Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Remarkable Effects of a Rhenium(I)-diselenoether Drug on the Production of Cathepsins B and S by Macrophages and their Polarizations

Author(s): Philippe Collery*, Didier Desmaële, Adhikesavan Harikrishnan and Vijay Veena*

Volume 29, Issue 30, 2023

Published on: 18 October, 2023

Page: [2396 - 2407] Pages: 12

DOI: 10.2174/0113816128268963231013074433

Open Access Journals Promotions 2
Abstract

Background/Objective: Tumor-associated macrophages (TAMs) produce an excessive amount of cysteine proteases, and we aimed to study the effects of anticancer rhenium(I)-diselenoether (Re-diSe) on the production of cathepsins B and S by macrophages. We investigated the effect of Re-diSe on lipopolysaccharides (LPS) induced M1 macrophages, or by interleukin 6 (IL-6) induced M2 macrophages.

Methods: Non-stimulated or prestimulated murine Raw 264 or human THP-1 macrophages were exposed to increasing concentrations of the drug (5, 10, 20, 50 and 100 μM) and viability was assayed by the MTT assay. The amount of cysteine proteases was evaluated by ELISA tests, the number of M1 and M2 macrophages by the expression of CD80 or CD206 biomarkers. The binding of Re-diSe with GSH as a model thiol-containing protein was studied by mass spectrometry.

Results: A dose-dependent decrease in cathepsins B and S was observed in M1 macrophages. There was no effect in non-stimulated cells. The drug induced a dramatic dose-dependent increase in M1 expression in both cells, significantly decreased the M2 expression in Raw 264 and had no effect in non-stimulated macrophages. The binding of the Re atom with the thiols was clearly demonstrated.

Conclusion: The increase in the number of M1 and a decrease in M2 macrophages treated by Re-diSe could be related to the decrease in cysteine proteases upon binding of their thiol residues with the Re atom.

Keywords: Rhenium (Re), rhenium(I)-diselenoether (Re-diSe), macrophages, immune resistance, cysteine proteases, cancer.

[1]
Collery P, Desmaele D, Vijaykumar V. Design of rhenium compounds in targeted anticancer therapeutics. Curr Pharm Des 2019; 25(31): 3306-22.
[http://dx.doi.org/10.2174/1381612825666190902161400] [PMID: 31475892]
[2]
Kermagoret A, Morgant G, d’Angelo J, et al. Synthesis, structural characterization and biological activity against several human tumor cell lines of four rhenium(I) diseleno-ethers complexes: Re(CO)3Cl(PhSe(CH2)2SePh), Re(CO) 3Cl(PhSe(CH2)3SePh. Polyhedron 2011; 30(2): 347-53.
[http://dx.doi.org/10.1016/j.poly.2010.10.026]
[3]
Enslin LE, Purkait K, Pozza MD, et al. Rhenium(I) tricarbonyl complexes of 1,10-phenanthroline derivatives with unexpectedly high cytotoxicity. Inorg Chem 2023; 62(31): 12237-51.
[http://dx.doi.org/10.1021/acs.inorgchem.3c00730] [PMID: 37489813]
[4]
Jalilehvand F, Brunskill V, Trung TSB, et al. Rhenium(I)-tricarbonyl complexes with methimazole and its selenium analogue: Syntheses, characterization and cell toxicity. J Inorg Biochem 2023; 240: 112092.
[http://dx.doi.org/10.1016/j.jinorgbio.2022.112092] [PMID: 36549168]
[5]
Abo-Elfadl MT, Mansour AM. Cytotoxic properties of fac-Re(CO)3 complexes with quinoline coligands: Insights on the mode of cell death and DNA fragmentation. Inorg Chim Acta 2023; 553: 121521.
[http://dx.doi.org/10.1016/j.ica.2023.121521]
[6]
Manicum A-LE, Louis H, Mathias GE, et al. Single crystal investigation, spectroscopic, DFT studies, and in-silico molecular docking of the anticancer activities of acetylacetone coordinated Re(I) tricarbonyl complexes. Inorg Chim Acta 2022; 121335.
[http://dx.doi.org/10.1016/j.ica.2022.121335]
[7]
Schindler K, Zobi F. Anticancer and antibiotic rhenium Tri- and dicarbonyl complexes: Current research and future perspectives. Mol 2022; 27(2): 539.
[http://dx.doi.org/10.3390/molecules27020539] [PMID: 35056856]
[8]
Yim J, Park SB. Label-Free target identification reveals the anticancer mechanism of a rhenium isonitrile complex. Front Chem 2022; 10: 850638.
[http://dx.doi.org/10.3389/fchem.2022.850638] [PMID: 35372261]
[9]
Sharma SA. NV, Kar B, Das U, Paira P. Target-specific mononuclear and binuclear rhenium(i) tricarbonyl complexes as upcoming anti-cancer drugs. RSC Advances 2022; 12(31): 20264-95.
[http://dx.doi.org/10.1039/D2RA03434D] [PMID: 35919594]
[10]
Christopher K, Chelsey A, Kayla J, et al. An investigation to study the role of novel rhenium compounds on endometrial uterine cancer cell lines. J Cancer Res Updates 2020; 9(1): 102-6.
[http://dx.doi.org/10.30683/1929-2279.2020.09.12] [PMID: 34354788]
[11]
Aleksanyan DV, Churusova SG, Brunova VV, et al. Synthesis, characterization, and cytotoxic activity of N-metallated rhenium(I) pincer complexes with (thio)phosphoryl pendant arms. J Organometal Chem 2020; 926: 121498.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121498]
[12]
Domenichini A, Casari I, Simpson PV, et al. Rhenium N-heterocyclic carbene complexes block growth of aggressive cancers by inhibiting FGFR- and SRC-mediated signalling. J Exp Clin Cancer Res 2020; 39(1): 276.
[http://dx.doi.org/10.21203/rs.3.rs-54828/v2]
[13]
Collery P, Veena V, Harikrishnan A, Desmaele D. The rhenium(I)-diselenoether anticancer drug targets ROS, TGF-β1, VEGF-A, and IGF-1 in an in vitro experimental model of triple-negative breast cancers. Invest New Drugs 2019; 37(5): 973-83.
[http://dx.doi.org/10.1007/s10637-019-00727-1] [PMID: 30632005]
[14]
Veena V, Harikrishnan A, Lakshmi B, Khanna S, Desmaele D, Collery P. A new model applied for evaluating a rhenium-diselenium drug: Breast cancer cells stimulated by cytokines induced from polynuclear cells by LPS. Anticancer Res 2020; 40(4): 1915-20.
[http://dx.doi.org/10.21873/anticanres.14146] [PMID: 32234880]
[15]
Collery P, Mohsen A, Kermagoret A, et al. Antitumor activity of a rhenium (I)-diselenoether complex in experimental models of human breast cancer. Invest New Drugs 2015; 33(4): 848-60.
[http://dx.doi.org/10.1007/s10637-015-0265-z] [PMID: 26108551]
[16]
Collery P, Santoni F, Ciccolini J, Tran TNN, Mohsen A, Desmaele D. Dose effect of rhenium (I)-diselenoether as anticancer drug in resistant breast tumor-bearing mice after repeated administrations. Anticancer Res 2016; 36(11): 6051-8.
[http://dx.doi.org/10.21873/anticanres.11194] [PMID: 27793932]
[17]
Collery P, Bastian G, Santoni F, et al. Uptake and efflux of rhenium in cells exposed to rhenium diseleno-ether and tissue distribution of rhenium and selenium after rhenium diseleno-ether treatment in mice. Anticancer Res 2014; 34(4): 1679-89.
[PMID: 24692697]
[18]
Collery P, Michalke B, Lucio M, et al. Plasma rhenium and selenium concentrations after repeated daily oral administration of Rhenium(I)-diselenoether in 4T1 breast tumor-bearing mice. Anticancer Res 2023; 43(3): 1017-23.
[http://dx.doi.org/10.21873/anticanres.16246] [PMID: 36854529]
[19]
Collery P, Lagadec P, Krossa I, et al. Relationship between the oxidative status and the tumor growth in transplanted triple-negative 4T1 breast tumor mice after oral administration of rhenium(I)-diselenoether. J Trace Elem Med Biol 2022; 71: 126931.
[http://dx.doi.org/10.1016/j.jtemb.2022.126931] [PMID: 35063816]
[20]
Collery P, Santoni F, Mohsen A, Mignard C, Desmaele D. D. impact of total body irradiation on the antitumor activity of rhenium-(I)-diselenoether Desmaele, Negative impact of total body irradiation on the antitumor activity of rhenium-(I)-diselenoether. Anticancer Res 2016; 36(11): 5813-30.
[http://dx.doi.org/10.21873/anticanres.11165] [PMID: 27793903]
[21]
Collery P, Veena V, Desmaële D, Harikrishnan A, Lakshmi B. Effects of rhenium(I)-diselenoether and of its diselenide ligand on the production of cathepsins B and S by MDA-MB231 breast malignant cells. Anticancer Res 2021; 41(12): 5997-6001.
[http://dx.doi.org/10.21873/anticanres.15418] [PMID: 34848453]
[22]
Small DM, Burden RE, Jaworski J, et al. Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int J Cancer 2013; 133(9): 2102-12.
[http://dx.doi.org/10.1002/ijc.28238] [PMID: 23629809]
[23]
Gocheva V, Zeng W, Ke D, et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 2006; 20(5): 543-56.
[http://dx.doi.org/10.1101/gad.1407406] [PMID: 16481467]
[24]
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine cathepsins in tumor-associated immune cells. Front Immunol 2019; 10: 2037.
[http://dx.doi.org/10.3389/fimmu.2019.02037] [PMID: 31555270]
[25]
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol 2019; 12(1): 76.
[http://dx.doi.org/10.1186/s13045-019-0760-3] [PMID: 31300030]
[26]
Liu J, Geng X, Hou J, Wu G. New insights into M1/M2 macrophages: Key modulators in cancer progression. Cancer Cell Int 2021; 21(1): 389.
[http://dx.doi.org/10.1186/s12935-021-02089-2] [PMID: 34289846]
[27]
Pollard JW. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 2008; 84(3): 623-30.
[http://dx.doi.org/10.1189/jlb.1107762] [PMID: 18467655]
[28]
Singh S, Mehta N, Lilan J, Budhthoki MB, Chao F, Yong L. Initiative action of tumor-associated macrophage during tumor metastasis. Biochim Open 2017; 4: 8-18.
[http://dx.doi.org/10.1016/j.biopen.2016.11.002] [PMID: 29450136]
[29]
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12): 958-69.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[30]
Tarique AA, Logan J, Thomas E, Holt PG, Sly PD, Fantino E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol 2015; 53(5): 676-88.
[http://dx.doi.org/10.1165/rcmb.2015-0012OC] [PMID: 25870903]
[31]
Sanmarco LM, Ponce NE, Visconti LM, et al. IL-6 promotes M2 macrophage polarization by modulating purinergic signaling and regulates the lethal release of nitric oxide during Trypanosoma cruzi infection. Biochim Biophys Acta Mol Basis Dis 2017; 1863(4): 857-69.
[http://dx.doi.org/10.1016/j.bbadis.2017.01.006] [PMID: 28087471]
[32]
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233(9): 6425-40.
[http://dx.doi.org/10.1002/jcp.26429] [PMID: 29319160]
[33]
Huang X, Li Y, Fu M, Xin HB. Polarizing macrophages in vitro Methods Mol Biol. Totowa, New Jersey: Humana Press Inc. 2018; pp. 119-26.
[http://dx.doi.org/10.1007/978-1-4939-7837-3_12]
[34]
Wang Q, He Z, Huang M, et al. Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2α. Nat Commun 2018; 9(1): 559.
[http://dx.doi.org/10.1038/s41467-018-03050-0] [PMID: 29422647]
[35]
Chung AW, Anand K, Anselme AC, et al. A phase 1/2 clinical trial of the nitric oxide synthase inhibitor L-NMMA and taxane for treating chemoresistant triple-negative breast cancer. Sci Transl Med 2021; 13(624): eabj5070.
[http://dx.doi.org/10.1126/scitranslmed.abj5070] [PMID: 34910551]
[36]
Damsky W, Wang A, Kim DJ, et al. Inhibition of type 1 immunity with tofacitinib is associated with marked improvement in longstanding sarcoidosis. Nat Commun 2022; 13(1): 3140.
[http://dx.doi.org/10.1038/s41467-022-30615-x] [PMID: 35668129]
[37]
Wolszczak-Biedrzycka B, Dorf J, Milewska A, et al. The diagnostic value of inflammatory markers (CRP, IL6, CRP/IL6, CRP/L, LCR) for assessing the severity of COVID-19 symptoms based on the MEWS and predicting the risk of mortality. J Inflamm Res 2023; 16: 2173-88.
[http://dx.doi.org/10.2147/JIR.S406658] [PMID: 37250104]
[38]
Ascierto PA, Fu B, Wei H. IL-6 modulation for COVID-19: The right patients at the right time? J Immunother Cancer 2021; 9(4): e002285.
[http://dx.doi.org/10.1136/jitc-2020-002285] [PMID: 33837054]
[39]
Stout RD, Suttles J. Functional plasticity of macrophages: Reversible adaptation to changing microenvironments. J Leukoc Biol 2004; 76(3): 509-13.
[http://dx.doi.org/10.1189/jlb.0504272] [PMID: 15218057]
[40]
Oelschlaegel D, Weiss Sadan T, Salpeter S, et al. Cathepsin inhibition modulates metabolism and polarization of tumor-associated macrophages. Cancers (Basel) 2020; 12(9): 2579.
[http://dx.doi.org/10.3390/cancers12092579] [PMID: 32927704]
[41]
Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: An in vitro cell model for immune modulation approach. Int Immunopharmacol 2014; 23(1): 37-45.
[http://dx.doi.org/10.1016/j.intimp.2014.08.002] [PMID: 25130606]
[42]
Auwerx J. The human leukemia cell line, THP-1: A multifacetted model for the study of monocyte-macrophage differentiation. Experientia 1991; 47(1): 22-31.
[http://dx.doi.org/10.1007/BF02041244] [PMID: 1999239]
[43]
Li P, Ma C, Li J, et al. Proteomic characterization of four subtypes of M2 macrophages derived from human THP-1 cells. J Zhejiang Univ Sci B 2022; 23(5): 407-22.
[http://dx.doi.org/10.1631/jzus.B2100930] [PMID: 35557041]
[44]
Mohd Yasin ZN, Mohd Idrus FN, Hoe CH, Yvonne-Tee GB. Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation 2022; 128: 67-82.
[http://dx.doi.org/10.1016/j.diff.2022.10.001] [PMID: 36370526]
[45]
Li P, Hao Z, Wu J, et al. Comparative proteomic analysis of polarized human THP-1 and mouse RAW264.7 macrophages. Front Immunol 2021; 12: 700009.
[http://dx.doi.org/10.3389/fimmu.2021.700009] [PMID: 34267761]
[46]
So BR. The Bach T, Paik JH, Jung SK. Kmeria duperreana pierre dandy extract suppresses LPS-induced iNOS and no via regulation of NF kb pathways and p38 in murin macrophage raw 264.7 cells. Prev Nutr Food Sci 2020; 25(2): 166-72.
[http://dx.doi.org/10.3746/pnf.2020.25.2.166] [PMID: 32676468]
[47]
Ren J, Su D, Li L, et al. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW264.7 macrophages via suppressing NF-κB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways. Toxicol Appl Pharmacol 2020; 387: 114846.
[http://dx.doi.org/10.1016/j.taap.2019.114846] [PMID: 31790703]
[48]
Banerjee S, Katiyar P, Kumar V, et al. Wheatgrass inhibits the lipopolysaccharide-stimulated inflammatory effect in RAW 264.7 macrophages. Current Research in Toxicology 2021; 2: 116-27.
[http://dx.doi.org/10.1016/j.crtox.2021.02.005] [PMID: 34345856]
[49]
Bowen OT, Erf GF, Chapman ME, Wideman RF Jr. Plasma nitric oxide concentrations in broilers after intravenous injections of lipopolysaccharide or microparticles. Poult Sci 2007; 86(12): 2550-4.
[http://dx.doi.org/10.3382/ps.2007-00288] [PMID: 18029801]
[50]
Karges J, Kalaj M, Gembicky M, Cohen SM. ReI tricarbonyl complexes as coordinate covalent inhibitors for the SARS‐CoV‐2 main cysteine protease. Angew Chem Int Ed 2021; 60(19): 10716-23.
[http://dx.doi.org/10.1002/anie.202016768] [PMID: 33606889]
[51]
Fricker SP. Cysteine proteases as targets for metal-based drugs. Metallomics 2010; 2(6): 366-77.
[http://dx.doi.org/10.1039/b924677k] [PMID: 21072382]
[52]
Joyce JA, Baruch A, Chehade K, et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 2004; 5(5): 443-53.
[http://dx.doi.org/10.1016/S1535-6108(04)00111-4] [PMID: 15144952]
[53]
Gocheva V, Wang HW, Gadea BB, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 2010; 24(3): 241-55.
[http://dx.doi.org/10.1101/gad.1874010] [PMID: 20080943]
[54]
Li YY, Fang J, Ao GZ, Cathepsin B. Cathepsin B and L inhibitors: A patent review (2010 - present). Expert Opin Ther Pat 2017; 27(6): 643-56.
[http://dx.doi.org/10.1080/13543776.2017.1272572]
[55]
Menzel K, Hausmann M, Obermeier F, et al. Cathepsins B, L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo. Clin Exp Immunol 2006; 146(1): 169-80.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03188.x] [PMID: 16968411]
[56]
Akinyemi AO, Pereira GBS, Rocha FV. Role of cathepsin B in cancer progression: A potential target for coordination compounds. Mini Rev Med Chem 2021; 21(13): 1612-24.
[http://dx.doi.org/10.2174/1389557521666210212152937] [PMID: 33583372]
[57]
Nagakannan P, Islam MI, Conrad M, Eftekharpour E. Cathepsin B is an executioner of ferroptosis. Biochim Biophys Acta Mol Cell Res 2021; 1868(3): 118928.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118928] [PMID: 33340545]
[58]
Bai H, Yang B, Yu W, Xiao Y, Yu D, Zhang Q. Cathepsin B links oxidative stress to the activation of NLRP3 inflammasome. Exp Cell Res 2018; 362(1): 180-7.
[http://dx.doi.org/10.1016/j.yexcr.2017.11.015] [PMID: 29196167]
[59]
Zou Y, Luo X, Feng Y, et al. Luteolin prevents THP-1 macrophage pyroptosis by suppressing ROS production via Nrf2 activation. Chem Biol Interact 2021; 345: 109573.
[http://dx.doi.org/10.1016/j.cbi.2021.109573] [PMID: 34217685]
[60]
Comito G, Segura CP, Taddei ML, et al. Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts. Oncotarget 2017; 8(1): 118-32.
[http://dx.doi.org/10.18632/oncotarget.9497] [PMID: 27223431]
[61]
Jin H, He Y, Zhao P, et al. Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics 2019; 9(1): 265-78.
[http://dx.doi.org/10.7150/thno.27246] [PMID: 30662566]
[62]
Li H, Huang N, Zhu W, et al. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer 2018; 18(1): 579.
[http://dx.doi.org/10.1186/s12885-018-4299-4] [PMID: 29783929]
[63]
Lee D, Huntoon K, Wang Y, Jiang W, Kim BYS. Harnessing innate immunity using biomaterials for cancer immunotherapy. Adv Mater 2021; 33(27): 2007576.
[http://dx.doi.org/10.1002/adma.202007576] [PMID: 34050699]
[64]
Tanito K, Nii T, Yokoyama Y, et al. Engineered macrophages acting as a trigger to induce inflammation only in tumor tissues. J Control Release 2023; 361: 885-95.
[http://dx.doi.org/10.1016/j.jconrel.2023.04.010]
[65]
Nguyen VD, Min HK, Kim DH, et al. Macrophage-mediated delivery of multifunctional nanotherapeutics for synergistic chemo-photothermal therapy of solid tumors. ACS Appl Mater Interfaces 2020; 12(9): 10130-41.
[http://dx.doi.org/10.1021/acsami.9b23632] [PMID: 32041404]
[66]
Gao Y, Pan Z, Li H, Wang F. Antitumor therapy targeting the tumor microenvironment. J Oncol 2023; 2023: 1-16.
[http://dx.doi.org/10.1155/2023/6886135] [PMID: 36908706]
[67]
Xiao M, Bian Q, Lao Y, et al. SENP3 loss promotes M2 macrophage polarization and breast cancer progression. Mol Oncol 2022; 16(4): 1026-44.
[http://dx.doi.org/10.1002/1878-0261.12967] [PMID: 33932085]
[68]
Skorokhod OA, Schwarzer E, Ceretto M, Arese P. Malarial pigment haemozoin, IFN-gamma, TNF-alpha, IL-1beta and LPS do not stimulate expression of inducible nitric oxide synthase and production of nitric oxide in immuno-purified human monocytes. Malar J 2007; 6(1): 73.
[http://dx.doi.org/10.1186/1475-2875-6-73] [PMID: 17543124]
[69]
Rezaei M, Ghafouri H, Aghamaali MR, Shourian M. Thiazolidinedione derivative suppresses LPS-induced COX-2 expression and NO production in RAW 264.7 macrophages. Iran J Pharm Res 2019; 18(3): 1371-9.
[http://dx.doi.org/10.22037/ijpr.2019.1100730] [PMID: 32641947]
[70]
Tsai ML, Tsai YG, Lin YC, et al. Il-25 induced ros-mediated m2 macrophage polarization via ampk-associated mitophagy. Int J Mol Sci 2021; 23(1): 3.
[http://dx.doi.org/10.3390/ijms23010003] [PMID: 35008429]
[71]
Kuo CY, Yang TH, Tsai PF, Yu CH. Role of the inflammatory response of RAW 264.7 cells in the metastasis of novel cancer stem-like cells. Medicina (Kaunas) 2021; 57(8): 778.
[http://dx.doi.org/10.3390/medicina57080778] [PMID: 34440983]
[72]
Griess B, Mir S, Datta K, Teoh-Fitzgerald M. Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radic Biol Med 2020; 147: 48-60.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.12.018] [PMID: 31863907]
[73]
He L, Pan ZY, Qin WW, Li Y, Tan CP, Mao ZW. Impairment of the autophagy-related lysosomal degradation pathway by an anticancer rhenium(i) complex. Dalt Trans 2019; 2019(13)
[http://dx.doi.org/10.1039/C9DT00322C]
[74]
Mills CD, Ley K. M1 and M2 macrophages: The chicken and the egg of immunity. J Innate Immun 2014; 6(6): 716-26.
[http://dx.doi.org/10.1159/000364945] [PMID: 25138714]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy