Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In silico Investigation of Identified Major Metabolites from Coffea Arabica Leaves against Parkinson’s Disease Target Proteins for Neuroprotective Drug Development

Author(s): Christine Joyce Rejano, Lemmuel Tayo, Bor-Yann Chen and Po-Wei Tsai*

Volume 21, Issue 14, 2024

Published on: 16 October, 2023

Page: [3030 - 3038] Pages: 9

DOI: 10.2174/0115701808268540231011071359

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Parkinson’s disease (PD) is a prevalent neurological disease characterized by the gradual degeneration of dopaminergic neurons leading to a dysfunctional central nervous system. Recently, major metabolites of Coffea arabica leaves were revealed to exhibit good electronshuttling potential in Microbial Fuel Cells (MFCs), similar to neurotransmitters dopamine and epinephrine.

Objective: This In silico study aimed to identify the neuroprotective potentials of plant metabolites from coffee leaves and to determine their physicochemical and pharmacokinetic properties for developing viable anti-parkinsonian drug design.

Methods: Molecular docking was performed to evaluate the affinity of identified major compounds in C. arabica against PD-target proteins and compare the results with the binding activity of existing drugs and natural ligands of the identified protein targets via LibDock scores. The drug-likeness and ADMET profiles of each ligand were also evaluated using bioinformatics tools.

Results: C. arabica metabolites exhibited various degrees of binding activity against PD targets. LibDock scores of test compounds showed that catechin, mangiferin, and chlorogenic acid exhibited higher docking scores than dopamine and levodopa. Physicochemical and pharmacokinetics analysis of the selected molecules revealed caffeine, catechin, and chlorogenic acid as promising candidates for drug development with a low risk of drug toxicity.

Conclusion: The present study indicates that Coffea arabica leaves contain promising neuroprotective active compounds against Parkinson’s disease.

Keywords: Parkinson’s disease, coffea arabica leaves, mangiferin, catechin, chlorogenic acid, electron-mediator.

Graphical Abstract
[1]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[2]
Dong-Chen, X.; Yong, C.; Yang, X.; Chen-Yu, S.; Li-Hua, P. Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther., 2023, 8(1), 73.
[http://dx.doi.org/10.1038/s41392-023-01353-3] [PMID: 36810524]
[3]
Kouli, A.; Torsney, K.M.; Kuan, W.L. Parkinson’s Disease: Etiology, neuropathology, and pathogenesis. In: Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications, 2018; pp. 3-26.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1]
[4]
Gandhi, K.R.; Saadabadi, A. Levodopa (L-Dopa); StatPearls, 2023.
[5]
Zahoor, I.; Shafi, A.; Haq, E. Pharmacological Treatment of Parkinson’s Disease. In: Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Brisbane (AU), 2018.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch7]
[6]
Jagadeesan, A.J.; Murugesan, R.; Vimala Devi, S.; Meera, M.; Madhumala, G.; Vishwanathan Padmaja, M.; Ramesh, A.; Banerjee, A.; Sushmitha, S.; Khokhlov, A.N.; Marotta, F.; Pathak, S. Current trends in etiology, prognosis and therapeutic aspects of Parkinson’s disease: A review. Acta Biomed., 2017, 88(3), 249-262.
[PMID: 29083328]
[7]
Diaz, N.L.; Waters, C.H. Current strategies in the treatment of Parkinson’s disease and a personalized approach to management. Expert Rev. Neurother., 2009, 9(12), 1781-1789.
[http://dx.doi.org/10.1586/ern.09.117] [PMID: 19951137]
[8]
Rahman, M.H.; Bajgai, J.; Fadriquela, A.; Sharma, S.; Trinh, T.T.; Akter, R.; Jeong, Y.J.; Goh, S.H.; Kim, C.S.; Lee, K.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules, 2021, 26(17), 5327.
[http://dx.doi.org/10.3390/molecules26175327] [PMID: 34500759]
[9]
Maher, P. The potential of flavonoids for the treatment of neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(12), 3056.
[http://dx.doi.org/10.3390/ijms20123056] [PMID: 31234550]
[10]
Tsai, P.W.; Mailem, R.C.; Tayo, L.L.; Hsueh, C.C.; Tseng, C.C.; Chen, B.Y. Interactive network pharmacology and electrochemical analysis reveals electron transport-mediating characteristics of Chinese medicine formula Jing Guan Fang. J. Taiwan Inst. Chem. Eng., 2023, 147, 104898.
[http://dx.doi.org/10.1016/j.jtice.2023.104898] [PMID: 37193294]
[11]
Chen, B.Y.; Lin, Y.H.; Wu, Y.C.; Hsueh, C.C. Deciphering electron-shuttling characteristics of neurotransmitters to stimulate bioelectricity-generating capabilities in microbial fuel cells. Appl. Biochem. Biotechnol., 2020, 191(1), 59-73.
[http://dx.doi.org/10.1007/s12010-020-03242-9] [PMID: 31989437]
[12]
Chen, B.Y.; Liao, J.H.; Hsueh, C.C.; Qu, Z.; Hsu, A.W.; Chang, C.T.; Zhang, S. Deciphering biostimulation strategy of using medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells. Energy, 2018, 161, 1042-1054.
[http://dx.doi.org/10.1016/j.energy.2018.07.177]
[13]
Chen, B.Y.; Liao, J.H.; Hsu, A.W.; Tsai, P.W.; Hsueh, C.C. Exploring optimal supplement strategy of medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells. Bioresour. Technol., 2018, 256, 95-101.
[http://dx.doi.org/10.1016/j.biortech.2018.01.152] [PMID: 29433051]
[14]
Guo, L.L.; Qin, L.J.; Xu, B.; Wang, X.Z.; Hsueh, C.C.; Chen, B.Y. Deciphering electron-shuttling characteristics of epinephrine and dopamine for bioenergy extraction using microbial fuel cells. Biochem. Eng. J., 2019, 148, 57-64.
[http://dx.doi.org/10.1016/j.bej.2019.04.018]
[15]
Tsai, P.W.; Tayo, L.L.; Ting, J.U.; Hsieh, C.Y.; Lee, C.J.; Chen, C.L.; Yang, H.C.; Tsai, H.Y.; Hsueh, C.C.; Chen, B.Y. Interactive deciphering electron-shuttling characteristics of Coffea arabica leaves and potential bioenergy-steered anti-SARS-CoV-2 RdRp inhibitor via microbial fuel cells. Ind. Crops Prod., 2023, 191, 115944.
[http://dx.doi.org/10.1016/j.indcrop.2022.115944] [PMID: 36405420]
[16]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[17]
Liu, Z.; Liu, Y.; Zeng, G.; Shao, B.; Chen, M.; Li, Z.; Jiang, Y.; Liu, Y.; Zhang, Y.; Zhong, H. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere, 2018, 203, 139-150.
[http://dx.doi.org/10.1016/j.chemosphere.2018.03.179] [PMID: 29614407]
[18]
Bicak, B.; Kecel Gunduz, S. Computer-aided drug design of plant-based compounds. In: Isolation, Characterization, and Therapeutic Applications of Natural Bioactive Compounds; IGI Global Publishers, 2022.
[http://dx.doi.org/10.4018/978-1-6684-7337-5.ch013]
[19]
Gnanaraj, C.; Sekar, M.; Fuloria, S.; Swain, S.S.; Gan, S.H.; Chidambaram, K.; Rani, N.N.I.M.; Balan, T.; Stephenie, S.; Lum, P.T.; Jeyabalan, S.; Begum, M.Y.; Chandramohan, V.; Thangavelu, L.; Subramaniyan, V.; Fuloria, N.K. In silico molecular docking analysis of karanjin against Alzheimer’s and Parkinson’s Diseases as a potential natural lead molecule for new drug design, development and therapy. Molecules, 2022, 27(9), 2834.
[http://dx.doi.org/10.3390/molecules27092834] [PMID: 35566187]
[20]
Pratama, M.R.F.; Poerwono, H.; Siswodiharjo, S. ADMET properties of novel 5- O -benzoylpinostrobin derivatives. J. Basic Clin. Physiol. Pharmacol., 2019, 30(6), 20190251.
[http://dx.doi.org/10.1515/jbcpp-2019-0251] [PMID: 31851612]
[21]
Alghamdi, S.S.; Suliman, R.S.; Aljammaz, N.A.; Kahtani, K.M.; Aljatli, D.A.; Albadrani, G.M. Natural products as novel neuroprotective agents; computational predictions of the molecular targets, ADME properties, and safety profile. Plants, 2022, 11(4), 549.
[http://dx.doi.org/10.3390/plants11040549] [PMID: 35214883]
[22]
Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90.
[http://dx.doi.org/10.4103/0973-7847.99898] [PMID: 23055633]
[23]
Kumar, V. Potential medicinal plants for CNS disorders: An overview. Phytother. Res., 2006, 20(12), 1023-1035.
[http://dx.doi.org/10.1002/ptr.1970] [PMID: 16909441]
[24]
Russo, A.; Borrelli, F. Bacopa monniera, a reputed nootropic plant: An overview. Phytomedicine, 2005, 12(4), 305-317.
[http://dx.doi.org/10.1016/j.phymed.2003.12.008] [PMID: 15898709]
[25]
Lee, H.; Kim, Y.O.; Kim, H.; Kim, S.Y.; Noh, H.S.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Suk, K. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J., 2003, 17(13), 1-21.
[http://dx.doi.org/10.1096/fj.03-0057fje] [PMID: 12897065]
[26]
Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, W.F., Jr Van der waals potential in protein complexes. Methods Mol. Biol., 2019, 2053, 79-91.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_6] [PMID: 31452100]
[27]
Raschka, S.; Wolf, A.J.; Bemister-Buffington, J.; Kuhn, L.A. Protein–ligand interfaces are polarized: Discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes. J. Comput. Aided Mol. Des., 2018, 32(4), 511-528.
[http://dx.doi.org/10.1007/s10822-018-0105-2] [PMID: 29435780]
[28]
Fu, Y.; Zhao, J.; Chen, Z. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Comput. Math. Methods Med., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/3502514] [PMID: 30627209]
[29]
Chartier-Harlin, M.C.; Kachergus, J.; Roumier, C.; Mouroux, V.; Douay, X.; Lincoln, S.; Levecque, C.; Larvor, L.; Andrieux, J.; Hulihan, M.; Waucquier, N.; Defebvre, L.; Amouyel, P.; Farrer, M.; Destée, A. α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 2004, 364(9440), 1167-1169.
[http://dx.doi.org/10.1016/S0140-6736(04)17103-1] [PMID: 15451224]
[30]
Ibáñez, P.; Bonnet, A-M.; Débarges, B.; Lohmann, E.; Tison, F.; Agid, Y.; Dürr, A.; Brice, A.; Pollak, P. Causal relation between α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 2004, 364(9440), 1169-1171.
[http://dx.doi.org/10.1016/S0140-6736(04)17104-3] [PMID: 15451225]
[31]
Wilson, C.N.; Mustafa, S.J. Eds.; Adenosine Receptors in Health and Disease; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009, Vol. 193, .
[http://dx.doi.org/10.1007/978-3-540-89615-9_11]
[32]
Olanow, C.W.; Brundin, P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov. Disord., 2013, 28(1), 31-40.
[http://dx.doi.org/10.1002/mds.25373] [PMID: 23390095]
[33]
Teo, K.C.; Ho, S.L. Monoamine oxidase-B (MAO-B) inhibitors: Implications for disease-modification in Parkinson’s disease. Transl. Neurodegener., 2013, 2(1), 19.
[http://dx.doi.org/10.1186/2047-9158-2-19] [PMID: 24011391]
[34]
Choi, J.W.; Jang, B.K.; Cho, N.; Park, J.H.; Yeon, S.K.; Ju, E.J.; Lee, Y.S.; Han, G.; Pae, A.N.; Kim, D.J.; Park, K.D. Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors. Bioorg. Med. Chem., 2015, 23(19), 6486-6496.
[http://dx.doi.org/10.1016/j.bmc.2015.08.012] [PMID: 26337020]
[35]
Siramshetty, V.B.; Nickel, J.; Omieczynski, C.; Gohlke, B.O.; Drwal, M.N.; Preissner, R. WITHDRAWN—a resource for withdrawn and discontinued drugs. Nucleic Acids Res., 2016, 44(D1), D1080-D1086.
[http://dx.doi.org/10.1093/nar/gkv1192] [PMID: 26553801]
[36]
y, M.; Iliya S, S.Z.; Kani YA, M.B.K.; Wali U, A.M.B.; Tahiru A, M.H.Y.; Ahmed AY, M.Y.; Habeeb A, Y.A.; Saeed SA, F.I.B.; Uf, A. Molecular docking, drug-likeness and ADMET analysis of potential inhibitors (Ligands) from carica papaya against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Saudi Journal of Medicine, 2020, 5(5), 222-232.
[http://dx.doi.org/10.36348/sjm.2020.v05i05.002]
[37]
Waring, M.J. Lipophilicity in drug discovery. Expert Opin. Drug Discov., 2010, 5(3), 235-248.
[http://dx.doi.org/10.1517/17460441003605098] [PMID: 22823020]
[38]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[39]
Nisha, C.M.; Kumar, A.; Nair, P.; Gupta, N.; Silakari, C.; Tripathi, T.; Kumar, A. Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β -secretase. Adv. Bioinforma., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/9258578] [PMID: 27190510]
[40]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[41]
Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol., 2020, 94(11), 3671-3722.
[http://dx.doi.org/10.1007/s00204-020-02936-7] [PMID: 33111191]
[42]
Pelkonen, O.; Turpeinen, M.; Hakkola, J.; Honkakoski, P.; Hukkanen, J.; Raunio, H. Inhibition and induction of human cytochrome P450 enzymes: Current status. Arch. Toxicol., 2008, 82(10), 667-715.
[http://dx.doi.org/10.1007/s00204-008-0332-8] [PMID: 18618097]
[43]
Bardal, S.K.; Waechter, J.E.; Martin, D.S. Pharmacokinetics In Applied pharmacology, 2011, 17-34.
[44]
Alarcón-Herrera, N.; Flores-Maya, S.; Bellido, B.; García-Bores, A.M.; Mendoza, E.; Ávila-Acevedo, G.; Hernández-Echeagaray, E. Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food Chem. Toxicol., 2017, 109(Pt 2), 1018-1025.
[http://dx.doi.org/10.1016/j.fct.2017.04.048] [PMID: 28478101]
[45]
Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr., 2017, 56(7), 2215-2244.
[http://dx.doi.org/10.1007/s00394-017-1379-1] [PMID: 28391515]
[46]
Conte, A.; Pellegrini, S.; Tagliazucchi, D. Synergistic protection of PC12 cells from β-amyloid toxicity by resveratrol and catechin. Brain Res. Bull., 2003, 62(1), 29-38.
[http://dx.doi.org/10.1016/j.brainresbull.2003.08.001] [PMID: 14596889]
[47]
Ahmed, H.; Khan, M.A.; Ali Zaidi, S.A.; Muhammad, S. In silico and in vivo: Evaluating the therapeutic potential of kaempferol, quercetin, and catechin to treat chronic epilepsy in a rat model. Front. Bioeng. Biotechnol., 2021, 9, 754952.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy