Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Periplaneta Americana Extract CII-3 (PAE CII-3) Triggers the Aging of K562 Cells by Modulating SIRT1/TSC2/mTOR Molecules

Author(s): Ziyun Tang, Xuan Wang, Si-Yue He, Yue Zhou*, Chenggui Zhang*, Heng Liu, Ziying Bi and Minrui Li

Volume 21, Issue 14, 2024

Published on: 19 October, 2023

Page: [2990 - 2997] Pages: 8

DOI: 10.2174/0115701808252949231012113909

Price: $65

Abstract

Background: Chronic myeloid leukemia (CML) is considered a type of hematopoietic stem cell disease that affects the bone marrow and blood.

Objective: This study aimed to investigate the possible role of the Periplaneta americana extract CII-3 (PAE CII-3) in the aging of K562 cells.

Materials and Methods: The proliferation and cell cycle of K562 cells were determined using the CCK-8 assay and the cell cycle assay, respectively. K562 cells were stained with SA-β-Gal to evaluate cell aging. The mitochondrial membrane potential of K562 cells was detected with the JC-1 mitochondrial membrane potential assay kit. Telomerase activity was verified using the PCR assay. The transcription of silencing information regulator 2 related enzyme 1 (SIRT1), TSC2, and the mTOR gene were evaluated with RT-PCR assay. The expression of SIRT1, p-TSC2, and p-mTOR was examined using a Western blot assay.

Results: PAE CII-3 at all concentrations (5, 10, 20, 40, 80, 160 μg/mL) demonstrated obvious inhibitory effects on K562 cell proliferation, among which 80 μg/mL showed the highest inhibitory effect. PAE CII-3 significantly blocked the cell cycle and reduced the colony-forming unit (CFU) of K562 cells compared to those in the Control group (p < 0.001). PAE CII-3 markedly increased positive SA-β-Gal staining K562 cells compared to the Control group (p < 0.001). PAE CII-3 significantly reduced mitochondrial membrane potential and decreased TERT gene transcription in K562 cells compared to those of the Control group (p < 0.001). The transcription of the SIRT1 gene (p < 0.01) and the TCS2 gene (p < 0.001) was markedly decreased, and the transcription of the mTOR gene (p < 0.05) was significantly increased in K562 cells treated with PAE CII-3 compared to those of the Control group. PAE CII-3 significantly decreased the expression of SIRT1 (p < 0.01) and p-TSC2 (p < 0.001) and upregulated the expression of p-mTOR (p < 0.01) in K562 cells compared to those of the Control group.

Conclusion: PAE CII-3 treatment could trigger aging in K562 cells by activating the SIRT1/TSC2/mTOR signaling pathway. This study would provide a potential hypothesis of the mechanism by which PAE CII-3 treatment induces the aging of chronic myeloid leukemia cells.

Keywords: Chronic myeloid leukemia (CML), Periplaneta americana extract CII-3 (PAE CII-3), aging, traditional Chinese medicine, apoptosis, hematopoietic stem cell.

Graphical Abstract
[1]
Liu, Y.H.; Zhu, M.; Lei, P.P.; Pan, X.Y.; Ma, W.N. ND-09 inhibits chronic myeloid leukemia K562 cell growth by regulating BCR-ABL signaling. Oncol. Rep., 2021, 46(1), 136.
[http://dx.doi.org/10.3892/or.2021.8087] [PMID: 34036393]
[2]
Sumi, K.; Tago, K.; Nakazawa, Y.; Takahashi, K.; Ohe, T.; Mashino, T.; Funakoshi-Tago, M. Novel mechanism by a Bis-pyridinium fullerene derivative to induce apoptosis by enhancing the MEK-ERK pathway in a reactive oxygen species-independent manner in BCR-ABL-positive chronic myeloid leukemia-derived K562 cells. Int. J. Mol. Sci., 2022, 23(2), 749.
[http://dx.doi.org/10.3390/ijms23020749] [PMID: 35054935]
[3]
Calvo-Alvarez, J.; Jimenez-Del-Rio, M.; Velez-Pardo, C. Vitamin E TPGS 1000 induces apoptosis in the K562 cell line: Implications for chronic myeloid leukemia. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/5580288] [PMID: 34211630]
[4]
Soverini, S.; Mancini, M.; Bavaro, L.; Cavo, M.; Martinelli, G. Chronic myeloid leukemia: the paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy. Mol. Cancer, 2018, 17(1), 49.
[http://dx.doi.org/10.1186/s12943-018-0780-6]
[5]
Feriotto, G.; Tagliati, F.; Brunello, A.; Beninati, S.; Tabolacci, C.; Mischiati, C. A central contribution of TG2 activity to the antiproliferative and pro-apoptotic effects of caffeic Acid in K562 cells of human chronic myeloid leukemia. Int. J. Mol. Sci., 2022, 23(23), 15004.
[http://dx.doi.org/10.3390/ijms232315004] [PMID: 36499332]
[6]
Yung, Y.; Lee, E.; Chu, H.T.; Yip, P.K.; Gill, H. Targeting abnormal hematopoietic stem cells in chronic myeloid leukemia and philadelphia chromosome-negative classical myeloproliferative neoplasms. Int. J. Mol. Sci., 2021, 22(2), 659.
[http://dx.doi.org/10.3390/ijms22020659] [PMID: 33440869]
[7]
Hughes, T.P.; Mauro, M.J.; Cortes, J.E.; Minami, H.; Rea, D.; DeAngelo, D.J.; Breccia, M.; Goh, Y.T.; Talpaz, M.; Hochhaus, A.; le Coutre, P.; Ottmann, O.; Heinrich, M.C.; Steegmann, J.L.; Deininger, M.W.N.; Janssen, J.J.W.M.; Mahon, F.X.; Minami, Y.; Yeung, D.; Ross, D.M.; Tallman, M.S.; Park, J.H.; Druker, B.J.; Hynds, D.; Duan, Y.; Meille, C.; Hourcade-Potelleret, F.; Vanasse, K.G.; Lang, F.; Kim, D.W. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N. Engl. J. Med., 2019, 381(24), 2315-2326.
[http://dx.doi.org/10.1056/NEJMoa1902328] [PMID: 31826340]
[8]
Zhang, Y.; Lou, Y.; Wang, J.; Yu, C.; Shen, W. Research status and molecular mechanism of the traditional chinese medicine and antitumor therapy combined strategy based on tumor microenvironment. Front. Immunol., 2021, 11, 609705.
[http://dx.doi.org/10.3389/fimmu.2020.609705] [PMID: 33552068]
[9]
Xu, J.; Che, Y.; Liu, X.; Liu, C.; Meng, D.; Pang, X.; He, M.; Liu, G.; Zhang, C.; Yang, D.; Xiao, H. The regulating effect of CII-3 and its active components from Periplaneta americana on M1/M2 macrophage polarization. Molecules, 2022, 27(14), 4416.
[http://dx.doi.org/10.3390/molecules27144416] [PMID: 35889289]
[10]
Xiao, Y.; Gao, C.; Wu, J.; Li, J.; Wang, L.; You, Y.; Peng, T.; Zhang, K.; Cao, M.; Hong, J. Periplaneta americana extract alleviates steatohepatitis in a mouse model by modulating HMGB1-mediated inflammatory response. Front. Pharmacol., 2022, 13, 995523.
[http://dx.doi.org/10.3389/fphar.2022.995523] [PMID: 36278177]
[11]
Xue, N.; He, M.; Li, Y.; Wu, J.; Du, W.; Wu, X.; Yang, Z.; Zhang, C.; Li, Q.; Xiao, H. Periplaneta americana extract promotes intestinal mucosa repair of ulcerative colitis in rat. Acta Cir. Bras., 2020, 35(10), e202001002.
[http://dx.doi.org/10.1590/s0102-865020200100000002] [PMID: 33237174]
[12]
Wang, F.; Li, S.; Ma, L.; Geng, Y.; Shen, Y.; Zeng, J. Study on the mechanism of Periplaneta americana extract to accelerate wound healing after diabetic anal fistula operation based on network pharmacology. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/6659154] [PMID: 33777160]
[13]
Li, L.J.; Xu, X.H.; Yuan, T.J.; Hou, J.; Yu, C.L.; Peng, L.H. Periplaneta Americana L. as a novel therapeutics accelerates wound repair and regeneration. Biomed. Pharmacother., 2019, 114, 108858.
[http://dx.doi.org/10.1016/j.biopha.2019.108858] [PMID: 30986622]
[14]
Lv, H.; Wang, Y.; Zhang, R.; Zhang, H.H.; Peng, F. Study on anti-tumor effects of periplaneta Americana polypeptide PAP-2 on H22 tumor-bearing mice. J Chin Pharm., 2019, 30, 5.
[15]
Ou, H.L.; Chang, X.; Wang, X.; Lv, Y.; Peng, F.; Wu, X.M. Preliminary study of peptide from periplaneta Americana on antitumor immunity in L1210-bearing mice. Chung Kuo Yao Hsueh Tsa Chih, 2018, 53, 6.
[16]
Gao, G.; Chen, W.; Yan, M.; Liu, J.; Luo, H.; Wang, C.; Yang, P. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int. J. Mol. Med., 2020, 45(1), 195-209.
[PMID: 31746373]
[17]
Tang, Y.L.; Zhou, Y.; Wang, Y.P.; He, Y.H.; Ding, J.C.; Li, Y.; Wang, C.L. Ginsenoside Rg1 protects against Sca 1+ HSC/HPC cell aging by regulating the SIRT1 FOXO3 and SIRT3 SOD2 signaling pathways in a γ ray irradiation induced aging mice model. Exp. Ther. Med., 2020, 20(2), 1245-1252.
[http://dx.doi.org/10.3892/etm.2020.8810] [PMID: 32765665]
[18]
Zhou, Y.; Wang, Y.P.; He, Y.H.; Ding, J.C. Ginsenoside rg1 performs anti-aging functions by suppressing mitochondrial pathway-mediated apoptosis and activating Sirtuin 3 (SIRT3)/Superoxide Dismutase 2 (SOD2) pathway in Sca-1+ HSC/HPC cells of an aging rat model. Med. Sci. Monit., 2020, 26, e920666.
[http://dx.doi.org/10.12659/MSM.920666] [PMID: 32253370]
[19]
Suarez-Lopez, L.; Sriram, G.; Kong, Y.W.; Morandell, S.; Merrick, K.A.; Hernandez, Y.; Haigis, K.M.; Yaffe, M.B. MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis. Proc. Natl. Acad. Sci. USA, 2018, 115(18), E4236-E4244.
[http://dx.doi.org/10.1073/pnas.1722020115] [PMID: 29666270]
[20]
Zhao, Y.; Yang, A.; Tu, P.; Hu, Z. Anti-tumor effects of the American cockroach, Periplaneta americana. Chin. Med., 2017, 12(1), 26.
[http://dx.doi.org/10.1186/s13020-017-0149-6] [PMID: 28919922]
[21]
Ma, H.; Li, X.; Che, J.; Fan, H.; Liu, Q.; Xia, H. The inhibitory effect of Periplaneta americana L. on hepatocellular carcinoma: Explore the anti-hepatocellular carcinoma active site and its mechanism of action. J. Ethnopharmacol., 2022, 291, 114884.
[http://dx.doi.org/10.1016/j.jep.2021.114884] [PMID: 34999145]
[22]
Kim, I.W.; Choi, R.Y.; Lee, J.H.; Seo, M.; Lee, H.J.; Kim, M.A.; Kim, S.H.; Kim, I.; Hwang, J.S. Anticancer activity of periplanetasin-5, an antimicrobial peptide from the cockroach Periplaneta americana. J. Microbiol. Biotechnol., 2021, 31(10), 1343-1349.
[http://dx.doi.org/10.4014/jmb.2104.04040] [PMID: 34409948]
[23]
Hu, Y.; Lu, X.; Liu, G.; Li, M.; Peng, F. Effect of Periplaneta americana extract on two human lung tumor cell lines. J. Pharm. Anal., 2011, 37, 1245-1250.
[24]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[25]
Jiang, Y.; Wang, X.; Jin, C.; Chen, X.; Wang, Q.; Liu, G. The inhibitory effect of Periplaneta americana extract on Lewis lung cancer in Mice. J Kunming Med Coll., 2007, 5, 13-16.
[26]
Jiang, Y.; Wang, X.; Jin, C.; Yuan, F.; Liu, G.; Li, S. An experimental study of traditional Chinese medicine Kangfuxin inducing apoptosis in vitro of peptic carcinoma cell line BGC-823. J Kunming Med Coll., 2006, 27, 5-9.
[27]
Dimri, G.P.; Lee, X.; Basile, G.; Acosta, M.; Scott, G.; Roskelley, C.; Medrano, E.E.; Linskens, M.; Rubelj, I.; Pereira-Smith, O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA, 1995, 92(20), 9363-9367.
[http://dx.doi.org/10.1073/pnas.92.20.9363] [PMID: 7568133]
[28]
Tower, J. Programmed cell death in aging. Ageing. Res. Rev., 2015, 23(Pt A), 90-100.
[http://dx.doi.org/10.1016/j.arr.2015.04.002]
[29]
Zeng, Y.; Yang, K. Sirtuin 1 participates in the process of age-related retinal degeneration. Biochem. Biophys. Res. Commun., 2015, 468(1-2), 167-172.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.139] [PMID: 26522222]
[30]
Abbasian, S.; Shokrgozar, N.; Tamaddon, G. Sirtuin1 and chronic myeloid leukemia: A comprehensive glance at drug resistance. Clin. Lab., 2021, 67(05/2021)
[http://dx.doi.org/10.7754/Clin.Lab.2020.200835] [PMID: 33978360]
[31]
Maiese, K. Moving to the Rhythm with clock (circadian) genes, autophagy, mTOR, and SITR1 in degenerative disease and cancer. Curr. Neurovasc. Res., 2017, 14(3), 299-304.
[PMID: 28721811]
[32]
Tang, Y.L.; Zhang, C.G.; Liu, H.; Zhou, Y.; Wang, Y.P.; Li, Y.; Han, Y.J.; Wang, C.L. Ginsenoside rg1 inhibits cell proliferation and induces markers of cell senescence in CD34+CD38– leukemia stem cells derived from kg1α acute myeloid leukemia cells by activating the Sirtuin 1 (SIRT1)/Tuberous Sclerosis Complex 2 (TSC2) signaling pathway. Med. Sci. Monit., 2020, 26, e918207.
[http://dx.doi.org/10.12659/MSM.918207] [PMID: 32037392]
[33]
Weichhart, T. mTOR as regulator of lifespan, aging, and cellular senescence: A mini-review. Gerontology, 2018, 64(2), 127-134.
[http://dx.doi.org/10.1159/000484629] [PMID: 29190625]
[34]
Lu, H.; Jia, C.; Wu, D.; Jin, H.; Lin, Z.; Pan, J.; Li, X.; Wang, W. Fibroblast growth factor 21 (FGF21) alleviates senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway. Cell Death Dis., 2021, 12(10), 865.
[http://dx.doi.org/10.1038/s41419-021-04157-x] [PMID: 34556628]
[35]
Chen, P.; Chen, F.; Lei, J.; Li, Q.; Zhou, B. Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin a attenuates d-galactose-induced brain aging in mice. Neurotherapeutics, 2019, 16(4), 1269-1282.
[http://dx.doi.org/10.1007/s13311-019-00753-0] [PMID: 31420820]

© 2024 Bentham Science Publishers | Privacy Policy