Research Article

酪氨酸蛋白激酶Fyn的硅筛选和分子动力学模拟揭示了牛乳头状瘤病潜在的新治疗候选物

卷 31, 期 37, 2024

发表于: 19 October, 2023

页: [6172 - 6186] 页: 15

弟呕挨: 10.2174/0109298673263039231009101133

价格: $65

conference banner
摘要

背景:由于乳头状瘤病导致牛肉生产力下降,导致开发和鉴定新的靶点和分子来治疗这种疾病。蛋白激酶是设计许多化疗药物的有希望的靶点。 目的:本研究旨在利用基于结构的计算方法,如分子对接和分子动力学模拟(MDS),筛选和设计新的牛蛋白激酶Fyn抑制剂。 方法:为了进行分子对接分析,我们利用ChEMBL和Drugbank数据库之间的交叉抑制功能,通过活性化合物之间的结构相似性获得了5个配体。进行分子建模,并使用PROCHECK和Verify 3D对生成的模型进行验证。使用Autodock Vina进行分子对接。用MDS评价了Fyn与三种最佳配体形成的配合物的稳定性。在这些模拟中,配合物在1 atm的压力下稳定了100 ns,平均温度为300 k,势能为1,145,336 kJ/m,经过997步收敛。 结果:对接分析表明,所有选择的配体与Fyn具有较高的结合亲和力,并且在重要的活性位点存在氢键。MDS结果支持对接结果,因为配体与蛋白质结合位点的氨基酸表现出相似且稳定的相互作用。在所有模拟中,索拉非尼与牛Fyn的相互作用效果最好。 结论:结果强调了可能的牛Fyn抑制剂的鉴定;然而,进一步的研究是重要的,以证实这些结果的实验。

关键词: 牛乳头瘤病毒,虚拟筛选,Fyn,酪氨酸蛋白,MDS,乳头瘤病。

« Previous
[1]
Borzacchiello, G.; Roperto, F. Bovine papillomaviruses, papillomas and cancer in cattle. Vet. Res., 2008, 39(5), 45.
[http://dx.doi.org/10.1051/vetres:2008022] [PMID: 18479666]
[2]
Medeiros-Fonseca, B.; Abreu-Silva, A.L.; Medeiros, R.; Oliveira, P.A.; Gil da Costa, R.M. Pteridium spp. and bovine papillomavirus: Partners in cancer. Front. Vet. Sci., 2021, 8, 758720.
[http://dx.doi.org/10.3389/fvets.2021.758720] [PMID: 34796228]
[3]
Kono, T.; Laimins, L. Genomic instability and DNA damage repair pathways induced by human papillomaviruses. Viruses, 2021, 13(9), 1821.
[http://dx.doi.org/10.3390/v13091821] [PMID: 34578402]
[4]
Moody, C.A. Regulation of the innate immune response during the human papillomavirus life cycle. Viruses, 2022, 14(8), 1797.
[http://dx.doi.org/10.3390/v14081797] [PMID: 36016419]
[5]
Gallina, L.; Savini, F.; Canziani, S.; Frasnelli, M.; Lavazza, A.; Scagliarini, A.; Lelli, D. Bovine papillomatosis hiding a zoonotic infection: Epitheliotropic viruses in bovine skin lesions. Pathogens, 2020, 9(7), 583.
[http://dx.doi.org/10.3390/pathogens9070583] [PMID: 32709033]
[6]
Ugochukwu, I.C.I.; Aneke, C.I.; Idoko, I.S.; Sani, N.A.; Amoche, A.J.; Mshiela, W.P.; Ede, R.E.; Ibrahim, N.D.G.; Njoku, C.I.O.; Sackey, A.K.B. Bovine papilloma: Aetiology, pathology, immunology, disease status, diagnosis, control, prevention and treatment: A review. Comp. Clin. Pathol., 2019, 28(3), 737-745.
[http://dx.doi.org/10.1007/s00580-018-2785-3]
[7]
Daudt, C.; Da Silva, F.R.C.; Lunardi, M.; Alves, C.B.D.T.; Weber, M.N.; Cibulski, S.P.; Alfieri, A.F.; Alfieri, A.A.; Canal, C.W. Papillomaviruses in ruminants: An update. Transbound. Emerg. Dis., 2018, 65(5), 1381-1395.
[http://dx.doi.org/10.1111/tbed.12868] [PMID: 29603890]
[8]
Lunardi, M.; de Camargo Tozato, C.; Alfieri, A.F.; de Alcântara, B.K.; Vilas-Boas, L.A.; Otonel, R.A.A.; Headley, S.A.; Alfieri, A.A. Genetic diversity of bovine papillomavirus types, including two putative new types, in teat warts from dairy cattle herds. Arch. Virol., 2016, 161(6), 1569-1577.
[http://dx.doi.org/10.1007/s00705-016-2820-0] [PMID: 26997614]
[9]
Bauermann, F.V.; Joshi, L.R.; Mohr, K.A.; Kutish, G.F.; Meier, P.; Chase, C.; Christopher-Hennings, J.; Diel, D.G. A novel bovine papillomavirus type in the genus Dyokappapapillomavirus. Arch. Virol., 2017, 162(10), 3225-3228.
[http://dx.doi.org/10.1007/s00705-017-3443-9] [PMID: 28616671]
[10]
Sant’Ana, F.J.F.; Leal, F.A.A.; Rabelo, R.E.; Vulcani, V.A.S.; Moreira, C.A., Jr; Cargnelutti, J.F.; Flores, E.F. Coinfection by Vaccinia virus and an Orf virus –like parapoxvirus in an outbreak of vesicular disease in dairy cows in midwestern Brazil. J. Vet. Diagn. Invest., 2013, 25(2), 267-272.
[http://dx.doi.org/10.1177/1040638713475799] [PMID: 23404478]
[11]
Turk, N.; Župančić, Ž.; Starešina, V.; Kovač, S.; Babić, T.; Kreszinger, M.; Milas, Z. Severe bovine papillomatosis: detection of bovine papillomavirus in tumour tissue and efficacy of treatment using autogenous vaccine and parammunity inducer. Veterinarski arhiv, 2005, 75(5), 391-397. Available from: https://hrcak.srce.hr/31727
[12]
Celegato, M.; Messa, L.; Goracci, L.; Mercorelli, B.; Bertagnin, C.; Spyrakis, F.; Suarez, I.; Cousido-Siah, A.; Travé, G.; Banks, L.; Cruciani, G.; Palù, G.; Loregian, A. A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Lett., 2020, 470, 115-125.
[http://dx.doi.org/10.1016/j.canlet.2019.10.046] [PMID: 31693922]
[13]
Soumia, M.; Hajji, H.; El Mzibri, M.; Younes, F.Z.; Mohammed, B.; Mohamed, B.; Benaissa, M. In silico molecular modeling studies to identify novel potential inhibitors of HPV E6 protein. Vaccines, 2022, 10(9), 1452.
[http://dx.doi.org/10.3390/vaccines10091452] [PMID: 36146532]
[14]
Sepehri, S.; Razzaghi-Asl, N.; Mirzayi, S.; Mahnam, K.; Adhami, V. In silico screening and molecular dynamics simulations toward new human papillomavirus 16 type inhibitors. Res. Pharm. Sci., 2022, 17(2), 189-208.
[http://dx.doi.org/10.4103/1735-5362.335177] [PMID: 35280831]
[15]
Krug, S.; Parveen, S.; Bishai, W.R. Host-directed therapies: Modulating inflammation to treat tuberculosis. Front. Immunol., 2021, 12, 660916.
[http://dx.doi.org/10.3389/fimmu.2021.660916] [PMID: 33953722]
[16]
Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov., 2018, 17(1), 35-56.
[http://dx.doi.org/10.1038/nrd.2017.162] [PMID: 28935918]
[17]
Eguchi, R.; Kubo, S.; Takeda, H.; Ohta, T.; Tabata, C.; Ogawa, H.; Nakano, T.; Fujimori, Y. Deficiency of Fyn protein is prerequisite for apoptosis induced by Src family kinase inhibitors in human mesothelioma cells. Carcinogenesis, 2012, 33(5), 969-975.
[http://dx.doi.org/10.1093/carcin/bgs109] [PMID: 22354875]
[18]
Barreto, D.M.; Barros, G.S.; Santos, L.A.B.O.; Soares, R.C.; Batista, M.V.A. Comparative transcriptomic analysis of bovine papillomatosis. BMC Genomics, 2018, 19(1), 949.
[http://dx.doi.org/10.1186/s12864-018-5361-y] [PMID: 30567500]
[19]
Li, S.; Liu, C.; Tang, Y. Role of Fyn in hematological malignancies. J. Cancer Res. Clin. Oncol., 2023, 149(9), 6759-6767.
[http://dx.doi.org/10.1007/s00432-023-04608-2] [PMID: 36754870]
[20]
Ninio-Many, L.; Grossman, H.; Levi, M.; Zilber, S.; Tsarfaty, I.; Shomron, N.; Tuvar, A.; Chuderland, D.; Stemmer, S.M.; Ben-Aharon, I.; Shalgi, R. MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience, 2014, 1(4), 250-261.
[http://dx.doi.org/10.18632/oncoscience.30] [PMID: 25594017]
[21]
Nisar, A.; Kayani, M.A.; Nasir, W.; Mehmood, A.; Ahmed, M.W.; Parvez, A.; Mahjabeen, I. Fyn and Lyn gene polymorphisms impact the risk of thyroid cancer. Mol. Genet. Genomics, 2022, 297(6), 1649-1659.
[http://dx.doi.org/10.1007/s00438-022-01946-7] [PMID: 36058999]
[22]
Elias, D.; Vever, H.; Lænkholm, A.V.; Gjerstorff, M.F.; Yde, C.W.; Lykkesfeldt, A.E.; Ditzel, H.J. Correction: Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy. Oncogene, 2018, 37(41), 5585-5586.
[http://dx.doi.org/10.1038/s41388-018-0495-6] [PMID: 30242243]
[23]
Yu, B.; Xu, L.; Chen, L.; Wang, Y.; Jiang, H.; Wang, Y.; Yan, Y.; Luo, S.; Zhai, Z. FYN is required for ARHGEF16 to promote proliferation and migration in colon cancer cells. Cell Death Dis., 2020, 11(8), 652.
[http://dx.doi.org/10.1038/s41419-020-02830-1] [PMID: 32811808]
[24]
Xie, Y.G.; Yu, Y.; Hou, L.K.; Wang, X.; Zhang, B.; Cao, X.C. FYN promotes breast cancer progression through epithelial-mesenchymal transition. Oncol. Rep., 2016, 36(2), 1000-1006.
[http://dx.doi.org/10.3892/or.2016.4894] [PMID: 27349276]
[25]
Polanco, J.C.; Li, C.; Bodea, L.G.; Martinez-Marmol, R.; Meunier, F.A.; Götz, J. Amyloid-β and tau complexity : Towards improved biomarkers and targeted therapies. Nat. Rev. Neurol., 2018, 14(1), 22-39.
[http://dx.doi.org/10.1038/nrneurol.2017.162] [PMID: 29242522]
[26]
Angelopoulou, E.; Paudel, Y.N.; Julian, T.; Shaikh, M.F.; Piperi, C. Pivotal role of Fyn kinase in parkinson’s disease and levodopa-induced dyskinesia: A novel therapeutic target? Mol. Neurobiol., 2021, 58(4), 1372-1391.
[http://dx.doi.org/10.1007/s12035-020-02201-z] [PMID: 33175322]
[27]
Löwenberg, M.; Tuynman, J.; Bilderbeek, J.; Gaber, T.; Buttgereit, F.; van Deventer, S.; Peppelenbosch, M.; Hommes, D. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood, 2005, 106(5), 1703-1710.
[http://dx.doi.org/10.1182/blood-2004-12-4790] [PMID: 15899916]
[28]
Marotta, G.; Basagni, F.; Rosini, M.; Minarini, A. Role of Fyn kinase inhibitors in switching neuroinflammatory pathways. Curr. Med. Chem., 2022, 29(27), 4738-4755.
[http://dx.doi.org/10.2174/0929867329666211221153719] [PMID: 34939537]
[29]
Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[30]
Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform., 2015, 7(1), 20.
[http://dx.doi.org/10.1186/s13321-015-0069-3] [PMID: 26052348]
[31]
Webb, B.; Sali, A. Comparative protein structure modeling using modeller. Curr. prot. bioinform., 2016, 54, 5.6.1-5.6.37.
[http://dx.doi.org/10.1002/cpbi.3]
[32]
Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc., 2021, 16(12), 5634-5651.
[http://dx.doi.org/10.1038/s41596-021-00628-9] [PMID: 34759384]
[33]
Capriles, P.V.S.Z.; Baptista, L.P.R.; Guedes, I.A.; Guimarães, A.C.R.; Custódio, F.L.; Alves-Ferreira, M.; Dardenne, L.E. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: A comparative analysis for Leishmaniasis treatment. J. Mol. Graph. Model., 2015, 55, 134-147.
[http://dx.doi.org/10.1016/j.jmgm.2014.11.002] [PMID: 25528729]
[34]
Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods, 2011, 8(10), 785-786.
[http://dx.doi.org/10.1038/nmeth.1701] [PMID: 21959131]
[35]
Colovos, C.; Yeates, T. O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci, 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916]
[36]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[37]
Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534.
[http://dx.doi.org/10.1016/j.bpj.2011.10.024] [PMID: 22098752]
[38]
Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res., 2016, 44(W1), W344-W350.
[http://dx.doi.org/10.1093/nar/gkw408] [PMID: 27166375]
[39]
Hao, G.; Xu, Z.P.; Li, L. Manipulating extracellular tumour pH: An effective target for cancer therapy. RSC Adv., 2018, 8(39), 22182-22192.
[http://dx.doi.org/10.1039/C8RA02095G] [PMID: 35541713]
[40]
Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A. PDB2PQR:Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucl. acid. res., 2007, 35(Web Server issue), W522-W525.
[http://dx.doi.org/10.1093/nar/gkm276]
[41]
Li, H.; Robertson, A.D.; Jensen, J.H. Very fast empirical prediction and rationalization of protein pKa values. Proteins, 2005, 61(4), 704-721.
[http://dx.doi.org/10.1002/prot.20660] [PMID: 16231289]
[42]
MacKerell, A.D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R.L., Jr; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998, 102(18), 3586-3616.
[http://dx.doi.org/10.1021/jp973084f] [PMID: 24889800]
[43]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[44]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[45]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[46]
Hennequin, L.F.; Allen, J.; Breed, J.; Curwen, J.; Fennell, M.; Green, T.P.; Lambert-van der Brempt, C.; Morgentin, R.; Norman, R.A.; Olivier, A.; Otterbein, L.; Plé, P.A.; Warin, N.; Costello, G. N -(5-Chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2 H -pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl Kinase Inhibitor. J. Med. Chem., 2006, 49(22), 6465-6488.
[http://dx.doi.org/10.1021/jm060434q] [PMID: 17064066]
[47]
Kinoshita, T.; Matsubara, M.; Ishiguro, H.; Okita, K.; Tada, T. Structure of human Fyn kinase domain complexed with staurosporine. Biochem. Biophys. Res. Commun., 2006, 346(3), 840-844.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.212] [PMID: 16782058]
[48]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[49]
Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods, 2017, 14(1), 71-73.
[http://dx.doi.org/10.1038/nmeth.4067] [PMID: 27819658]
[50]
Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; Jo, S.; Pande, V.S.; Case, D.A.; Brooks, C.L., III; MacKerell, A.D., Jr; Klauda, J.B.; Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput., 2016, 12(1), 405-413.
[http://dx.doi.org/10.1021/acs.jctc.5b00935] [PMID: 26631602]
[51]
Lee, J.; Hitzenberger, M.; Rieger, M.; Kern, N.R.; Zacharias, M.; Im, W. CHARMM-GUI supports the amber force fields. J. Chem. Phys., 2020, 153(3), 035103.
[http://dx.doi.org/10.1063/5.0012280] [PMID: 32716185]
[52]
Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem., 2008, 29(11), 1859-1865.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[53]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[54]
Davidchack, R.L.; Handel, R.; Tretyakov, M.V. Langevin thermostat for rigid body dynamics. J. Chem. Phys., 2009, 130(23), 234101.
[http://dx.doi.org/10.1063/1.3149788] [PMID: 19548705]
[55]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[56]
Senapathi, T.; Bray, S.; Barnett, C.B.; Grüning, B.; Naidoo, K.J. Biomolecular reaction and interaction dynamics global environment (BRIDGE). Bioinformatics, 2019, 35(18), 3508-3509.
[http://dx.doi.org/10.1093/bioinformatics/btz107] [PMID: 30759217]
[57]
Grant, B.J.; Rodrigues, A.P.C.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S.D. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 2006, 22(21), 2695-2696.
[http://dx.doi.org/10.1093/bioinformatics/btl461] [PMID: 16940322]
[58]
Jensen, A.R.; David, S.Y.; Liao, C.; Dai, J.; Keller, E.T.; Al-Ahmadie, H.; Dakin-Haché, K.; Usatyuk, P.; Sievert, M.F.; Paner, G.P.; Yala, S.; Cervantes, G.M.; Natarajan, V.; Salgia, R.; Posadas, E.M. Fyn is downstream of the HGF/MET signaling axis and affects cellular shape and tropism in PC3 cells. Clin. Cancer Res., 2011, 17(10), 3112-3122.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1264] [PMID: 21364031]
[59]
Druker, B.J.; Sawyers, C.L.; Kantarjian, H.; Resta, D.J.; Reese, S.F.; Ford, J.M.; Capdeville, R.; Talpaz, M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med., 2001, 344(14), 1038-1042.
[http://dx.doi.org/10.1056/NEJM200104053441402] [PMID: 11287973]
[60]
Boggon, T.J.; Eck, M.J. Structure and regulation of Src family kinases. Oncogene, 2004, 23(48), 7918-7927.
[http://dx.doi.org/10.1038/sj.onc.1208081] [PMID: 15489910]
[61]
Musacchio, A.; Noble, M.; Pauptit, R.; Wierenga, R.; Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature, 1992, 359(6398), 851-855.
[http://dx.doi.org/10.1038/359851a0] [PMID: 1279434]
[62]
Dalal, V.; Dhankhar, P.; Singh, V.; Singh, V.; Rakhaminov, G.; Golemi-Kotra, D.; Kumar, P. Structure-based identification of potential drugs against FmtA of staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J., 2021, 40(2), 148-165.
[http://dx.doi.org/10.1007/s10930-020-09953-6] [PMID: 33421024]
[63]
Jensen, B.C.; Parry, T.L.; Huang, W.; Beak, J.Y.; Ilaiwy, A.; Bain, J.R.; Newgard, C.B.; Muehlbauer, M.J.; Patterson, C.; Johnson, G.L.; Willis, M.S. Effects of the kinase inhibitor sorafenib on heart, muscle, liver and plasma metabolism in vivo using non-targeted metabolomics analysis. Br. J. Pharmacol., 2017, 174(24), 4797-4811.
[http://dx.doi.org/10.1111/bph.14062] [PMID: 28977680]
[64]
Motzer, R.J.; Escudier, B.; Gannon, A.; Figlin, R.A. Sunitinib: Ten years of successful clinical use and study in advanced renal cell carcinoma. Oncologist, 2017, 22(1), 41-52.
[http://dx.doi.org/10.1634/theoncologist.2016-0197] [PMID: 27807302]
[65]
Draghiciu, O.; Boerma, A.; Hoogeboom, B.N.; Nijman, H.W.; Daemen, T. A rationally designed combined treatment with an alphavirus-based cancer vaccine, sunitinib and low-dose tumor irradiation completely blocks tumor development. OncoImmunology, 2015, 4(10), e1029699.
[http://dx.doi.org/10.1080/2162402X.2015.1029699] [PMID: 26451295]
[66]
Amir, M.; Mohammad, T.; Kumar, V.; Alajmi, M.F.; Rehman, M.T.; Hussain, A.; Alam, P.; Dohare, R.; Islam, A.; Ahmad, F.; Hassan, M.I. Structural analysis and conformational dynamics of STN1 gene mutations involved in coat plus syndrome. Front. Mol. Biosci., 2019, 6, 41.
[http://dx.doi.org/10.3389/fmolb.2019.00041] [PMID: 31245382]
[67]
Hong, L.; Jain, N.; Cheng, X.; Bernal, A.; Tyagi, M.; Smith, J.C. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering. Sci. Adv., 2016, 2(10), e1600886.
[http://dx.doi.org/10.1126/sciadv.1600886] [PMID: 27757419]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy