-181b-12/15-LOX signaling pathway. Front. Cell. Neurosci., 2016, 10, 201.
[http://dx.doi.org/10.3389/fncel.2016.00201] [PMID: 27642276]
[46]
Kinyua, A.W.; Ko, C.M.; Doan, K.V.; Yang, D.J.; Huynh, M.K.Q.; Moh, S.H.; Choi, Y.H.; Kim, K.W. 4-hydroxy-3-methoxycinnamic acid regulates orexigenic peptides and hepatic glucose homeostasis through phosphorylation of FoxO1. Exp. Mol. Med., 2018, 50(2), e437.
[http://dx.doi.org/10.1038/emm.2017.253] [PMID: 29391540]
[47]
Zhao, L.Y.; Li, X.; Gao, L.; Xu, Y. LncRNA MEG3 accelerates apoptosis of hypoxic myocardial cells via FoxO1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(3)(Suppl.), 334-340.
[PMID: 31389596]
[48]
Liu, D.; Liu, Y.; Zheng, X.; Liu, N. c-MYC-induced long noncoding RNA MEG3 aggravates kidney ischemia–reperfusion injury through activating mitophagy by upregulation of RTKN to trigger the Wnt/β-catenin pathway. Cell Death Dis., 2021, 12(2), 191.
[http://dx.doi.org/10.1038/s41419-021-03466-5] [PMID: 33602903]
[49]
Piccoli, M.T.; Gupta, S.K.; Viereck, J.; Foinquinos, A.; Samolovac, S.; Kramer, F.L.; Garg, A.; Remke, J.; Zimmer, K.; Batkai, S.; Thum, T. Inhibition of the cardiac fibroblast–enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res., 2017, 121(5), 575-583.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310624] [PMID: 28630135]
[50]
Xing, Y.; Zheng, X.; Fu, Y.; Qi, J.; Li, M.; Ma, M.; Wang, S.; Li, S.; Zhu, D. Long noncoding RNA-maternally expressed gene 3 contributes to hypoxic pulmonary hypertension. Mol. Ther., 2022, 30(1), 501.
[http://dx.doi.org/10.1016/j.ymthe.2021.12.009] [PMID: 34914904]
[51]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. (Engl.), 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[52]
Zhang, J.; Yao, T.; Wang, Y.; Yu, J.; Liu, Y.; Lin, Z. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol. Ther., 2016, 17(1), 104-113.
[http://dx.doi.org/10.1080/15384047.2015.1108496] [PMID: 26574780]
[53]
Zhang, W.; Shi, S.; Jiang, J.; Li, X.; Lu, H.; Ren, F. LncRNA MEG3 inhibits cell epithelial-mesenchymal transition by sponging miR-421 targeting E-cadherin in breast cancer. Biomed. Pharmacother., 2017, 91, 312-319.
[http://dx.doi.org/10.1016/j.biopha.2017.04.085] [PMID: 28463794]
[54]
Zuo, S.; Wu, L.; Wang, Y.; Yuan, X. Long non-coding RNA MEG3 activated by vitamin D suppresses glycolysis in colorectal cancer via promoting c-Myc degradation. Front. Oncol., 2020, 10, 274.
[http://dx.doi.org/10.3389/fonc.2020.00274] [PMID: 32219064]
[55]
Chen, P.Y.; Hsieh, P.L.; Peng, C.Y.; Liao, Y.W.; Yu, C.H.; Yu, C.C. LncRNA MEG3 inhibits self-renewal and invasion abilities of oral cancer stem cells by sponging miR-421. J. Formos. Med. Assoc., 2021, 120(4), 1137-1142.
[http://dx.doi.org/10.1016/j.jfma.2020.09.006] [PMID: 33012637]
[56]
Huang, Z.F.; Tang, Y.L.; Shen, Z.L.; Yang, K.Y.; Gao, K. UXT, a novel DNMT3b-binding protein, promotes breast cancer progression via negatively modulating lncRNA MEG3/p53 axis. Mol. Ther. Oncolytics, 2022, 24, 497-506.
[http://dx.doi.org/10.1016/j.omto.2021.12.008] [PMID: 35229028]
[57]
Dong, S.; Ma, M.; Li, M.; Guo, Y.; Zuo, X.; Gu, X.; Zhang, M.; Shi, Y. LncRNA MEG3 regulates breast cancer proliferation and apoptosis through miR-141-3p/RBMS3 axis. Genomics, 2021, 113(4), 1689-1704.
[http://dx.doi.org/10.1016/j.ygeno.2021.04.015] [PMID: 33845141]
[58]
Gong, X.; Huang, M. Long non-coding RNA MEG3 promotes the proliferation of glioma cells through targeting Wnt/β-catenin signal pathway. Cancer Gene Ther., 2017, 24(9), 381-385.
[http://dx.doi.org/10.1038/cgt.2017.32] [PMID: 29027534]
[59]
He, J.H.; Han, Z.P.; Liu, J.M.; Zhou, J.B.; Zou, M.X.; Lv, Y.B.; Li, Y.G.; Cao, M.R. Overexpression of long non-coding RNA MEG3 inhibits proliferation of hepatocellular carcinoma Huh7 cells via negative modulation of miRNA-664. J. Cell. Biochem., 2017, 118(11), 3713-3721.
[http://dx.doi.org/10.1002/jcb.26018] [PMID: 28374914]
[60]
Gao, Y.; Chen, X.; Zhang, J. LncRNA MEG3 inhibits retinoblastoma invasion and metastasis by inducing β-catenin degradation. Am. J. Cancer Res., 2022, 12(7), 3111-3127.
[PMID: 35968358]
[61]
Dudea-Simon, M.; Mihu, D.; Pop, L.A.; Ciortea, R.; Malutan, A.M.; Diculescu, D.; Ciocan, C.A.; Cojocneanu, R.M.; Simon, V.; Bucuri, C.; Mocan-Hognogi, R.; Braicu, C.; Berindan-Neagoe, I. Alteration of gene and miRNA expression in cervical intraepithelial neoplasia and cervical cancer. Int. J. Mol. Sci., 2022, 23(11), 6054.
[http://dx.doi.org/10.3390/ijms23116054] [PMID: 35682732]
[62]
Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/5276130] [PMID: 27803762]
[63]
Peng, J.W.; Gu, Y.Y.; Wei, J.; Sun, Y.; Zhu, C.L.; Zhang, L.; Song, Y.; Chen, L.; Chen, X.; Wang, Q.; Zhang, H.L. LncRNA MEG3-TRPV1 signaling regulates chronic inflammatory pain in rats. Mol. Pain, 2022, 18
[http://dx.doi.org/10.1177/17448069221144246] [PMID: 36424837]
[64]
Meng, J.; Ding, T.; Chen, Y.; Long, T.; Xu, Q.; Lian, W.; Liu, W. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int. Immunopharmacol., 2021, 90, 107141.
[http://dx.doi.org/10.1016/j.intimp.2020.107141] [PMID: 33189612]
[65]
Tang, Z.L.; Zhang, K.; Lv, S.C.; Xu, G.W.; Zhang, J.F.; Jia, H.Y. LncRNA MEG3 suppresses PI3K/AKT/mTOR signalling pathway to enhance autophagy and inhibit inflammation in TNF-α-treated keratinocytes and psoriatic mice. Cytokine, 2021, 148, 155657.
[http://dx.doi.org/10.1016/j.cyto.2021.155657] [PMID: 34425525]
[66]
Huang, Y.; Chen, D.; Yan, Z.; Zhan, J.; Xue, X.; Pan, X.; Yu, H. LncRNA MEG3 protects chondrocytes from IL-1β-induced inflammation via regulating miR-9-5p/KLF4 axis. Front. Physiol., 2021, 12, 617654.
[http://dx.doi.org/10.3389/fphys.2021.617654] [PMID: 33776787]
[67]
Gao, H.; Zhang, X.; Tang, F.; Chen, L.; Tian, Z.; Xiao, D.; Li, X. Knockdown of lncRNA MEG3 protects against sepsis-induced acute lung injury in mice through miR-93–5p-dependent inhibition of NF-κB signaling pathway. Pathol. Res. Pract., 2022, 239, 154142.
[http://dx.doi.org/10.1016/j.prp.2022.154142] [PMID: 36242967]
[68]
Liu, M.; Chen, L.; Wu, J.; Lin, Z.; Huang, S. Long noncoding RNA MEG3 expressed in human dental pulp regulates LPS-Induced inflammation and odontogenic differentiation in pulpitis. Exp. Cell Res., 2021, 400(2), 112495.
[http://dx.doi.org/10.1016/j.yexcr.2021.112495] [PMID: 33524362]
[69]
Li, Y.; Zhang, S.; Zhang, C.; Wang, M. LncRNA MEG3 inhibits the inflammatory response of ankylosing spondylitis by targeting miR-146a. Mol. Cell. Biochem., 2020, 466(1-2), 17-24.
[http://dx.doi.org/10.1007/s11010-019-03681-x] [PMID: 31894531]
[70]
Liu, C.; Liang, T.; Zhang, Z.; Chen, J.; Xue, J.; Zhan, X.; Ren, L. MEG3 alleviates ankylosing spondylitis by suppressing osteogenic differentiation of mesenchymal stem cells through regulating microRNA-125a-5p-mediated TNFAIP3. Apoptosis, 2022.
[PMID: 36587050]
[71]
Tu, Y.; Song, E.; Wang, Z.; Ji, N.; Zhu, L.; Wang, K.; Sun, H.; Zhang, Y.; Zhu, Q.; Liu, X.; Zhu, M. Melatonin attenuates oxidative stress and inflammation of Müller cells in diabetic retinopathy via activating the Sirt1 pathway. Biomed. Pharmacother., 2021, 137, 111274.
[http://dx.doi.org/10.1016/j.biopha.2021.111274] [PMID: 33517190]
[72]
Guo, J.; Zhang, N.; Liu, G.; Zhang, A.; Liu, X.; Zheng, J. Upregulated expression of long non-coding RNA MEG3 serves as a prognostic biomarker in severe pneumonia children and its regulatory mechanism. Bioengineered, 2021, 12(1), 7120-7131.
[http://dx.doi.org/10.1080/21655979.2021.1979351] [PMID: 34558385]
[73]
Zhou, X.; He, J.; Chen, J.; Cui, Y.; Ou, Z.; Zu, X.; Liu, N. Silencing of MEG3 attenuated the role of lipopolysaccharides by modulating the miR-93-5p/PTEN pathway in Leydig cells. Reprod. Biol. Endocrinol., 2021, 19(1), 33.
[http://dx.doi.org/10.1186/s12958-021-00712-5] [PMID: 33639974]
[74]
Liu, Y.; Yang, L.; Xu, Q.; Lu, X.Y.; Ma, T.T.; Huang, C.; Li, J. Long noncoding RNA MEG3 regulates rheumatoid arthritis by targeting NLRC5. J. Cell. Physiol., 2019, 234(8), 14270-14284.
[http://dx.doi.org/10.1002/jcp.28126] [PMID: 30644097]
[75]
Yiu, W.H.; Lok, S.W.Y.; Xue, R.; Chen, J.; Lai, K.N.; Lan, H.Y.; Tang, S.C.W. The long noncoding RNA Meg3 mediates TLR4-induced inflammation in experimental obstructive nephropathy. Clin. Sci. (Lond.), 2023, 137(5), 317-331.
[http://dx.doi.org/10.1042/CS20220537] [PMID: 36705251]
[76]
Liu, F.; Chen, Y.; Liu, R.; Chen, B.; Liu, C.; Xing, J. Long noncoding RNA (MEG3) in urinal exosomes functions as a biomarker for the diagnosis of Hunner-type interstitial cystitis (HIC). J. Cell. Biochem., 2020, 121(2), 1227-1237.
[http://dx.doi.org/10.1002/jcb.29356] [PMID: 31595563]
[77]
Luo, Y.; Liu, C.Q.; He, H.B.; Wang, T.; He, Y.M.; Zhang, C.C.; Yuan, D.; Yuan, C.F. Effect of total saponins from Panax japonicus on non-alcoholic steatohepatitis by regulating autophagy. Zhongguo Zhongyao Zazhi, 2021, 46(9), 2260-2266.
[PMID: 34047129]
[78]
Sharif, R. Overview of idiopathic pulmonary fibrosis (IPF) and evidence-based guidelines. Am. J. Manag. Care, 2017, 23(11)(Suppl.), S176-S182.
[PMID: 28978212]
[79]
Oldham, J.M.; Ma, S.F.; Martinez, F.J.; Anstrom, K.J.; Raghu, G.; Schwartz, D.A.; Valenzi, E.; Witt, L.; Lee, C.; Vij, R.; Huang, Y.; Strek, M.E.; Noth, I. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2015, 192(12), 1475-1482.
[http://dx.doi.org/10.1164/rccm.201505-1010OC] [PMID: 26331942]
[80]
Gao, Q.; Chang, X.; Yang, M.; Zheng, J.; Gong, X.; Liu, H.; Li, K.; Wang, X.; Zhan, H.; Li, S.; Feng, S.; Sun, X.; Sun, Y. LncRNA MEG3 restrained pulmonary fibrosis induced by NiO NPs via regulating hedgehog signaling pathway-mediated autophagy. Environ. Toxicol., 2022, 37(1), 79-91.
[http://dx.doi.org/10.1002/tox.23379] [PMID: 34608745]
[81]
Zhan, H.; Chang, X.; Wang, X.; Yang, M.; Gao, Q.; Liu, H.; Li, C.; Li, S.; Sun, Y. LNCRNA MEG3 mediates nickel oxide nanoparticles-induced pulmonary fibrosis via suppressing TGF -β1 expression and epithelial-mesenchymal transition process. Environ. Toxicol., 2021, 36(6), 1099-1110.
[http://dx.doi.org/10.1002/tox.23109] [PMID: 33547861]
[82]
Zhan, H.; Sun, X.; Wang, X.; Gao, Q.; Yang, M.; Liu, H.; Zheng, J.; Gong, X.; Feng, S.; Chang, X.; Sun, Y. LncRNA MEG3 involved in NiO NPs-induced pulmonary fibrosis via regulating TGF-β1-mediated PI3K/AKT pathway. Toxicol. Sci., 2021, 182(1), 120-131.
[http://dx.doi.org/10.1093/toxsci/kfab047] [PMID: 33895847]
[83]
Li, X.; Li, G.; Jin, Y.; Yao, Q.; Li, R.; Wang, H. Long non-coding RNA maternally expressed 3 (MEG3) regulates isoflurane-induced cognitive dysfunction by targeting miR-7-5p. Toxicol. Mech. Methods, 2022, 32(6), 453-462.
[http://dx.doi.org/10.1080/15376516.2022.2042881] [PMID: 35164634]
[84]
Royer, M.; Pai, B.; Menon, R.; Bludau, A.; Gryksa, K.; Perry, R.B.T.; Ulitsky, I.; Meister, G.; Neumann, I.D. Transcriptome and chromatin alterations in social fear indicate association of MEG3 with successful extinction of fear. Mol. Psychiatry, 2022, 27(10), 4064-4076.
[http://dx.doi.org/10.1038/s41380-022-01481-2] [PMID: 35338311]
[85]
Samii, A.; Nutt, J.G.; Ransom, B.R. Parkinson’s disease. Lancet, 2004, 363(9423), 1783-1793.
[http://dx.doi.org/10.1016/S0140-6736(04)16305-8] [PMID: 15172778]
[86]
Huang, H.; Zheng, S.; Lu, M. Downregulation of lncRNA MEG3 is involved in Parkinson’s disease. Metab. Brain Dis., 2021, 36(8), 2323-2328.
[http://dx.doi.org/10.1007/s11011-021-00835-z] [PMID: 34643842]
[87]
Liu, J.; Qi, X.; Wang, X.H.; Miao, H.S.; Xue, Z.C.; Zhang, L.L.; Zhao, S.H.; Wu, L.H.; Gao, G.Y.; Lou, M.Q.; Yi, C.Q. Downregulation of the LncRNA MEG3 promotes osteogenic differentiation of BMSCs and bone repairing by activating Wnt/β-catenin signaling pathway. J. Clin. Med., 2022, 11(2), 395.
[http://dx.doi.org/10.3390/jcm11020395] [PMID: 35054086]
[88]
Zhu, J.; Fu, Q.; Shao, J.; Peng, J.; Qian, Q.; Zhou, Y.; Chen, Y. Over-expression of MEG3 promotes differentiation of bone marrow mesenchymal stem cells into chondrocytes by regulating miR-129-5p/RUNX1 axis. Cell Cycle, 2021, 20(1), 96-111.
[http://dx.doi.org/10.1080/15384101.2020.1863043] [PMID: 33410373]
[89]
Wang, S.; Xiong, G.; Ning, R.; Pan, Z.; Xu, M.; Zha, Z.; Liu, N. LncRNA MEG3 promotes osteogenesis of hBMSCs by regulating miR-21-5p / SOD3 axis. Acta Biochim. Pol., 2022, 69(1), 71-77.
[http://dx.doi.org/10.18388/abp.2020_5661] [PMID: 35231166]
[90]
Li, H.; Xu, X.; Wang, D.; Zhang, Y.; Chen, J.; Li, B.; Su, S.; Wei, L.; You, H.; Fang, Y.; Wang, Y.; Liu, Y. Hypermethylation-mediated downregulation of long non-coding RNA MEG3 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells and promotes pediatric aplastic anemia. Int. Immunopharmacol., 2021, 93, 107292.
[http://dx.doi.org/10.1016/j.intimp.2020.107292] [PMID: 33529912]
[91]
Gao, X.; Ge, J.; Zhou, W.; Xu, L.; Geng, D. IL-10 inhibits osteoclast differentiation and osteolysis through MEG3/IRF8 pathway. Cell. Signal., 2022, 95, 110353.
[http://dx.doi.org/10.1016/j.cellsig.2022.110353] [PMID: 35525407]
[92]
Yu, Z.; Wen, Y.; Jiang, N.; Li, Z.; Guan, J.; Zhang, Y.; Deng, C.; Zhao, L.; Zheng, S.G.; Zhu, Y.; Su, W.; Zhuo, Y. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials, 2022, 284, 121484.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121484] [PMID: 35378413]
[93]
He, Y.; Dan, Y.; Gao, X.; Huang, L.; Lv, H.; Chen, J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am. J. Physiol. Endocrinol. Metab., 2021, 320(3), E598-E608.
[http://dx.doi.org/10.1152/ajpendo.00089.2020] [PMID: 33284093]
[94]
Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci., 2018, 75(3), 467-484.
[http://dx.doi.org/10.1007/s00018-017-2626-6] [PMID: 28840253]
[95]
Fang, C.Y.; Chen, S.H.; Huang, C.C.; Liao, Y.W.; Chao, S.C.; Yu, C.C. Fucoidan-mediated inhibition of fibrotic properties in oral submucous fibrosis via the MEG3/miR-181a/Egr1 axis. Pharmaceuticals (Basel), 2022, 15(7), 833.
[http://dx.doi.org/10.3390/ph15070833] [PMID: 35890132]
[96]
Chen, Y.; Zhang, Z.; Zhu, D.; Zhao, W.; Li, F. Long non-coding RNA MEG3 serves as a ceRNA for microRNA-145 to induce apoptosis of AC16 cardiomyocytes under high glucose condition. Biosci. Rep., 2019, 39(6), BSR20190444.
[http://dx.doi.org/10.1042/BSR20190444] [PMID: 31085717]
[97]
Sun, H.J.; Zhang, F.F.; Xiao, Q.; Xu, J.; Zhu, L.J. lncRNA MEG3, acting as a ceRNA, modulates RPE differentiation through the miR-7-5p/Pax6 axis. Biochem. Genet., 2021, 59(6), 1617-1630.
[http://dx.doi.org/10.1007/s10528-021-10072-9] [PMID: 34018078]
[98]
Zhang, S.; Ji, W.W.; Wei, W.; Zhan, L.X.; Huang, X. Long noncoding RNA Meg3 sponges miR-708 to inhibit intestinal tumorigenesis via SOCS3-repressed cancer stem cells growth. Cell Death Dis., 2021, 13(1), 25.
[http://dx.doi.org/10.1038/s41419-021-04470-5] [PMID: 34934045]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy