Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic causes of Metabolic Diseases

Author(s): Yiyang Luo, Hailin Wang, Lijun Wang, Wei Wu, Jiale Zhao, Xueqing Li, Ruisi Xiong, Xueliang Ding, Ding Yuan* and Chengfu Yuan*

Volume 31, Issue 37, 2024

Published on: 19 October, 2023

Page: [6140 - 6153] Pages: 14

DOI: 10.2174/0109298673268051231009075027

Price: $65

conference banner
Abstract

Background: Non-coding RNA is a type of RNA that does not encode proteins, distributed among rRNA, tRNA, snRNA, snoRNA, microRNA and other RNAs with identified functions, where the Long non-coding RNA (lncRNA) displays a nucleotide length over 200. LncRNAs enable multiple biological processes in the human body, including cancer cell invasion and metastasis, apoptosis, cell autophagy, inflammation, etc. Recently, a growing body of studies has demonstrated the association of lncRNAs with obesity and obesity-induced insulin resistance and NAFLD, where MEG3 is related to glucose metabolism, such as insulin resistance. In addition, MEG3 has been demonstrated in the pathological processes of various cancers, such as mediating inflammation, cardiovascular disease, liver disease and other metabolic diseases.

Objective: To explore the regulatory role of lncRNA MEG3 in metabolic diseases. It provides new ideas for clinical treatment or experimental research.

Methods: In this paper, in order to obtain enough data, we integrate and analyze the data in the PubMed database.

Results: LncRNA MEG3 can regulate many metabolic diseases, such as insulin resistance, NAFLD, inflammation and so on.

Conclusion: LncRNA MEG3 has a regulatory role in a variety of metabolic diseases, which are currently difficult to be completely cured, and MEG3 is a potential target for the treatment of these diseases. Here, we review the role of lncRNA MEG3 in mechanisms of action and biological functions in human metabolic diseases.

Keywords: MEG3, long non-coding RNA, metabolic diseases, inflammation, cancer, pancreatic β cells.

[1]
Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The master regulator of glucose metabolism. Metabolism, 2022, 129, 155142.
[http://dx.doi.org/10.1016/j.metabol.2022.155142] [PMID: 35066003]
[2]
Hou, J.C.; Min, L.; Pessin, J.E. Insulin granule biogenesis, trafficking and exocytosis. Vitam. Horm., 2009, 80, 473-506.
[http://dx.doi.org/10.1016/S0083-6729(08)00616-X] [PMID: 19251047]
[3]
Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev., 2018, 98(4), 2133-2223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[4]
Yang, W.; Lyu, Y.; Xiang, R.; Yang, J. Long noncoding RNAs in the pathogenesis of insulin resistance. Int. J. Mol. Sci., 2022, 23(24), 16054.
[http://dx.doi.org/10.3390/ijms232416054] [PMID: 36555704]
[5]
Bozgeyik, E.; Bozgeyik, I. Non-coding RNA variations in oral cancers: A comprehensive review. Gene, 2023, 851, 147012.
[http://dx.doi.org/10.1016/j.gene.2022.147012] [PMID: 36349577]
[6]
Chang, W.; Wang, J. Exosomes and their noncoding rna cargo are emerging as new modulators for diabetes mellitus. Cells, 2019, 8(8), 853.
[http://dx.doi.org/10.3390/cells8080853] [PMID: 31398847]
[7]
Zhang, Y.Y.; Feng, H.M. MEG3 suppresses human pancreatic neuroendocrine tumor cells growth and metastasis by down-regulation of Mir-183. Cell. Physiol. Biochem., 2017, 44(1), 345-356.
[http://dx.doi.org/10.1159/000484906] [PMID: 29132136]
[8]
Pan, T.; Ding, H.; Jin, L.; Zhang, S.; Wu, D.; Pan, W.; Dong, M.; Ma, X.; Chen, Z. DNMT1-mediated demethylation of lncRNA MEG3 promoter suppressed breast cancer progression by repressing Notch1 signaling pathway. Cell Cycle, 2022, 21(21), 2323-2337.
[http://dx.doi.org/10.1080/15384101.2022.2094662] [PMID: 35822955]
[9]
Yan, H.; Luo, B.; Wu, X.; Guan, F.; Yu, X.; Zhao, L.; Ke, X.; Wu, J.; Yuan, J. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int. J. Biol. Sci., 2021, 17(10), 2606-2621.
[http://dx.doi.org/10.7150/ijbs.60292] [PMID: 34326697]
[10]
Du, Y.; Geng, G.; Zhao, C.; Gao, T.; Wei, B. LncRNA MEG3 promotes cisplatin sensitivity of cervical cancer cells by regulating the miR-21/PTEN axis. BMC Cancer, 2022, 22(1), 1145.
[http://dx.doi.org/10.1186/s12885-022-10188-0] [PMID: 36344947]
[11]
Zhou, Y.; Zhang, X.; Klibanski, A. MEG3 noncoding RNA: A tumor suppressor. J. Mol. Endocrinol., 2012, 48(3), R45-R53.
[http://dx.doi.org/10.1530/JME-12-0008] [PMID: 22393162]
[12]
Miyoshi, N.; Wagatsuma, H.; Wakana, S.; Shiroishi, T.; Nomura, M.; Aisaka, K.; Kohda, T.; Surani, M.A.; Kaneko-Ishino, T.; Ishino, F. Identification of an imprinted gene, Meg3 / Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells, 2000, 5(3), 211-220.
[http://dx.doi.org/10.1046/j.1365-2443.2000.00320.x] [PMID: 10759892]
[13]
Zhang, X.; Zhou, Y.; Mehta, K.R.; Danila, D.C.; Scolavino, S.; Johnson, S.R.; Klibanski, A. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab., 2003, 88(11), 5119-5126.
[http://dx.doi.org/10.1210/jc.2003-030222] [PMID: 14602737]
[14]
Al-Rugeebah, A.; Alanazi, M.; Parine, N.R. MEG3: An oncogenic long non-coding RNA in different cancers. Pathol. Oncol. Res., 2019, 25(3), 859-874.
[http://dx.doi.org/10.1007/s12253-019-00614-3] [PMID: 30793226]
[15]
Oh, K.J.; Han, H.S.; Kim, M.J.; Koo, S.H. CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep., 2013, 46(12), 567-574.
[http://dx.doi.org/10.5483/BMBRep.2013.46.12.248] [PMID: 24238363]
[16]
Zhu, X.; Wu, Y.B.; Zhou, J.; Kang, D.M. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem. Biophys. Res. Commun., 2016, 469(2), 319-325.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.048] [PMID: 26603935]
[17]
Ghafouri-Fard, S.; Abak, A.; Tondro Anamag, F.; Shoorei, H.; Majidpoor, J.; Taheri, M. The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed. Pharmacother., 2021, 137, 111279.
[http://dx.doi.org/10.1016/j.biopha.2021.111279] [PMID: 33493969]
[18]
Li, H.; Meng, Q.; Xiao, F.; Chen, S.; Du, Y.; Yu, J.; Wang, C.; Guo, F. ATF4 deficiency protects mice from high-carbohydrate-diet-induced liver steatosis. Biochem. J., 2011, 438(2), 283-289.
[http://dx.doi.org/10.1042/BJ20110263] [PMID: 21644928]
[19]
Zhu, X.; Li, H.; Wu, Y.; Zhou, J.; Yang, G.; Wang, W. lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int. J. Mol. Med., 2019, 43(1), 345-357.
[PMID: 30431065]
[20]
Zhu, X.; Li, H.; Wu, Y.; Zhou, J.; Yang, G.; Wang, W.; Kang, D.; Ye, S. CREB-upregulated lncRNA MEG3 promotes hepatic gluconeogenesis by regulating miR-302a-3p-CRTC2 axis. J. Cell. Biochem., 2019, 120(3), 4192-4202.
[http://dx.doi.org/10.1002/jcb.27706] [PMID: 30260029]
[21]
Rui, L.; Yuan, M.; Frantz, D.; Shoelson, S.; White, M.F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem., 2002, 277(44), 42394-42398.
[http://dx.doi.org/10.1074/jbc.C200444200] [PMID: 12228220]
[22]
Chen, D.L.; Shen, D.Y.; Han, C.K.; Tian, Y. LncRNA MEG3 aggravates palmitate-induced insulin resistance by regulating miR-185-5p/Egr2 axis in hepatic cells. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5456-5467.
[PMID: 31298399]
[23]
Shihabudeen Haider Ali, M.S.; Cheng, X.; Moran, M.; Haemmig, S.; Naldrett, M.J.; Alvarez, S.; Feinberg, M.W.; Sun, X. LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res., 2019, 47(3), 1505-1522.
[http://dx.doi.org/10.1093/nar/gky1190] [PMID: 30476192]
[24]
Cheng, X.; Shihabudeen Haider Ali, M.S.; Moran, M.; Viana, M.P.; Schlichte, S.L.; Zimmerman, M.C.; Khalimonchuk, O.; Feinberg, M.W.; Sun, X. Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biol., 2021, 40, 101863.
[http://dx.doi.org/10.1016/j.redox.2021.101863] [PMID: 33508742]
[25]
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[26]
Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol., 2015, 62(1)(Suppl.), S47-S64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[27]
Huang, P.; Huang, F.; Liu, H.; Zhang, T.; Yang, M.; Sun, C. LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism, 2019, 94, 1-8.
[http://dx.doi.org/10.1016/j.metabol.2019.01.018] [PMID: 30711569]
[28]
Zou, D.; Liu, L.; Zeng, Y.; Wang, H.; Dai, D.; Xu, M. LncRNA MEG3 up-regulates SIRT6 by ubiquitinating EZH2 and alleviates nonalcoholic fatty liver disease. Cell Death Discov., 2022, 8(1), 103.
[http://dx.doi.org/10.1038/s41420-022-00889-7] [PMID: 35256601]
[29]
Zhong, X.; Huang, M.; Kim, H.G.; Zhang, Y.; Chowdhury, K.; Cai, W.; Saxena, R.; Schwabe, R.F.; Liangpunsakul, S.; Dong, X.C. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells. Cell. Mol. Gastroenterol. Hepatol., 2020, 10(2), 341-364.
[http://dx.doi.org/10.1016/j.jcmgh.2020.04.005] [PMID: 32305562]
[30]
Maity, S.; Muhamed, J.; Sarikhani, M.; Kumar, S.; Ahamed, F.; Spurthi, K.M.; Ravi, V.; Jain, A.; Khan, D.; Arathi, B.P.; Desingu, P.A.; Sundaresan, N.R. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. J. Biol. Chem., 2020, 295(2), 415-434.
[http://dx.doi.org/10.1074/jbc.RA118.007212] [PMID: 31744885]
[31]
Hao, L.; Bang, I.H.; Wang, J.; Mao, Y.; Yang, J.D.; Na, S.Y.; Seo, J.K.; Choi, H.S.; Bae, E.J.; Park, B.H. ERRγ suppression by Sirt6 alleviates cholestatic liver injury and fibrosis. JCI Insight, 2020, 5(17), e137566.
[http://dx.doi.org/10.1172/jci.insight.137566] [PMID: 32701506]
[32]
Kim, H.G.; Huang, M.; Xin, Y.; Zhang, Y.; Zhang, X.; Wang, G.; Liu, S.; Wan, J.; Ahmadi, A.R.; Sun, Z.; Liangpunsakul, S.; Xiong, X.; Dong, X.C. The epigenetic regulator SIRT6 protects the liver from alcohol-induced tissue injury by reducing oxidative stress in mice. J. Hepatol., 2019, 71(5), 960-969.
[http://dx.doi.org/10.1016/j.jhep.2019.06.019] [PMID: 31295533]
[33]
Xin, Y.; Xu, L.; Zhang, X.; Yang, C.; Wang, Q.; Xiong, X. Sirtuin 6 ameliorates alcohol-induced liver injury by reducing endoplasmic reticulum stress in mice. Biochem. Biophys. Res. Commun., 2021, 544, 44-51.
[http://dx.doi.org/10.1016/j.bbrc.2021.01.061] [PMID: 33516881]
[34]
Tarantino, G.; Finelli, C.; Scopacasa, F.; Pasanisi, F.; Contaldo, F.; Capone, D.; Savastano, S. Circulating levels of sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in obese patients suffering from NAFLD, with normal or slightly increased liver enzymes. Oxid. Med. Cell. Longev., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/920676] [PMID: 25045415]
[35]
Wu, Y.Y.; Wu, S.; Li, X.F.; Luo, S.; Wang, A.; Yin, S.Q.; Huang, C.; Li, J. LncRNA MEG3 reverses CCl4-induced liver fibrosis by targeting NLRC5. Eur. J. Pharmacol., 2021, 911, 174462.
[http://dx.doi.org/10.1016/j.ejphar.2021.174462] [PMID: 34536366]
[36]
Zhang, W.; Conway, S.J.; Liu, Y.; Snider, P.; Chen, H.; Gao, H.; Liu, Y.; Isidan, K.; Lopez, K.J.; Campana, G.; Li, P.; Ekser, B.; Francis, H.; Shou, W.; Kubal, C. Heterogeneity of hepatic stellate cells in fibrogenesis of the liver: Insights from single-cell transcriptomic analysis in liver injury. Cells, 2021, 10(8), 2129.
[http://dx.doi.org/10.3390/cells10082129] [PMID: 34440898]
[37]
Yu, F.; Geng, W.; Dong, P.; Huang, Z.; Zheng, J. LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis., 2018, 9(10), 1014.
[http://dx.doi.org/10.1038/s41419-018-1068-x] [PMID: 30282972]
[38]
Marchesini, G.; Brizi, M.; Bianchi, G.; Tomassetti, S.; Bugianesi, E.; Lenzi, M.; McCullough, A.J.; Natale, S.; Forlani, G.; Melchionda, N. Nonalcoholic fatty liver disease: A feature of the metabolic syndrome. Diabetes, 2001, 50(8), 1844-1850.
[http://dx.doi.org/10.2337/diabetes.50.8.1844] [PMID: 11473047]
[39]
Ekstedt, M.; Franzén, L.E.; Mathiesen, U.L.; Thorelius, L.; Holmqvist, M.; Bodemar, G.; Kechagias, S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology, 2006, 44(4), 865-873.
[http://dx.doi.org/10.1002/hep.21327] [PMID: 17006923]
[40]
Tarantino, G.; Crocetto, F.; Di Vito, C.; Creta, M.; Martino, R.; Pandolfo, S.D.; Pesce, S.; Napolitano, L.; Capone, D.; Imbimbo, C. Association of NAFLD and insulin resistance with non metastatic bladder cancer patients: A cross-sectional retrospective study. J. Clin. Med., 2021, 10(2), 346.
[http://dx.doi.org/10.3390/jcm10020346] [PMID: 33477579]
[41]
Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; Elkind, M.S.V.; Evenson, K.R.; Eze-Nliam, C.; Ferguson, J.F.; Generoso, G.; Ho, J.E.; Kalani, R.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Levine, D.A.; Lewis, T.T.; Liu, J.; Loop, M.S.; Ma, J.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Poudel, R.; Rezk-Hanna, M.; Roth, G.A.; Schroeder, E.B.; Shah, S.H.; Thacker, E.L.; VanWagner, L.B.; Virani, S.S.; Voecks, J.H.; Wang, N.Y.; Yaffe, K.; Martin, S.S. Heart disease and stroke statistics—2022 update: A report from the american heart association. Circulation, 2022, 145(8), e153-e639.
[http://dx.doi.org/10.1161/CIR.0000000000001052] [PMID: 35078371]
[42]
Zhang, J.; Liang, Y.; Huang, X.; Guo, X.; Liu, Y.; Zhong, J.; Yuan, J. STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci. Rep., 2019, 9(1), 460.
[http://dx.doi.org/10.1038/s41598-018-36369-1] [PMID: 30679521]
[43]
Cao, Y.; Wen, J.; Li, Y.; Chen, W.; Wu, Y.; Li, J.; Huang, G. Uric acid and sphingomyelin enhance autophagy in iPS cell-originated cardiomyocytes through lncRNA MEG3/miR-7-5p/EGFR axis. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3774-3785.
[http://dx.doi.org/10.1080/21691401.2019.1667817] [PMID: 31559872]
[44]
Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; Li, J.; Ju, J.; Cai, B.; Xu, C.; Yang, B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res., 2018, 64(2), e12449.
[http://dx.doi.org/10.1111/jpi.12449] [PMID: 29024030]
[45]
Liu, X.; Hou, L.; Huang, W.; Gao, Y.; Lv, X.; Tang, J. The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: Mediated by miR-181b-12/15-LOX signaling pathway. Front. Cell. Neurosci., 2016, 10, 201.
[http://dx.doi.org/10.3389/fncel.2016.00201] [PMID: 27642276]
[46]
Kinyua, A.W.; Ko, C.M.; Doan, K.V.; Yang, D.J.; Huynh, M.K.Q.; Moh, S.H.; Choi, Y.H.; Kim, K.W. 4-hydroxy-3-methoxycinnamic acid regulates orexigenic peptides and hepatic glucose homeostasis through phosphorylation of FoxO1. Exp. Mol. Med., 2018, 50(2), e437.
[http://dx.doi.org/10.1038/emm.2017.253] [PMID: 29391540]
[47]
Zhao, L.Y.; Li, X.; Gao, L.; Xu, Y. LncRNA MEG3 accelerates apoptosis of hypoxic myocardial cells via FoxO1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(3)(Suppl.), 334-340.
[PMID: 31389596]
[48]
Liu, D.; Liu, Y.; Zheng, X.; Liu, N. c-MYC-induced long noncoding RNA MEG3 aggravates kidney ischemia–reperfusion injury through activating mitophagy by upregulation of RTKN to trigger the Wnt/β-catenin pathway. Cell Death Dis., 2021, 12(2), 191.
[http://dx.doi.org/10.1038/s41419-021-03466-5] [PMID: 33602903]
[49]
Piccoli, M.T.; Gupta, S.K.; Viereck, J.; Foinquinos, A.; Samolovac, S.; Kramer, F.L.; Garg, A.; Remke, J.; Zimmer, K.; Batkai, S.; Thum, T. Inhibition of the cardiac fibroblast–enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res., 2017, 121(5), 575-583.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310624] [PMID: 28630135]
[50]
Xing, Y.; Zheng, X.; Fu, Y.; Qi, J.; Li, M.; Ma, M.; Wang, S.; Li, S.; Zhu, D. Long noncoding RNA-maternally expressed gene 3 contributes to hypoxic pulmonary hypertension. Mol. Ther., 2022, 30(1), 501.
[http://dx.doi.org/10.1016/j.ymthe.2021.12.009] [PMID: 34914904]
[51]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. (Engl.), 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[52]
Zhang, J.; Yao, T.; Wang, Y.; Yu, J.; Liu, Y.; Lin, Z. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol. Ther., 2016, 17(1), 104-113.
[http://dx.doi.org/10.1080/15384047.2015.1108496] [PMID: 26574780]
[53]
Zhang, W.; Shi, S.; Jiang, J.; Li, X.; Lu, H.; Ren, F. LncRNA MEG3 inhibits cell epithelial-mesenchymal transition by sponging miR-421 targeting E-cadherin in breast cancer. Biomed. Pharmacother., 2017, 91, 312-319.
[http://dx.doi.org/10.1016/j.biopha.2017.04.085] [PMID: 28463794]
[54]
Zuo, S.; Wu, L.; Wang, Y.; Yuan, X. Long non-coding RNA MEG3 activated by vitamin D suppresses glycolysis in colorectal cancer via promoting c-Myc degradation. Front. Oncol., 2020, 10, 274.
[http://dx.doi.org/10.3389/fonc.2020.00274] [PMID: 32219064]
[55]
Chen, P.Y.; Hsieh, P.L.; Peng, C.Y.; Liao, Y.W.; Yu, C.H.; Yu, C.C. LncRNA MEG3 inhibits self-renewal and invasion abilities of oral cancer stem cells by sponging miR-421. J. Formos. Med. Assoc., 2021, 120(4), 1137-1142.
[http://dx.doi.org/10.1016/j.jfma.2020.09.006] [PMID: 33012637]
[56]
Huang, Z.F.; Tang, Y.L.; Shen, Z.L.; Yang, K.Y.; Gao, K. UXT, a novel DNMT3b-binding protein, promotes breast cancer progression via negatively modulating lncRNA MEG3/p53 axis. Mol. Ther. Oncolytics, 2022, 24, 497-506.
[http://dx.doi.org/10.1016/j.omto.2021.12.008] [PMID: 35229028]
[57]
Dong, S.; Ma, M.; Li, M.; Guo, Y.; Zuo, X.; Gu, X.; Zhang, M.; Shi, Y. LncRNA MEG3 regulates breast cancer proliferation and apoptosis through miR-141-3p/RBMS3 axis. Genomics, 2021, 113(4), 1689-1704.
[http://dx.doi.org/10.1016/j.ygeno.2021.04.015] [PMID: 33845141]
[58]
Gong, X.; Huang, M. Long non-coding RNA MEG3 promotes the proliferation of glioma cells through targeting Wnt/β-catenin signal pathway. Cancer Gene Ther., 2017, 24(9), 381-385.
[http://dx.doi.org/10.1038/cgt.2017.32] [PMID: 29027534]
[59]
He, J.H.; Han, Z.P.; Liu, J.M.; Zhou, J.B.; Zou, M.X.; Lv, Y.B.; Li, Y.G.; Cao, M.R. Overexpression of long non-coding RNA MEG3 inhibits proliferation of hepatocellular carcinoma Huh7 cells via negative modulation of miRNA-664. J. Cell. Biochem., 2017, 118(11), 3713-3721.
[http://dx.doi.org/10.1002/jcb.26018] [PMID: 28374914]
[60]
Gao, Y.; Chen, X.; Zhang, J. LncRNA MEG3 inhibits retinoblastoma invasion and metastasis by inducing β-catenin degradation. Am. J. Cancer Res., 2022, 12(7), 3111-3127.
[PMID: 35968358]
[61]
Dudea-Simon, M.; Mihu, D.; Pop, L.A.; Ciortea, R.; Malutan, A.M.; Diculescu, D.; Ciocan, C.A.; Cojocneanu, R.M.; Simon, V.; Bucuri, C.; Mocan-Hognogi, R.; Braicu, C.; Berindan-Neagoe, I. Alteration of gene and miRNA expression in cervical intraepithelial neoplasia and cervical cancer. Int. J. Mol. Sci., 2022, 23(11), 6054.
[http://dx.doi.org/10.3390/ijms23116054] [PMID: 35682732]
[62]
Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/5276130] [PMID: 27803762]
[63]
Peng, J.W.; Gu, Y.Y.; Wei, J.; Sun, Y.; Zhu, C.L.; Zhang, L.; Song, Y.; Chen, L.; Chen, X.; Wang, Q.; Zhang, H.L. LncRNA MEG3-TRPV1 signaling regulates chronic inflammatory pain in rats. Mol. Pain, 2022, 18
[http://dx.doi.org/10.1177/17448069221144246] [PMID: 36424837]
[64]
Meng, J.; Ding, T.; Chen, Y.; Long, T.; Xu, Q.; Lian, W.; Liu, W. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int. Immunopharmacol., 2021, 90, 107141.
[http://dx.doi.org/10.1016/j.intimp.2020.107141] [PMID: 33189612]
[65]
Tang, Z.L.; Zhang, K.; Lv, S.C.; Xu, G.W.; Zhang, J.F.; Jia, H.Y. LncRNA MEG3 suppresses PI3K/AKT/mTOR signalling pathway to enhance autophagy and inhibit inflammation in TNF-α-treated keratinocytes and psoriatic mice. Cytokine, 2021, 148, 155657.
[http://dx.doi.org/10.1016/j.cyto.2021.155657] [PMID: 34425525]
[66]
Huang, Y.; Chen, D.; Yan, Z.; Zhan, J.; Xue, X.; Pan, X.; Yu, H. LncRNA MEG3 protects chondrocytes from IL-1β-induced inflammation via regulating miR-9-5p/KLF4 axis. Front. Physiol., 2021, 12, 617654.
[http://dx.doi.org/10.3389/fphys.2021.617654] [PMID: 33776787]
[67]
Gao, H.; Zhang, X.; Tang, F.; Chen, L.; Tian, Z.; Xiao, D.; Li, X. Knockdown of lncRNA MEG3 protects against sepsis-induced acute lung injury in mice through miR-93–5p-dependent inhibition of NF-κB signaling pathway. Pathol. Res. Pract., 2022, 239, 154142.
[http://dx.doi.org/10.1016/j.prp.2022.154142] [PMID: 36242967]
[68]
Liu, M.; Chen, L.; Wu, J.; Lin, Z.; Huang, S. Long noncoding RNA MEG3 expressed in human dental pulp regulates LPS-Induced inflammation and odontogenic differentiation in pulpitis. Exp. Cell Res., 2021, 400(2), 112495.
[http://dx.doi.org/10.1016/j.yexcr.2021.112495] [PMID: 33524362]
[69]
Li, Y.; Zhang, S.; Zhang, C.; Wang, M. LncRNA MEG3 inhibits the inflammatory response of ankylosing spondylitis by targeting miR-146a. Mol. Cell. Biochem., 2020, 466(1-2), 17-24.
[http://dx.doi.org/10.1007/s11010-019-03681-x] [PMID: 31894531]
[70]
Liu, C.; Liang, T.; Zhang, Z.; Chen, J.; Xue, J.; Zhan, X.; Ren, L. MEG3 alleviates ankylosing spondylitis by suppressing osteogenic differentiation of mesenchymal stem cells through regulating microRNA-125a-5p-mediated TNFAIP3. Apoptosis, 2022.
[PMID: 36587050]
[71]
Tu, Y.; Song, E.; Wang, Z.; Ji, N.; Zhu, L.; Wang, K.; Sun, H.; Zhang, Y.; Zhu, Q.; Liu, X.; Zhu, M. Melatonin attenuates oxidative stress and inflammation of Müller cells in diabetic retinopathy via activating the Sirt1 pathway. Biomed. Pharmacother., 2021, 137, 111274.
[http://dx.doi.org/10.1016/j.biopha.2021.111274] [PMID: 33517190]
[72]
Guo, J.; Zhang, N.; Liu, G.; Zhang, A.; Liu, X.; Zheng, J. Upregulated expression of long non-coding RNA MEG3 serves as a prognostic biomarker in severe pneumonia children and its regulatory mechanism. Bioengineered, 2021, 12(1), 7120-7131.
[http://dx.doi.org/10.1080/21655979.2021.1979351] [PMID: 34558385]
[73]
Zhou, X.; He, J.; Chen, J.; Cui, Y.; Ou, Z.; Zu, X.; Liu, N. Silencing of MEG3 attenuated the role of lipopolysaccharides by modulating the miR-93-5p/PTEN pathway in Leydig cells. Reprod. Biol. Endocrinol., 2021, 19(1), 33.
[http://dx.doi.org/10.1186/s12958-021-00712-5] [PMID: 33639974]
[74]
Liu, Y.; Yang, L.; Xu, Q.; Lu, X.Y.; Ma, T.T.; Huang, C.; Li, J. Long noncoding RNA MEG3 regulates rheumatoid arthritis by targeting NLRC5. J. Cell. Physiol., 2019, 234(8), 14270-14284.
[http://dx.doi.org/10.1002/jcp.28126] [PMID: 30644097]
[75]
Yiu, W.H.; Lok, S.W.Y.; Xue, R.; Chen, J.; Lai, K.N.; Lan, H.Y.; Tang, S.C.W. The long noncoding RNA Meg3 mediates TLR4-induced inflammation in experimental obstructive nephropathy. Clin. Sci. (Lond.), 2023, 137(5), 317-331.
[http://dx.doi.org/10.1042/CS20220537] [PMID: 36705251]
[76]
Liu, F.; Chen, Y.; Liu, R.; Chen, B.; Liu, C.; Xing, J. Long noncoding RNA (MEG3) in urinal exosomes functions as a biomarker for the diagnosis of Hunner-type interstitial cystitis (HIC). J. Cell. Biochem., 2020, 121(2), 1227-1237.
[http://dx.doi.org/10.1002/jcb.29356] [PMID: 31595563]
[77]
Luo, Y.; Liu, C.Q.; He, H.B.; Wang, T.; He, Y.M.; Zhang, C.C.; Yuan, D.; Yuan, C.F. Effect of total saponins from Panax japonicus on non-alcoholic steatohepatitis by regulating autophagy. Zhongguo Zhongyao Zazhi, 2021, 46(9), 2260-2266.
[PMID: 34047129]
[78]
Sharif, R. Overview of idiopathic pulmonary fibrosis (IPF) and evidence-based guidelines. Am. J. Manag. Care, 2017, 23(11)(Suppl.), S176-S182.
[PMID: 28978212]
[79]
Oldham, J.M.; Ma, S.F.; Martinez, F.J.; Anstrom, K.J.; Raghu, G.; Schwartz, D.A.; Valenzi, E.; Witt, L.; Lee, C.; Vij, R.; Huang, Y.; Strek, M.E.; Noth, I. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2015, 192(12), 1475-1482.
[http://dx.doi.org/10.1164/rccm.201505-1010OC] [PMID: 26331942]
[80]
Gao, Q.; Chang, X.; Yang, M.; Zheng, J.; Gong, X.; Liu, H.; Li, K.; Wang, X.; Zhan, H.; Li, S.; Feng, S.; Sun, X.; Sun, Y. LncRNA MEG3 restrained pulmonary fibrosis induced by NiO NPs via regulating hedgehog signaling pathway-mediated autophagy. Environ. Toxicol., 2022, 37(1), 79-91.
[http://dx.doi.org/10.1002/tox.23379] [PMID: 34608745]
[81]
Zhan, H.; Chang, X.; Wang, X.; Yang, M.; Gao, Q.; Liu, H.; Li, C.; Li, S.; Sun, Y. LNCRNA MEG3 mediates nickel oxide nanoparticles-induced pulmonary fibrosis via suppressing TGF -β1 expression and epithelial-mesenchymal transition process. Environ. Toxicol., 2021, 36(6), 1099-1110.
[http://dx.doi.org/10.1002/tox.23109] [PMID: 33547861]
[82]
Zhan, H.; Sun, X.; Wang, X.; Gao, Q.; Yang, M.; Liu, H.; Zheng, J.; Gong, X.; Feng, S.; Chang, X.; Sun, Y. LncRNA MEG3 involved in NiO NPs-induced pulmonary fibrosis via regulating TGF-β1-mediated PI3K/AKT pathway. Toxicol. Sci., 2021, 182(1), 120-131.
[http://dx.doi.org/10.1093/toxsci/kfab047] [PMID: 33895847]
[83]
Li, X.; Li, G.; Jin, Y.; Yao, Q.; Li, R.; Wang, H. Long non-coding RNA maternally expressed 3 (MEG3) regulates isoflurane-induced cognitive dysfunction by targeting miR-7-5p. Toxicol. Mech. Methods, 2022, 32(6), 453-462.
[http://dx.doi.org/10.1080/15376516.2022.2042881] [PMID: 35164634]
[84]
Royer, M.; Pai, B.; Menon, R.; Bludau, A.; Gryksa, K.; Perry, R.B.T.; Ulitsky, I.; Meister, G.; Neumann, I.D. Transcriptome and chromatin alterations in social fear indicate association of MEG3 with successful extinction of fear. Mol. Psychiatry, 2022, 27(10), 4064-4076.
[http://dx.doi.org/10.1038/s41380-022-01481-2] [PMID: 35338311]
[85]
Samii, A.; Nutt, J.G.; Ransom, B.R. Parkinson’s disease. Lancet, 2004, 363(9423), 1783-1793.
[http://dx.doi.org/10.1016/S0140-6736(04)16305-8] [PMID: 15172778]
[86]
Huang, H.; Zheng, S.; Lu, M. Downregulation of lncRNA MEG3 is involved in Parkinson’s disease. Metab. Brain Dis., 2021, 36(8), 2323-2328.
[http://dx.doi.org/10.1007/s11011-021-00835-z] [PMID: 34643842]
[87]
Liu, J.; Qi, X.; Wang, X.H.; Miao, H.S.; Xue, Z.C.; Zhang, L.L.; Zhao, S.H.; Wu, L.H.; Gao, G.Y.; Lou, M.Q.; Yi, C.Q. Downregulation of the LncRNA MEG3 promotes osteogenic differentiation of BMSCs and bone repairing by activating Wnt/β-catenin signaling pathway. J. Clin. Med., 2022, 11(2), 395.
[http://dx.doi.org/10.3390/jcm11020395] [PMID: 35054086]
[88]
Zhu, J.; Fu, Q.; Shao, J.; Peng, J.; Qian, Q.; Zhou, Y.; Chen, Y. Over-expression of MEG3 promotes differentiation of bone marrow mesenchymal stem cells into chondrocytes by regulating miR-129-5p/RUNX1 axis. Cell Cycle, 2021, 20(1), 96-111.
[http://dx.doi.org/10.1080/15384101.2020.1863043] [PMID: 33410373]
[89]
Wang, S.; Xiong, G.; Ning, R.; Pan, Z.; Xu, M.; Zha, Z.; Liu, N. LncRNA MEG3 promotes osteogenesis of hBMSCs by regulating miR-21-5p / SOD3 axis. Acta Biochim. Pol., 2022, 69(1), 71-77.
[http://dx.doi.org/10.18388/abp.2020_5661] [PMID: 35231166]
[90]
Li, H.; Xu, X.; Wang, D.; Zhang, Y.; Chen, J.; Li, B.; Su, S.; Wei, L.; You, H.; Fang, Y.; Wang, Y.; Liu, Y. Hypermethylation-mediated downregulation of long non-coding RNA MEG3 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells and promotes pediatric aplastic anemia. Int. Immunopharmacol., 2021, 93, 107292.
[http://dx.doi.org/10.1016/j.intimp.2020.107292] [PMID: 33529912]
[91]
Gao, X.; Ge, J.; Zhou, W.; Xu, L.; Geng, D. IL-10 inhibits osteoclast differentiation and osteolysis through MEG3/IRF8 pathway. Cell. Signal., 2022, 95, 110353.
[http://dx.doi.org/10.1016/j.cellsig.2022.110353] [PMID: 35525407]
[92]
Yu, Z.; Wen, Y.; Jiang, N.; Li, Z.; Guan, J.; Zhang, Y.; Deng, C.; Zhao, L.; Zheng, S.G.; Zhu, Y.; Su, W.; Zhuo, Y. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials, 2022, 284, 121484.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121484] [PMID: 35378413]
[93]
He, Y.; Dan, Y.; Gao, X.; Huang, L.; Lv, H.; Chen, J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am. J. Physiol. Endocrinol. Metab., 2021, 320(3), E598-E608.
[http://dx.doi.org/10.1152/ajpendo.00089.2020] [PMID: 33284093]
[94]
Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci., 2018, 75(3), 467-484.
[http://dx.doi.org/10.1007/s00018-017-2626-6] [PMID: 28840253]
[95]
Fang, C.Y.; Chen, S.H.; Huang, C.C.; Liao, Y.W.; Chao, S.C.; Yu, C.C. Fucoidan-mediated inhibition of fibrotic properties in oral submucous fibrosis via the MEG3/miR-181a/Egr1 axis. Pharmaceuticals (Basel), 2022, 15(7), 833.
[http://dx.doi.org/10.3390/ph15070833] [PMID: 35890132]
[96]
Chen, Y.; Zhang, Z.; Zhu, D.; Zhao, W.; Li, F. Long non-coding RNA MEG3 serves as a ceRNA for microRNA-145 to induce apoptosis of AC16 cardiomyocytes under high glucose condition. Biosci. Rep., 2019, 39(6), BSR20190444.
[http://dx.doi.org/10.1042/BSR20190444] [PMID: 31085717]
[97]
Sun, H.J.; Zhang, F.F.; Xiao, Q.; Xu, J.; Zhu, L.J. lncRNA MEG3, acting as a ceRNA, modulates RPE differentiation through the miR-7-5p/Pax6 axis. Biochem. Genet., 2021, 59(6), 1617-1630.
[http://dx.doi.org/10.1007/s10528-021-10072-9] [PMID: 34018078]
[98]
Zhang, S.; Ji, W.W.; Wei, W.; Zhan, L.X.; Huang, X. Long noncoding RNA Meg3 sponges miR-708 to inhibit intestinal tumorigenesis via SOCS3-repressed cancer stem cells growth. Cell Death Dis., 2021, 13(1), 25.
[http://dx.doi.org/10.1038/s41419-021-04470-5] [PMID: 34934045]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy