Review Article

抗菌肽的生物化学、机制复杂性和治疗潜力:传统抗生素的替代品

卷 31, 期 37, 2024

发表于: 10 October, 2023

页: [6110 - 6139] 页: 30

弟呕挨: 10.2174/0109298673268458230926105224

价格: $65

conference banner
摘要

耐药病原体菌株的出现成为治疗人类疾病的主要障碍。抗生素和抗病毒药物已经应用了很长时间,但现在这些药物对引起疾病的耐药微生物的效果已经不太好,并逐渐成为世界范围内严重的并发症。由于耐药菌株的进化性质和逃逸抗生素,开发新的抗生素不能成为治疗耐药菌株的稳定解决方案。在这个阶段,抗菌肽(AMPs)可能为我们提供新的治疗耐药病原体的线索。抗菌肽在结构上多为带正电荷(阳离子)的两亲性α-螺旋肽分子,属于宿主防御肽。这些带正电的amp可以与带负电的细菌细胞膜相互作用,并可能引起细菌细胞膜上电化学电位的改变,从而导致微生物细胞的死亡。在本研究中,我们将阐述AMP在治疗各种疾病中的意义以及它们的特定结构和功能特性。这一综述将为开发新的合成肽类天然AMP提供信息。这些类似物将消除天然抗菌肽的局限性,如毒性和严重的溶血活性。

关键词: AMP,疾病,耐药性,微生物,多肽,治疗。

[1]
Bahar, A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[2]
Dhingra, S; Rahman, NAA; Peile, E; Rahman, M; Sartelli, M; Hassali, MA; Islam, T; Islam, S; Haque, M Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front Public Health., 2020, 4(8), 535668.
[3]
Huemer, M; Mairpady, S.S; Brugger, SD; Zinkernagel, AS Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep,, 2020, 21(12), e51034.
[http://dx.doi.org/10.15252/embr.202051034]
[4]
Reddy, K.V.R.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents, 2004, 24(6), 536-547.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[5]
Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[6]
Wang, G; Li, X; Wang, Z APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res, 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278]
[7]
Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[8]
Mardirossian, M.; Grzela, R.; Giglione, C.; Meinnel, T.; Gennaro, R.; Mergaert, P.; Scocchi, M. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol., 2014, 21(12), 1639-1647.
[http://dx.doi.org/10.1016/j.chembiol.2014.10.009]
[9]
Subbalakshmi, C.; Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett., 1998, 160(1), 91.96)
[http://dx.doi.org/10.1111/j.1574-6968.1998.tb12896.x]
[10]
Cociancich, S.; Dupont, A.; Hegy, G.; Lanot, R.; Holder, F.; Hetru, C.; Hoffmann, J.A.; Bulet, P. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J., 1994, 300
[http://dx.doi.org/10.1042/bj3000567]
[11]
Miura, K.; Ueno, S.; Kamiya, K.; Kobayashi, J.; Matsuoka, H.; Ando, K.; Chinzei, Y. Cloning of mRNA sequences for two antibacterial peptides in a hemipteran insect, Riptortus clavatus. Zool. Sci., 1996, 13(1), 111-117.
[http://dx.doi.org/10.2108/zsj.13.111] [PMID: 8688805]
[12]
McCann, K.B.; Lee, A.; Wan, J.; Roginski, H.; Coventry, M.J. The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures. J. Appl. Microbiol., 2003, 95(5), 1026-1033.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02071.x] [PMID: 14633031]
[13]
Pietrantoni, A.; Ammendolia, M.; Tinari, A.; Siciliano, R.; Valenti, P.; Superti, F. Bovine lactoferrin peptidic fragments involved in inhibition of Echovirus 6 in vitro infection. Antiviral Res., 2006, 69(2), 98-106.
[http://dx.doi.org/10.1016/j.antiviral.2005.10.006] [PMID: 16386316]
[14]
Belaid, A.; Aouni, M.; Khelifa, R.; Trabelsi, A.; Jemmali, M.; Hani, K. In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J. Med. Virol., 2002, 66(2), 229-234.
[http://dx.doi.org/10.1002/jmv.2134] [PMID: 11782932]
[15]
Mettenleiter, T.C. Brief overview on cellular virus receptors. Virus Res., 2001, 82(1-2), 3-8.
[http://dx.doi.org/10.1016/S0168-1702(01)00380-X] [PMID: 11885946]
[16]
WuDunn, D.; Spear, P.G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol., 1989, 63(1), 52-58.
[http://dx.doi.org/10.1128/jvi.63.1.52-58.1989] [PMID: 2535752]
[17]
Sharma, M.; Sharma, S.; Prasad, R.; Rajwanshi, A.; Sethi, S.; Samanta, P.; Malhotra, S. Characterization of low molecular weight antimicrobial peptide from human female reproductive tract. Indian J. Med. Res., 2011, 134(5), 679-687.
[http://dx.doi.org/10.4103/0971-5916.90996] [PMID: 22199108]
[18]
Viruly, L.; Suhartono, M.T.; Nurilmala, M.; Saraswati, S.; Andarwulan, N. Identification and characterization of antimicrobial peptide (AMP) candidate from Gonggong Sea Snail (Leavistrombus turturella) extract. J. Food Sci. Technol., 2023, 60(1), 44-52.
[http://dx.doi.org/10.1007/s13197-022-05585-z] [PMID: 36618044]
[19]
Jirakkakul, J.; Punya, J.; Pongpattanakitshote, S.; Paungmoung, P.; Vorapreeda, N.; Tachaleat, A.; Klomnara, C.; Tanticharoen, M.; Cheevadhanarak, S. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology, 2008, 154(4), 995-1006.
[http://dx.doi.org/10.1099/mic.0.2007/013995-0] [PMID: 18375793]
[20]
Mahlapuu, M.; Björn, C.; Ekblom, J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol., 2020, 40(7), 978-992.
[http://dx.doi.org/10.1080/07388551.2020.1796576] [PMID: 32781848]
[21]
Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[22]
Wang, G.; Mishra, B.; Lau, K.; Lushnikova, T.; Golla, R.; Wang, X. Antimicrobial peptides in 2014. Pharmaceuticals, 2015, 8(1), 123-150.
[http://dx.doi.org/10.3390/ph8010123] [PMID: 25806720]
[23]
a) Vaara, M.; Vaara, T. Polycations as outer membrane-disorganizing agents. Antimicrob Agents Chemother., 1983, 24(1), 114-122.
[http://dx.doi.org/10.1128/AAC.24.1.114];
b) Teixeira, V.; Feio, M.J.; Bastos, M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res., 1912, 51(2), 149-177.
[24]
Hancock, R.E.; Chapple, D.S. Peptide antibiotics. Antimicrob Agents Chemother., 1999, 43(6), 1317-1323.
[25]
Yin, L.M.; Edwards, M.A.; Li, J.; Yip, C.M.; Deber, C.M. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem., 2012, 287(10), 7738-7745.
[http://dx.doi.org/10.1074/jbc.M111.303602] [PMID: 22253439]
[26]
Marion, D.; Zasloff, M.; Bax, A. A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett., 1988, 227(1), 21-26.
[http://dx.doi.org/10.1016/0014-5793(88)81405-4] [PMID: 3338566]
[27]
Haney, E.F.; Mansour, S.C.; Hancock, R.E. Antimicrobial peptides: An introduction. In: Antimicrobial Peptides; Humana Press: New York, NY, 2017; pp. 3-22.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1]
[28]
Hara, T.; Kodama, H.; Kondo, M.; Wakamatsu, K.; Takeda, A.; Tachi, T.; Matsuzaki, K. Effects of peptide dimerization on pore formation: Antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers., 2001, 58(4), 437-446.
[29]
Jin, Y.; Hammer, J.; Pate, M.; Zhang, Y.; Zhu, F.; Zmuda, E.; Blazyk, J. Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic beta-sheet and alpha-helical potentials. Antimicrob. Agents Chemother., 2005, 49(12), 4957-4964.
[http://dx.doi.org/10.1128/AAC.49.12.4957-4964.2005] [PMID: 16304158]
[30]
Yonezawa, A.; Kuwahara, J.; Fujii, N.; Sugiura, Y. Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry, 1992, 31(11), 2998-3004.
[http://dx.doi.org/10.1021/bi00126a022] [PMID: 1372516]
[31]
Fahrner, R.L.; Dieckmann, T.; Harwig, S.S.; Lehrer, R.I.; Eisenberg, D.; Feigon, J. Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chemistry & biology, 3(7), 543-550.1996,
[32]
Slavokhotova, A.A.; Shelenkov, A.A.; Korostyleva, T.V.; Rogozhin, E.A.; Melnikova, N.V.; Kudryavtseva, A.V.; Odintsova, T.I. Defense peptide repertoire of Stellaria media predicted by high throughput next generation sequencing. Biochimie, 2017, 135, 15-27.
[http://dx.doi.org/10.1016/j.biochi.2016.12.017] [PMID: 28038935]
[33]
Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: Versatile biological properties. Int. J. Pept., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/675391] [PMID: 23935642]
[34]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[35]
Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol., 2003, 3(9), 710-720.
[http://dx.doi.org/10.1038/nri1180] [PMID: 12949495]
[36]
Selsted, M.E.; Ouellette, A.J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol., 2005, 6(6), 551-557.
[http://dx.doi.org/10.1038/ni1206] [PMID: 15908936]
[37]
Tang, YQ.; Yuan, J.; Osapay, G.; Osapay, K.; Tran, D.; Miller, C.J.; Ouellette, A.J.; Selsted, M.E. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science., 1999, 286, 498, 502.
[38]
Lehrer, R.I.; Lu, W. α-Defensins in human innate immunity. Immunol. Rev., 2012, 245(1), 84-112.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01082.x] [PMID: 22168415]
[39]
Bevins, C.L.; Salzman, N.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol., 2011, 9(5), 356-368.
[http://dx.doi.org/10.1038/nrmicro2546] [PMID: 21423246]
[40]
Michaut, L.; Fehlbaum, P.; Moniatte, M.; Van Dorsselaer, A.; Reichhart, J.M.; Bulet, P. Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett., 1996, 395(1), 6-10.
[http://dx.doi.org/10.1016/0014-5793(96)00992-1] [PMID: 8849679]
[41]
Landon, C.; Sodano, P.; Hetru, C.; Hoffmann, J.; Ptak, M. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci., 1997, 6(9), 1878-1884.
[http://dx.doi.org/10.1002/pro.5560060908] [PMID: 9300487]
[42]
Jhong, J.H.; Chi, Y.H.; Li, W.C.; Lin, T.H.; Huang, K.Y.; Lee, T.Y. dbAMP: An integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res., 2019, 47(D1), D285-D297.
[http://dx.doi.org/10.1093/nar/gky1030] [PMID: 30380085]
[43]
Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H. DRAMP 3.0: An enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res., 2022, 50(D1), D488-D496.
[http://dx.doi.org/10.1093/nar/gkab651] [PMID: 34390348]
[44]
Lin, T.T.; Yang, L.Y.; Lu, I.H.; Cheng, W.C.; Hsu, Z.R.; Chen, S.H.; Lin, C.Y. AI4AMP: An antimicrobial peptide predictor using physicochemical property-based encoding method and deep learning. mSystems, 2021, 6(6), e00299-21.
[http://dx.doi.org/10.1128/mSystems.00299-21] [PMID: 34783578]
[45]
Dwivedi, R.; Aggarwal, P.; Bhavesh, N.S.; Kaur, K.J. Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy. Amino Acids, 2019, 51(10-12), 1443-1460.
[http://dx.doi.org/10.1007/s00726-019-02779-2] [PMID: 31485742]
[46]
Collin, F.; Maxwell, A. The microbial toxin microcin B17: Prospects for the development of new antibacterial agents. J. Mol. Biol., 2019, 431(18), 3400-3426.
[http://dx.doi.org/10.1016/j.jmb.2019.05.050] [PMID: 31181289]
[47]
Naimi, S.; Zirah, S.; Taher, M.B.; Theolier, J.; Fernandez, B.; Rebuffat, S.F.; Fliss, I. Microcin J25 exhibits inhibitory activity against Salmonella Newport in continuous fermentation model mimicking swine colonic conditions. Front. Microbiol., 2020, 11, 988.
[http://dx.doi.org/10.3389/fmicb.2020.00988] [PMID: 32528437]
[48]
Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[49]
McMillan, K.A.M.; Coombs, M.R.P. Review: Examining the natural role of amphibian antimicrobial peptide magainin. Molecules, 2020, 25(22), 5436.
[http://dx.doi.org/10.3390/molecules25225436] [PMID: 33233580]
[50]
Han, E.; Lee, H. Synergistic effects of magainin 2 and PGLa on their heterodimer formation, aggregation, and insertion into the bilayer. RSC Advances, 2015, 5(3), 2047-2055.
[http://dx.doi.org/10.1039/C4RA08480B]
[51]
Shen, W.; He, P.; Xiao, C.; Chen, X. From antimicrobial peptides to antimicrobial poly(α-amino acid)s. Adv. Healthc. Mater., 2018, 7(20), 1800354.
[http://dx.doi.org/10.1002/adhm.201800354] [PMID: 29923332]
[52]
Hale, J.D.F.; Hancock, R.E.W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther., 2007, 5(6), 951-959.
[http://dx.doi.org/10.1586/14787210.5.6.951] [PMID: 18039080]
[53]
Hancock, R.; Patrzykat, A. Clinical development of cationic antimicrobial peptides: From natural to novel antibiotics. Curr. Drug Targets Infect. Disord., 2002, 2(1), 79-83.
[http://dx.doi.org/10.2174/1568005024605855] [PMID: 12462155]
[54]
Rausch, J.M.; Marks, J.R.; Rathinakumar, R.; Wimley, W.C. β-sheet pore-forming peptides selected from a rational combinatorial library: mechanism of pore formation in lipid vesicles and activity in biological membranes. Biochemistry, 2007, 46(43), 12124-12139.
[http://dx.doi.org/10.1021/bi700978h] [PMID: 17918962]
[55]
Subramanian, H.; Gupta, K.; Guo, Q.; Price, R.; Ali, H. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: Resistance to receptor phosphorylation, desensitization, and internalization. J. Biol. Chem., 2011, 286(52), 44739-44749.
[http://dx.doi.org/10.1074/jbc.M111.277152] [PMID: 22069323]
[56]
Afacan, N.J.; Yeung, A.T.; Pena, O.M.; Hancock, R.E. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr. Pharm. Des., 2012, 18(6), 807-819.
[http://dx.doi.org/10.2174/138161212799277617] [PMID: 22236127]
[57]
Niyonsaba, F.; Iwabuchi, K.; Someya, A.; Hirata, M.; Matsuda, H.; Ogawa, H.; Nagaoka, I. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology, 2002, 106(1), 20-26.
[http://dx.doi.org/10.1046/j.1365-2567.2002.01398.x] [PMID: 11972628]
[58]
García, J.R.; Jaumann, F.; Schulz, S.; Krause, A.; Rodríguez-Jiménez, J.; Forssmann, U.; Adermann, K.; Klüver, E.; Vogelmeier, C.; Becker, D.; Hedrich, R.; Forssmann, W.G.; Bals, R. Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res., 2001, 306(2), 257-264.
[http://dx.doi.org/10.1007/s004410100433] [PMID: 11702237]
[59]
Liu, Y.J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell, 2001, 106(3), 259-262.
[http://dx.doi.org/10.1016/S0092-8674(01)00456-1] [PMID: 11509173]
[60]
Lang, J.; Yang, N.; Deng, J.; Liu, K.; Yang, P.; Zhang, G.; Jiang, C. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One., 2011, 6(8), e23710.
[61]
Campione, E.; Lanna, C.; Cosio, T.; Rosa, L.; Conte, M.P.; Iacovelli, F.; Romeo, A.; Falconi, M.; Del Vecchio, C.; Franchin, E.; Lia, M.S.; Minieri, M.; Chiaramonte, C.; Ciotti, M.; Nuccetelli, M.; Terrinoni, A.; Iannuzzi, I.; Coppeda, L.; Magrini, A.; Bernardini, S.; Sabatini, S.; Rosapepe, F.; Bartoletti, P.L.; Moricca, N.; Di Lorenzo, A.; Andreoni, M.; Sarmati, L.; Miani, A.; Piscitelli, P.; Valenti, P.; Bianchi, L. Lactoferrin against SARS-CoV-2: in vitro and in silico evidences. Front. Pharmacol., 2021, 12, 666600.
[http://dx.doi.org/10.3389/fphar.2021.666600] [PMID: 34220505]
[62]
Elnagdy, S.; AlKhazindar, M. The potential of antimicrobial peptides as an antiviral therapy against COVID-19. ACS Pharmacol. Transl. Sci., 2020, 3(4), 780-782.
[http://dx.doi.org/10.1021/acsptsci.0c00059] [PMID: 32821884]
[63]
Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; Csörgő, B.; Györkei, Á.; Bódi, Z.; Faragó, A.; Bodai, L.; Földesi, I.; Kata, D.; Maróti, G.; Pap, B.; Wirth, R.; Papp, B.; Pál, C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun, 2019, 10(1), 4538.
[http://dx.doi.org/10.1038/s41467-019-12364-6]
[64]
Shi, J.; Chen, C.; Wang, D.; Wang, Z.; Liu, Y. The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Commun. Biol., 2022, 5(1), 926.
[http://dx.doi.org/10.1038/s42003-022-03899-4] [PMID: 36071151]
[65]
Kintses, B.; Jangir, P.K.; Fekete, G.; Számel, M.; Méhi, O.; Spohn, R.; Daruka, L.; Martins, A.; Hosseinnia, A.; Gagarinova, A.; Kim, S.; Phanse, S.; Csörgő, B.; Györkei, Á.; Ari, E.; Lázár, V.; Nagy, I.; Babu, M.; Pál, C.; Papp, B. Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. Nat. Commun., 2019, 10(1), 5731.
[http://dx.doi.org/10.1038/s41467-019-13618-z] [PMID: 31844052]
[66]
Oyston, P.C.F.; Fox, M.A.; Richards, S.J.; Clark, G.C. Novel peptide therapeutics for treatment of infections. J. Med. Microbiol., 2009, 58(8), 977-987.
[http://dx.doi.org/10.1099/jmm.0.011122-0] [PMID: 19528155]
[67]
Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther., 2017, 17(6), 663-676.
[http://dx.doi.org/10.1080/14712598.2017.1315402] [PMID: 28368216]
[68]
Wang, T.T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; White, J.H. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol., 2004, 173(5), 2909-2912.
[http://dx.doi.org/10.4049/jimmunol.173.5.2909] [PMID: 15322146]
[69]
Wiig, M.E.; Dahlin, L.B.; Fridén, J.; Hagberg, L.; Larsen, S.E.; Wiklund, K.; Mahlapuu, M. PXL01 in sodium hyaluronate for improvement of hand recovery after flexor tendon repair surgery: Randomized controlled trial. PLoS One., 2014, 9(10), e110735.
[70]
DrugDataBase. Available from: http://www.drugsdb.eu/index.php?l=c (Accessed on: July 2018).
[71]
Usmani, S.S.; Bedi, G.; Samuel, J.S.; Singh, S.; Kalra, S.; Kumar, P.; Ahuja, A.A.; Sharma, M.; Gautam, A.; Raghava, G.P.S. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One, 2017, 12(7), e0181748.
[http://dx.doi.org/10.1371/journal.pone.0181748] [PMID: 28759605]
[72]
Davis, C.A.; Janssen, E.M.L. Environmental fate processes of antimicrobial peptides daptomycin, bacitracins, and polymyxins. Environ. Int., 2020, 134, 105271.
[http://dx.doi.org/10.1016/j.envint.2019.105271] [PMID: 31704562]
[73]
Lang, C.; Staiger, C. Tyrothricin--An underrated agent for the treatment of bacterial skin infections and superficial wounds? Pharmazie, 2016, 71(6), 299-305.
[PMID: 27455547]
[74]
Berditsch, M.; Trapp, M.; Afonin, S.; Weber, C.; Misiewicz, J.; Turkson, J.; Ulrich, A.S. Antimicrobial peptide gramicidin S is accumulated in granules of producer cells for storage of bacterial phosphagens. Sci Rep., 2017, 7, 44324.
[http://dx.doi.org/10.1038/srep44324]
[75]
Cunha, B.; Sessa, J.; Blum, S. Enhanced efficacy of high dose oral vancomycin therapy in Clostridium difficile diarrhea for hospitalized adults not responsive to conventional oral vancomycin therapy: Antibiotic stewardship implications. J. Clin. Med., 2018, 7(4), 75.
[http://dx.doi.org/10.3390/jcm7040075] [PMID: 29642570]
[76]
Golan, Y. Current treatment options for acute skin and skin-structure infections. Clin Infect Dis., 2019, 68(S3), S206-S212.
[http://dx.doi.org/10.1093/cid/ciz004]
[77]
Giannella, M.; Bartoletti, M.; Gatti, M.; Viale, P. Advances in the therapy of bacterial bloodstream infections. Clin. Microbiol. Infect., 2020, 26(2), 158-167.
[http://dx.doi.org/10.1016/j.cmi.2019.11.001] [PMID: 31733377]
[78]
Gomes, B.; Augusto, M.T.; Felício, M.R.; Hollmann, A.; Franco, O.L.; Gonçalves, S.; Santos, N.C. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol. Adv., 2018, 36(2), 415-429.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.004] [PMID: 29330093]
[79]
Estrada, S.; Lodise, T.P.; Tillotson, G.S.; Delaportas, D. The real-world economic and clinical management of adult patients with skin and soft tissue infections (SSTIs) with oritavancin: Data from two multicenter observational cohort studies. Drugs Real World Outcomes, 2020, 7(S1), 6-12.
[http://dx.doi.org/10.1007/s40801-020-00199-3] [PMID: 32588389]
[80]
Durante-Mangoni, E.; Gambardella, M.; Iula, V.D.; De Stefano, G.F.; Corrado, M.F.; Esposito, V.; Gentile, I.; Coppola, N. Current trends in the real-life use of dalbavancin: Report of a study panel. Int. J. Antimicrob. Agents, 2020, 56(4), 106107.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106107] [PMID: 32721599]
[81]
Kirker, K.R.; Fisher, S.T.; James, G.A. Potency and penetration of telavancin in staphylococcal biofilms. Int. J. Antimicrob. Agents, 2015, 46(4), 451-455.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.05.022] [PMID: 26213381]
[82]
Venkatraman, S. Discovery of boceprevir, a direct-acting NS3/4A protease inhibitor for treatment of chronic hepatitis C infections. Trends Pharmacol. Sci., 2012, 33(5), 289-294.
[http://dx.doi.org/10.1016/j.tips.2012.03.012] [PMID: 22521415]
[83]
Njoroge, F.G.; Chen, K.X.; Shih, N.Y.; Piwinski, J.J. Challenges in modern drug discovery: A case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc. Chem. Res., 2008, 41(1), 50-59.
[http://dx.doi.org/10.1021/ar700109k] [PMID: 18193821]
[84]
Saravolatz, L.D.; Stein, G.E. Oritavancin: A long-half-life lipoglycopeptide. Clin. Infect. Dis., 2015, 61(4), 627-632.
[http://dx.doi.org/10.1093/cid/civ311] [PMID: 25900171]
[85]
Saravolatz, L.D.; Pawlak, J.; Johnson, L.B. In vitro activity of oritavancin against community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA), vancomycin-intermediate S. aureus (VISA), vancomycin-resistant S. aureus (VRSA) and daptomycin-non-susceptible S. aureus (DNSSA). Int. J. Antimicrob. Agents, 2010, 36(1), 69-72.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.02.023] [PMID: 20413274]
[86]
Popovic, N.; Korac, M.; Nesic, Z.; Milosevic, B.; Urosevic, A.; Jevtovic, D.; Pelemis, M.; Delic, D.; Prostran, M.; Milosevic, I. Oral teicoplanin for successful treatment of severe refractory Clostridium difficile infection. J. Infect. Dev. Ctries., 2015, 9(10), 1062-1067.
[http://dx.doi.org/10.3855/jidc.6335] [PMID: 26517480]
[87]
Ojha, S.C.; Phanchana, M.; Harnvoravongchai, P.; Chankhamhaengdecha, S.; Singhakaew, S.; Ounjai, P.; Janvilisri, T. Teicoplanin suppresses vegetative clostridioides difficile and spore outgrowth. Antibiotics, 2021, 10(8), 984.
[http://dx.doi.org/10.3390/antibiotics10080984]
[88]
Giroir, B.P.; Scannon, P.J.; Levin, M. Bactericidal/permeability-increasing protein-Lessons learned from the phase III, randomized, clinical trial of rBPI21 for adjunctive treatment of children with severe meningococcemia. Crit. Care Med., 2001, 29(S7), S130-S135.
[http://dx.doi.org/10.1097/00003246-200107001-00039] [PMID: 11445748]
[89]
Schultz, H.; Hume, J.; Zhang, D.S.; Gioannini, T.L.; Weiss, J.P. A novel role for the bactericidal/permeability increasing protein in interactions of gram-negative bacterial outer membrane blebs with dendritic cells. J. Immunol., 2007, 179(4), 2477-2484.
[http://dx.doi.org/10.4049/jimmunol.179.4.2477] [PMID: 17675509]
[90]
Costa, F.; Teixeira, C.; Gomes, P.; Martins, M.C.L. Clinical application of AMPs. Adv. Exp. Med. Biol., 2019, 1117, 281-298.
[http://dx.doi.org/10.1007/978-981-13-3588-4_15] [PMID: 30980363]
[91]
von der Möhlen, M.A.M.; Kimmings, A.N.; Wedel, N.I.; Mevissen, M.L.C.M.; Jansen, J.; Friedmann, N.; Lorenz, T.J.; Nelson, B.J.; White, M.L.; Bauer, R.; Hack, C.E.; Eerenberg, A.J.M.; van Deventer, S.J.H. Inhibition of endotoxin-induced cytokine release and neutrophil activation in humans by use of recombinant bactericidal/permeability-increasing protein. J. Infect. Dis., 1995, 172(1), 144-151.
[http://dx.doi.org/10.1093/infdis/172.1.144] [PMID: 7797904]
[92]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[93]
Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: Back to the future? J. Med. Chem., 2018, 61(4), 1382-1414.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00318] [PMID: 28737935]
[94]
Ioannou, P.; Baliou, S.; Kofteridis, D.P. Antimicrobial peptides in infectious diseases and beyond-a narrative review. Life, 2023, 13(8), 1651.
[http://dx.doi.org/10.3390/life13081651] [PMID: 37629508]
[95]
Fan, L.; Sun, J.; Zhou, M.; Zhou, J.; Lao, X.; Zheng, H.; Xu, H. DRAMP: A comprehensive data repository of antimicrobial peptides. Sci. Rep., 2016, 6(1), 24482.
[http://dx.doi.org/10.1038/srep24482] [PMID: 27075512]
[96]
Malanovic, N.; Lohner, K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals., 2016, 9(3), 59.
[http://dx.doi.org/10.3390/ph9030059] [PMID: 27657092]
[97]
Fox, J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol., 2013, 31(5), 379-382.
[http://dx.doi.org/10.1038/nbt.2572] [PMID: 23657384]
[98]
Hojo, K.; Hara, A.; Kitai, H.; Onishi, M.; Ichikawa, H.; Fukumori, Y.; Kawasaki, K. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles. Chem. Cent. J., 2011, 5(1), 49.
[http://dx.doi.org/10.1186/1752-153X-5-49] [PMID: 21867548]
[99]
van der Does, A.M.; Hensbergen, P.J.; Bogaards, S.J.; Cansoy, M.; Deelder, A.M.; van Leeuwen, H.C.; Drijfhout, J.W.; van Dissel, J.T.; Nibbering, P.H. The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity. J Immunol., 2012, 188(10), 5012-5019.
[100]
Stallmann, H.P.; Faber, C.; Bronckers, A.L.J.J.; de Blieck-Hogervorst, J.M.A.; Brouwer, C.P.J.M.; Amerongen, A.V.N.; Wuisman, P.I.J.M. Histatin and lactoferrin derived peptides: Antimicrobial properties and effects on mammalian cells. Peptides, 2005, 26(12), 2355-2359.
[http://dx.doi.org/10.1016/j.peptides.2005.05.014] [PMID: 15979203]
[101]
Puri, S.; Edgerton, M. How does it kill?: Understanding the candidacidal mechanism of salivary histatin 5. Eukaryot. Cell, 2014, 13(8), 958-964.
[http://dx.doi.org/10.1128/EC.00095-14] [PMID: 24951439]
[102]
Eckert, R. Road to clinical efficacy: Challenges and novel strategies for antimicrobial peptide development. Future Microbiol., 2011, 6(6), 635-651.
[http://dx.doi.org/10.2217/fmb.11.27] [PMID: 21707311]
[103]
Kaplan, C.W.; Sim, J.H.; Shah, K.R.; Kolesnikova-Kaplan, A.; Shi, W.; Eckert, R. Selective membrane disruption: Mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob. Agents Chemother., 2011, 55(7), 3446-3452.
[http://dx.doi.org/10.1128/AAC.00342-11] [PMID: 21518845]
[104]
Kudrimoti, M.; Curtis, A.; Azawi, S.; Worden, F.; Katz, S.; Adkins, D.; Bonomi, M.; Elder, J.; Sonis, S.T.; Straube, R.; Donini, O. Dusquetide: A novel innate defense regulator demonstrating a significant and consistent reduction in the duration of oral mucositis in preclinical data and a randomized, placebo-controlled phase 2a clinical study. J. Biotechnol., 2016, 239, 115-125.
[http://dx.doi.org/10.1016/j.jbiotec.2016.10.010] [PMID: 27746305]
[105]
Greber, K.E.; Dawgul, M.; Kamysz, W.; Sawicki, W. Cationic net charge and counter ion type as antimicrobial activity determinant factors of short lipopeptides. Front. Microbiol., 2017, 8, 123.
[http://dx.doi.org/10.3389/fmicb.2017.00123] [PMID: 28203232]
[106]
Dijksteel, GS; Ulrich, MMW; Middelkoop, E; Boekema, BKHL Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol., 2021, 12, 616979.
[107]
Schneider, T.; Gries, K.; Josten, M.; Wiedemann, I.; Pelzer, S.; Labischinski, H.; Sahl, H.G. The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob. Agents Chemother., 2009, 53(4), 1610-1618.
[http://dx.doi.org/10.1128/AAC.01040-08] [PMID: 19164139]
[108]
Crowther, G.S.; Baines, S.D.; Todhunter, S.L.; Freeman, J.; Chilton, C.H.; Wilcox, M.H. Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection. J. Antimicrob. Chemother., 2013, 68(1), 168-176.
[http://dx.doi.org/10.1093/jac/dks359] [PMID: 22966180]
[109]
Lee, G.; Bae, H. Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules, 2016, 21(5), 616.
[http://dx.doi.org/10.3390/molecules21050616] [PMID: 27187328]
[110]
Isaksson, J.; Brandsdal, B.O.; Engqvist, M.; Flaten, G.E.; Svendsen, J.S.M.; Stensen, W. A synthetic antimicrobial peptidomimetic (LTX 109): Stereochemical impact on membrane disruption. J. Med. Chem., 2011, 54(16), 5786-5795.
[http://dx.doi.org/10.1021/jm200450h] [PMID: 21732630]
[111]
Sivertsen, A.; Isaksson, J.; Leiros, H.K.S.; Svenson, J.; Svendsen, J.S.; Brandsdal, B.O. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Struct. Biol., 2014, 14(1), 4.
[http://dx.doi.org/10.1186/1472-6807-14-4] [PMID: 24456893]
[112]
Malanovic, N.; Leber, R.; Schmuck, M.; Kriechbaum, M.; Cordfunke, R.A.; Drijfhout, J.W.; de Breij, A.; Nibbering, P.H.; Kolb, D.; Lohner, K. Phospholipid-driven differences determine the action of the synthetic antimicrobial peptide OP-145 on Gram-positive bacterial and mammalian membrane model systems. Biochim. Biophys. Acta Biomembr., 2015, 1848(10), 2437-2447.
[http://dx.doi.org/10.1016/j.bbamem.2015.07.010] [PMID: 26210299]
[113]
Welling, M.; Brouwer, C.; Roscini, L.; Cardinali, G.; Corte, L.; Casagrande, P.D. Structure-activity relationship study of synthetic variants derived from the highly potent human antimicrobial peptide hLF(1- 11). Cohesive J. Microbiol. Infect. Dis., 2018, 1(3)
[114]
Brown, K.L.; Poon, G.F.T.; Birkenhead, D.; Pena, O.M.; Falsafi, R.; Dahlgren, C.; Karlsson, A.; Bylund, J.; Hancock, R.E.W.; Johnson, P. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J. Immunol., 2011, 186(9), 5497-5505.
[http://dx.doi.org/10.4049/jimmunol.1002508] [PMID: 21441450]
[115]
Srinivas, N.; Jetter, P.; Ueberbacher, B.J.; Werneburg, M.; Zerbe, K.; Steinmann, J.; Van der Meijden, B.; Bernardini, F.; Lederer, A.; Dias, R.L.A.; Misson, P.E.; Henze, H.; Zumbrunn, J.; Gombert, F.O.; Obrecht, D.; Hunziker, P.; Schauer, S.; Ziegler, U.; Käch, A.; Eberl, L.; Riedel, K.; DeMarco, S.J.; Robinson, J.A. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science, 2010, 327(5968), 1010-1013.
[http://dx.doi.org/10.1126/science.1182749] [PMID: 20167788]
[116]
Guo, L.; McLean, J.S.; Yang, Y.; Eckert, R.; Kaplan, C.W.; Kyme, P.; Sheikh, O.; Varnum, B.; Lux, R.; Shi, W.; He, X. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc. Natl. Acad. Sci., 2015, 112(24), 7569-7574.
[http://dx.doi.org/10.1073/pnas.1506207112] [PMID: 26034276]
[117]
Mercer, D.K.; Robertson, J.C.; Miller, L.; Stewart, C.S.; O’Neil, D.A. NP213 (Novexatin®): A unique therapy candidate for onychomycosis with a differentiated safety and efficacy profile. Med. Mycol., 2020, 58(8), 1064-1072.
[http://dx.doi.org/10.1093/mmy/myaa015] [PMID: 32232410]
[118]
Leeds, J.A.; Sachdeva, M.; Mullin, S.; Dzink-Fox, J.; LaMarche, M.J. Mechanism of action of and mechanism of reduced susceptibility to the novel anti-Clostridium difficile compound LFF571. Antimicrob. Agents Chemother., 2012, 56(8), 4463-4465.
[http://dx.doi.org/10.1128/AAC.06354-11] [PMID: 22644023]
[119]
Travis, S.; Yap, L.M.; Hawkey, C.; Warren, B.; Lazarov, M.; Fong, T.; Tesi, R.J. RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm. Bowel Dis., 2005, 11(8), 713-719.
[http://dx.doi.org/10.1097/01.MIB.0000172807.26748.16] [PMID: 16043985]
[120]
Håkansson, J.; Ringstad, L.; Umerska, A.; Johansson, J.; Andersson, T.; Boge, L.; Rozenbaum, R.T.; Sharma, P.K.; Tollbäck, P.; Björn, C.; Saulnier, P.; Mahlapuu, M. Characterization of the in vitro, ex vivo, and in vivo efficacy of the antimicrobial peptide DPK-060 used for topical treatment. Front. Cell. Infect. Microbiol., 2019, 9, 174.
[http://dx.doi.org/10.3389/fcimb.2019.00174] [PMID: 31192163]
[121]
Peyrusson, F.; Butler, D.; Tulkens, P.M.; Van Bambeke, F. Cellular pharmacokinetics and intracellular activity of the novel peptide deformylase inhibitor GSK1322322 against Staphylococcus aureus laboratory and clinical strains with various resistance phenotypes: Tudies with human THP-1 monocytes and J774 murine macrophages. Antimicrob. Agents Chemother., 2015, 59(9), 5747-5760.
[http://dx.doi.org/10.1128/AAC.00827-15] [PMID: 26169402]
[122]
Edsfeldt, S.; Holm, B.; Mahlapuu, M.; Reno, C.; Hart, D.A.; Wiig, M. PXL01 in sodium hyaluronate results in increased PRG4 expression: A potential mechanism for anti-adhesion. Ups. J. Med. Sci., 2017, 122(1), 28-34.
[http://dx.doi.org/10.1080/03009734.2016.1230157] [PMID: 27658527]
[123]
Doi, K.; Hu, X.; Yuen, P.S.T.; Leelahavanichkul, A.; Yasuda, H.; Kim, S.M.; Schnermann, J.; Jonassen, T.E.N.; Frøkiær, J.; Nielsen, S.; Star, R.A. AP214, an analogue of α-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int., 2008, 73(11), 1266-1274.
[http://dx.doi.org/10.1038/ki.2008.97] [PMID: 18354376]
[124]
Mensa, B.; Howell, G.L.; Scott, R.; DeGrado, W.F. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob. Agents Chemother., 2014, 58(9), 5136-5145.
[http://dx.doi.org/10.1128/AAC.02955-14] [PMID: 24936592]
[125]
Ooi, N.; Miller, K.; Hobbs, J.; Rhys-Williams, W.; Love, W.; Chopra, I. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J. Antimicrob. Chemother., 2009, 64(4), 735-740.
[http://dx.doi.org/10.1093/jac/dkp299] [PMID: 19689976]
[126]
Jang, W.S.; Li, X.S.; Sun, J.N.; Edgerton, M. The P-113 fragment of histatin 5 requires a specific peptide sequence for intracellular translocation in Candida albicans, which is independent of cell wall binding. Antimicrob. Agents Chemother., 2008, 52(2), 497-504.
[http://dx.doi.org/10.1128/AAC.01199-07] [PMID: 17999963]
[127]
van Groenendael, R.; Kox, M.; van Eijk, L.T.; Pickkers, P. Immunomodulatory and kidney-protective effects of the human chorionic gonadotropin derivate EA-230. Nephron J., 2018, 140(2), 148-151.
[http://dx.doi.org/10.1159/000490772] [PMID: 29982253]
[128]
Yasir, M.; Dutta, D.; Hossain, K.R.; Chen, R.; Ho, K.K.K.; Kuppusamy, R.; Clarke, R.J.; Kumar, N.; Willcox, M.D.P. Mechanism of action of surface immobilized antimicrobial peptides against Pseudomonas aeruginosa. Front. Microbiol., 2020, 10, 3053.
[http://dx.doi.org/10.3389/fmicb.2019.03053] [PMID: 32038530]
[129]
Yasir, M.; Dutta, D.; Willcox, M.D.P. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One, 2019, 14(7), e0215703.
[http://dx.doi.org/10.1371/journal.pone.0215703] [PMID: 31356627]
[130]
David, J.M.; Rajasekaran, A.K. Gramicidin A: a new mission for an old antibiotic. J. Kidney Cancer VHL, 2015, 2(1), 15-24.
[http://dx.doi.org/10.15586/jkcvhl.2015.21] [PMID: 28326255]
[131]
Yu, Z.; Qin, W.; Lin, J.; Fang, S.; Qiu, J. Antibacterial mechanisms of polymyxin and bacterial resistance. BioMed Res. Int., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/679109] [PMID: 25664322]
[132]
Taylor, S.D.; Palmer, M. The action mechanism of daptomycin. Bioorg. Med. Chem., 2016, 24(24), 6253-6268.
[http://dx.doi.org/10.1016/j.bmc.2016.05.052] [PMID: 27288182]
[133]
Muchintala, D.; Suresh, V.; Raju, D.; Sashidhar, R.B. Synthesis and characterization of cecropin peptide-based silver nanocomposites: Its antibacterial activity and mode of action. Mater. Sci. Eng. C, 2020, 110, 110712.
[http://dx.doi.org/10.1016/j.msec.2020.110712] [PMID: 32204024]
[134]
Alam, M.Z.; Wu, X.; Mascio, C.; Chesnel, L.; Hurdle, J.G. Mode of action and bactericidal properties of surotomycin against growing and nongrowing Clostridium difficile. Antimicrob. Agents Chemother., 2015, 59(9), 5165-5170.
[http://dx.doi.org/10.1128/AAC.01087-15] [PMID: 26055381]
[135]
Gottler, L.M.; Ramamoorthy, A. Structure, membrane orientation, mechanism, and function of pexiganan — A highly potent antimicrobial peptide designed from magainin. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1680-1686.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.009] [PMID: 19010301]
[136]
Easton, D.M.; Nijnik, A.; Mayer, M.L.; Hancock, R.E.W. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol., 2009, 27(10), 582-590.
[http://dx.doi.org/10.1016/j.tibtech.2009.07.004] [PMID: 19683819]
[137]
Rubinchik, E.; Dugourd, D.; Algara, T.; Pasetka, C.; Friedland, H.D. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int. J. Antimicrob. Agents, 2009, 34(5), 457-461.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.05.003] [PMID: 19524411]
[138]
Vorland, L.H. Lactoferrin: A multifunctional glycoprotein. Acta Pathol. Microbiol. Scand. Suppl., 1999, 107(7-12), 971-981.
[http://dx.doi.org/10.1111/j.1699-0463.1999.tb01499.x] [PMID: 10598868]
[139]
Bruni, N.; Capucchio, M.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules, 2016, 21(6), 752.
[http://dx.doi.org/10.3390/molecules21060752] [PMID: 27294909]
[140]
Yamauchi, K.; Tomita, M.; Giehl, T.J.; Ellison, R.T., III Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun., 1993, 61(2), 719-728.
[http://dx.doi.org/10.1128/iai.61.2.719-728.1993] [PMID: 8423097]
[141]
Vorland, L.H.; Ulvatne, H.; Andersen, J.; Haukland, H.; Rekdal, O.; Svendsen, J.S.; Gutteberg, T.J. Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand. J. Infect. Dis., 1998, 30(5), 513-517.
[http://dx.doi.org/10.1080/00365549850161557] [PMID: 10066056]
[142]
Silva, T.; Magalhães, B.; Maia, S.; Gomes, P.; Nazmi, K.; Bolscher, J.G.M.; Rodrigues, P.N.; Bastos, M.; Gomes, M.S. Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob. Agents Chemother., 2014, 58(6), 3461-3467.
[http://dx.doi.org/10.1128/AAC.02728-13] [PMID: 24709266]
[143]
Ulvatne, H.; Haukland, H.H.; Olsvik, O.; Vorland, L.H. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. FEBS Lett., 2001, 492(1-2), 62-65.
[144]
van der Strate, B.W.A.; Beljaars, L.; Molema, G.; Harmsen, M.C.; Meijer, D.K.F. Antiviral activities of lactoferrin. Antiviral Res., 2001, 52(3), 225-239.
[http://dx.doi.org/10.1016/S0166-3542(01)00195-4] [PMID: 11675140]
[145]
Superti, F.; Ammendolia, M.G.; Valenti, P.; Seganti, L. Antirotaviral activity of milk proteins: Lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med. Microbiol. Immunol., 1997, 186(2-3), 83-91.
[http://dx.doi.org/10.1007/s004300050049] [PMID: 9403835]
[146]
Ikeda, M.; Nozaki, A.; Sugiyama, K.; Tanaka, T.; Naganuma, A.; Tanaka, K.; Sekihara, H.; Shimotohno, K.; Saito, M.; Kato, N. Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res., 2000, 66(1), 51-63.
[http://dx.doi.org/10.1016/S0168-1702(99)00121-5] [PMID: 10653917]
[147]
Arzanlou, M.; Chai, W.C.; Venter, H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem., 2017, 61(1), 49-59.
[148]
Vesga, O.; Groeschel, M.C.; Otten, M.F.; Brar, D.W.; Vann, J.M.; Proctor, R.A. Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. J. Infect. Dis., 1996, 173(3), 739-742.
[http://dx.doi.org/10.1093/infdis/173.3.739] [PMID: 8627043]
[149]
Guina, T.; Yi, E.C.; Wang, H.; Hackett, M.; Miller, S.I. A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J. Bacteriol., 2000, 182(14), 4077-4086.
[http://dx.doi.org/10.1128/JB.182.14.4077-4086.2000] [PMID: 10869088]
[150]
Groisman, E.A.; Duprey, A.; Choi, J. How the PhoP/PhoQ system controls virulence and Mg 2+ Homeostasis: Lessons in signal transduction, pathogenesis, physiology, and evolution. Microbiol. Mol. Biol. Rev., 2021, 85(3), e00176-20.
[http://dx.doi.org/10.1128/MMBR.00176-20] [PMID: 34191587]
[151]
Guo, L.; Lim, K.B.; Gunn, J.S.; Bainbridge, B.; Darveau, R.P.; Hackett, M.; Miller, S.I. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science, 1997, 276(5310), 250-253.
[http://dx.doi.org/10.1126/science.276.5310.250] [PMID: 9092473]
[152]
Sader, H.S.; Dale, G.E.; Rhomberg, P.R.; Flamm, R.K. Antimicrobial activity of murepavadin tested against clinical isolates of Pseudomonas aeruginosa from the United States, Europe, and China. Antimicrob Agents Chemother., 2018, 62(7), e00311-e00318.
[153]
Shao, C.; Zhu, Y.; Lai, Z.; Tan, P.; Shan, A. Antimicrobial peptides with protease stability: Progress and perspective. Future Med. Chem., 2019, 11(16), 2047-2050.
[http://dx.doi.org/10.4155/fmc-2019-0167] [PMID: 31538527]
[154]
Dathe, M.; Wieprecht, T. Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta Biomembr., 1999, 1462(1-2), 71-87.
[http://dx.doi.org/10.1016/S0005-2736(99)00201-1] [PMID: 10590303]
[155]
Martin-Loeches, I.; Dale, G.E.; Torres, A. Murepavadin: A new antibiotic class in the pipeline. Expert Rev. Anti Infect. Ther., 2018, 16(4), 259-268.
[http://dx.doi.org/10.1080/14787210.2018.1441024] [PMID: 29451043]
[156]
Wang, K.; Yan, J.; Chen, R.; Dang, W.; Zhang, B.; Zhang, W.; Song, J.; Wang, R. Membrane-active action mode of polybia-CP, a novel antimicrobial peptide isolated from the venom of Polybia paulista. Antimicrob. Agents Chemother., 2012, 56(6), 3318-3323.
[http://dx.doi.org/10.1128/AAC.05995-11] [PMID: 22450985]
[157]
Jia, F; Wang, J; Peng, J; Zhao, P; Kong, Z; Wang, K; Yan, W; Wang, R D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin, 2017, 49(10), 916-925.
[158]
Zheng, R.; Yao, B.; Yu, H.; Wang, H.; Bian, J.; Feng, F. Novel family of antimicrobial peptides from the skin of Rana shuchinae. Peptides, 2010, 31(9), 1674-1677.
[http://dx.doi.org/10.1016/j.peptides.2010.05.014] [PMID: 20553780]
[159]
Mant, C.T.; Jiang, Z.; Gera, L.; Davis, T.; Hodges, R.S. Design of novel amphipathic α-helical antimicrobial peptides with no toxicity as therapeutics against the antibiotic-resistant gram-negative bacterial pathogen, Acinetobacter Baumannii. J Med Chem Drug Des., 2019, 2(2), 114.
[PMID: 34377965]
[160]
Sun, S.; Zhao, G.; Huang, Y.; Cai, M.; Yan, Q.; Wang, H.; Chen, Y. Enantiomeric effect of d-amino acid substitution on the mechanism of action of α-helical membrane-active peptides. Int. J. Mol. Sci., 2017, 19(1), 67.
[http://dx.doi.org/10.3390/ijms19010067]
[161]
The amide linkage: Structural significance in chemistry, biochemistry, and materials science; Greenberg, A.; Breneman, C.M.; Liebman, J.F., Eds.; John Wiley & Sons, 2002.
[162]
Raibaut, L.; El Mahdi, O.; Melnyk, O. Solid phase protein chemical synthesis. Top. Curr. Chem., 2014, 363, 103-154.
[http://dx.doi.org/10.1007/128_2014_609] [PMID: 25791484]
[163]
Martin, V.; Egelund, P.H.G.; Johansson, H.; Thordal Le Quement, S.; Wojcik, F.; Sejer Pedersen, D. Greening the synthesis of peptide therapeutics: An industrial perspective. RSC Advances, 2020, 10(69), 42457-42492.
[http://dx.doi.org/10.1039/D0RA07204D] [PMID: 35516773]
[164]
Müller, H.; Salzig, D.; Czermak, P. Considerations for the process development of insect-derived antimicrobial peptide production. Biotechnol. Prog., 2015, 31(1), 1-11.
[http://dx.doi.org/10.1002/btpr.2002] [PMID: 25311397]
[165]
da Cunha, N.B.; Cobacho, N.B.; Viana, J.F.C.; Lima, L.A.; Sampaio, K.B.O.; Dohms, S.S.M.; Ferreira, A.C.R.; de la Fuente-Núñez, C.; Costa, F.F.; Franco, O.L.; Dias, S.C. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today, 2017, 22(2), 234-248.
[http://dx.doi.org/10.1016/j.drudis.2016.10.017] [PMID: 27890668]
[166]
Zhang, B.; Shanmugaraj, B.; Daniell, H. Expression and functional evaluation of biopharmaceuticals made in plant chloroplasts. Curr. Opin. Chem. Biol., 2017, 38, 17-23.
[http://dx.doi.org/10.1016/j.cbpa.2017.02.007] [PMID: 28229907]
[167]
Lee, S.B.; Li, B.; Jin, S.; Daniell, H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J., 2011, 9(1), 100-115.
[http://dx.doi.org/10.1111/j.1467-7652.2010.00538.x] [PMID: 20553419]
[168]
Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol., 2016, 17(1), 134.
[http://dx.doi.org/10.1186/s13059-016-1004-2] [PMID: 27339192]
[169]
Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[170]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[171]
Nordström, R.; Malmsten, M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci., 2017, 242, 17-34.
[http://dx.doi.org/10.1016/j.cis.2017.01.005] [PMID: 28159168]
[172]
Malmsten, M. Soft drug delivery systems. Soft Matter, 2006, 2(9), 760-769.
[http://dx.doi.org/10.1039/b608348j] [PMID: 32680216]
[173]
Li, P.; Nielsen, H.M.; Müllertz, A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin. Drug Deliv., 2012, 9(10), 1289-1304.
[http://dx.doi.org/10.1517/17425247.2012.717068] [PMID: 22897647]
[174]
Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as potential drug carrier systems for drug delivery. In: Application of Nanotechnology in Drug Delivery; Intechopen, 2014.
[http://dx.doi.org/10.5772/58459]
[175]
Wessman, P.; Morin, M.; Reijmar, K.; Edwards, K. Effect of α-helical peptides on liposome structure: A comparative study of melittin and alamethicin. J. Colloid Interface Sci., 2010, 346(1), 127-135.
[http://dx.doi.org/10.1016/j.jcis.2010.02.032] [PMID: 20226468]
[176]
Ron-Doitch, S.; Sawodny, B.; Kühbacher, A.; David, M.M.N.; Samanta, A.; Phopase, J.; Burger-Kentischer, A.; Griffith, M.; Golomb, G.; Rupp, S. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J. Control. Release, 2016, 229(229), 163-171.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.025] [PMID: 27012977]
[177]
Taylor, T.M.; Gaysinsky, S.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Characterization of antimicrobial-bearing liposomes by ζ-Potential, vesicle size, and encapsulation efficiency. Food Biophys., 2007, 2(1), 1-9.
[http://dx.doi.org/10.1007/s11483-007-9023-x]
[178]
Sadiq, S.; Imran, M.; Habib, H.; Shabbir, S.; Ihsan, A.; Zafar, Y.; Hafeez, F.Y. Potential of monolaurin based food-grade nano-micelles loaded with nisin Z for synergistic antimicrobial action against Staphylococcus aureus. Lebensm. Wiss. Technol., 2016, 71, 227-233.
[http://dx.doi.org/10.1016/j.lwt.2016.03.045]
[179]
Reinhardt, A.; Neundorf, I. Design and application of antimicrobial peptide conjugates. Int. J. Mol. Sci., 2016, 17(5), 701.
[http://dx.doi.org/10.3390/ijms17050701]
[180]
d’Angelo, I.; Casciaro, B.; Miro, A.; Quaglia, F.; Mangoni, M.L.; Ungaro, F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf. B Biointerfaces, 2015, 135, 717-725.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.027] [PMID: 26340361]
[181]
Yüksel, E.; Karakeçili, A.; Demirtaş, T.T.; Gümüşderelioğlu, M. Preparation of bioactive and antimicrobial PLGA membranes by magainin II/EGF functionalization. Int. J. Biol. Macromol., 2016, 86, 162-168.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.061] [PMID: 26802245]
[182]
Mariathasan, S.; Tan, M.W. Antibody–antibiotic conjugates: A novel therapeutic platform against bacterial infections. Trends Mol. Med., 2017, 23(2), 135-149.
[http://dx.doi.org/10.1016/j.molmed.2016.12.008] [PMID: 28126271]
[183]
Lehar, S.M.; Pillow, T.; Xu, M.; Staben, L.; Kajihara, K.K.; Vandlen, R.; DePalatis, L.; Raab, H.; Hazenbos, W.L.; Morisaki, J.H.; Kim, J.; Park, S.; Darwish, M.; Lee, B.C.; Hernandez, H.; Loyet, K.M.; Lupardus, P.; Fong, R.; Yan, D.; Chalouni, C.; Luis, E.; Khalfin, Y.; Plise, E.; Cheong, J.; Lyssikatos, J.P.; Strandh, M.; Koefoed, K.; Andersen, P.S.; Flygare, J.A.; Wah Tan, M.; Brown, E.J.; Mariathasan, S. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature., 2015, 527(7578), 323-328.
[184]
Lee, H.; Lim, S.I.; Shin, S.H.; Lim, Y.; Koh, J.W.; Yang, S. Conjugation of cell-penetrating peptides to antimicrobial peptides enhances antibacterial activity. ACS Omega, 2019, 4(13), 15694-15701.
[http://dx.doi.org/10.1021/acsomega.9b02278] [PMID: 31572872]
[185]
Umstätter, F; Domhan, C; Hertlein, T; Ohlsen, K; Mühlberg, E; Kleist, C; Zimmermann, S; Beijer, B; Klika, KD; Haberkorn, U; Mier, W; Uhl, P Vancomycin resistance is overcome by conjugation of polycationic peptides. Angew Chem Int Ed Engl., 2020, 59(23), 8823-8827.
[186]
Siriwardena, T.N.; Capecchi, A.; Gan, B.H.; Jin, X.; He, R.; Wei, D.; Ma, L.; Köhler, T.; van Delden, C.; Javor, S.; Reymond, J.L. Optimizing antimicrobial peptide dendrimers in chemical space. Angew. Chem. Int. Ed., 2018, 57(28), 8483-8487.
[http://dx.doi.org/10.1002/anie.201802837] [PMID: 29767453]
[187]
McCarthy, T.D.; Karellas, P.; Henderson, S.A.; Giannis, M.; O’Keefe, D.F.; Heery, G.; Paull, J.R.A.; Matthews, B.R.; Holan, G. Dendrimers as drugs: Discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm., 2005, 2(4), 312-318.
[http://dx.doi.org/10.1021/mp050023q] [PMID: 16053334]
[188]
Gide, M.; Nimmagadda, A.; Su, M.; Wang, M.; Teng, P.; Li, C.; Gao, R.; Xu, H.; Li, Q.; Cai, J. Nano-sized lipidated dendrimers as potent and broad-spectrum antibacterial agents. Macromol. Rapid Commun., 2018, 39(24), 1800622.
[http://dx.doi.org/10.1002/marc.201800622] [PMID: 30408252]
[189]
García-Gallego, S.; Franci, G.; Falanga, A.; Gómez, R.; Folliero, V.; Galdiero, S.; de la Mata, F.; Galdiero, M. Function oriented molecular design: Dendrimers as novel antimicrobials. Molecules, 2017, 22(10), 1581.
[http://dx.doi.org/10.3390/molecules22101581] [PMID: 28934169]
[190]
Scorciapino, M.; Serra, I.; Manzo, G.; Rinaldi, A. Antimicrobial dendrimeric peptides: Structure, activity and new therapeutic applications. Int. J. Mol. Sci., 2017, 18(3), 542.
[http://dx.doi.org/10.3390/ijms18030542] [PMID: 28273806]
[191]
Pompilio, A.; Geminiani, C.; Mantini, P.; Siriwardena, T.N.; Di Bonaventura, I.; Reymond, J.L.; Di Bonaventura, G. Peptide dendrimers as “lead compounds” for the treatment of chronic lung infections by Pseudomonas aeruginosa in cystic fibrosis patients: in vitro and in vivo studies. Infect. Drug Resist., 2018, 11, 1767-1782.
[http://dx.doi.org/10.2147/IDR.S168868] [PMID: 30349334]
[192]
Liu, Z.; Young, A.W.; Hu, P.; Rice, A.J.; Zhou, C.; Zhang, Y.; Kallenbach, N.R. Tuning the membrane selectivity of antimicrobial peptides by using multivalent design. ChemBioChem, 2007, 8(17), 2063-2065.
[http://dx.doi.org/10.1002/cbic.200700502] [PMID: 17924379]
[193]
Pires, J.; Siriwardena, T.N.; Stach, M.; Tinguely, R.; Kasraian, S.; Luzzaro, F.; Leib, S.L.; Darbre, T.; Reymond, J.L.; Endimiani, A. In vitro activity of the novel antimicrobial peptide dendrimer G3KL against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2015, 59(12), 7915-7918.
[http://dx.doi.org/10.1128/AAC.01853-15] [PMID: 26459893]
[194]
Batoni, G.; Maisetta, G.; Lisa Brancatisano, F.; Esin, S.; Campa, M. Use of antimicrobial peptides against microbial biofilms: Advantages and limits. Curr. Med. Chem., 2011, 18(2), 256-279.
[http://dx.doi.org/10.2174/092986711794088399] [PMID: 21110801]
[195]
Syryamina, V.N.; Samoilova, R.I.; Tsvetkov, Y.D.; Ischenko, A.V.; De Zotti, M.; Gobbo, M.; Toniolo, C.; Formaggio, F.; Dzuba, S.A. Peptides on the Surface: Spin-label EPR and PELDOR study of adsorption of the antimicrobial peptides trichogin GA IV and ampullosporin a on the silica nanoparticles. Appl. Magn. Reson., 2016, 47(3), 309-320.
[http://dx.doi.org/10.1007/s00723-015-0745-5]
[196]
Godoy-Gallardo, M.; Mas-Moruno, C.; Yu, K.; Manero, J.M.; Gil, F.J.; Kizhakkedathu, J.N.; Rodriguez, D. Antibacterial properties of hLf1-11 peptide onto titanium surfaces: A comparison study between silanization and surface initiated polymerization. Biomacromolecules, 2015, 16(2), 483-496.
[http://dx.doi.org/10.1021/bm501528x] [PMID: 25545728]
[197]
Chen, W.Y.; Chang, H.Y.; Lu, J.K.; Huang, Y.C.; Harroun, S.G.; Tseng, Y.T.; Li, Y.J.; Huang, C.C.; Chang, H.T. Self-assembly of antimicrobial peptides on gold nanodots: Against multidrug-resistant bacteria and wound-healing application. Adv. Funct. Mater., 2015, 25(46), 7189-7199.
[http://dx.doi.org/10.1002/adfm.201503248]
[198]
Chaudhari, A.A.; Ashmore, D.; Nath, S.; Kate, K.; Dennis, V.; Singh, S.R.; Owen, D.R.; Palazzo, C.; Arnold, R.D.; Miller, M.E.; Pillai, S.R. A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide. J. Nanobiotechnology, 2016, 14(1), 58.
[http://dx.doi.org/10.1186/s12951-016-0211-z] [PMID: 27412259]
[199]
Galdiero, E.; Siciliano, A.; Maselli, V.; Gesuele, R.; Guida, M.; Fulgione, D.; Galdiero, S.; Lombardi, L.; Falanga, A. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. Int. J. Nanomedicine, 2016, 11, 4199-4211.
[http://dx.doi.org/10.2147/IJN.S107752] [PMID: 27616887]
[200]
Kanchanapally, R; Viraka Nellore, BP; Sinha, SS; Pedraza, F; Jones, SJ; Pramanik, A; Chavva, SR; Tchounwou, C; Shi, Y; Vangara, A; Sardar, D; Ray, PC Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Adv., 2015, 5(24), 18881-18887.
[http://dx.doi.org/10.1039/C5RA01321F]
[201]
Dostalova, S.; Moulick, A.; Milosavljevic, V.; Guran, R.; Kominkova, M.; Cihalova, K.; Heger, Z.; Blazkova, L.; Kopel, P.; Hynek, D.; Vaculovicova, M.; Adam, V.; Kizek, R. Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5. Monatsh. Chem., 2016, 147(5), 905-918.
[http://dx.doi.org/10.1007/s00706-016-1675-0]
[202]
Vivero-Escoto, J.L.; Slowing, I.I.; Trewyn, B.G.; Lin, V.S.Y. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 2010, 6(18), 1952-1967.
[http://dx.doi.org/10.1002/smll.200901789] [PMID: 20690133]
[203]
Urbán, P.; Jose Valle-Delgado, J.; Moles, E.; Marques, J.; Díez, C.; Fernàndez-Busquets, X. Nanotools for the delivery of antimicrobial peptides. Curr. Drug Targets, 2012, 13(9), 1158-1172.
[http://dx.doi.org/10.2174/138945012802002302] [PMID: 22664075]
[204]
Imanparast, F.; Faramarzi, M.A.; Vatannejad, A.; Paknejad, M.; Deiham, B.; Kobarfard, F.; Amani, A.; Doosti, M. mZD7349 peptide-conjugated PLGA nanoparticles directed against VCAM-1 for targeted delivery of simvastatin to restore dysfunctional HUVECs. Microvasc. Res., 2017, 112, 14-19.
[http://dx.doi.org/10.1016/j.mvr.2017.02.002] [PMID: 28161429]
[205]
Martin-Serrano, Á.; Gómez, R.; Ortega, P.; de la Mata, F.J. Nanosystems as vehicles for the delivery of antimicrobial peptides (AMPs). Pharmaceutics, 2019, 11(9), 448.
[http://dx.doi.org/10.3390/pharmaceutics11090448] [PMID: 31480680]
[206]
Makowski, M.; Silva, Í.C.; Pais do Amaral, C.; Gonçalves, S.; Santos, N.C. Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics, 2019, 11(11), 588.
[http://dx.doi.org/10.3390/pharmaceutics11110588] [PMID: 31717337]
[207]
Abbina, S; Vappala, S; Kumar, P; Siren, EMJ; La, CC; Abbasi, U; Brooks, DE; Kizhakkedathu, JN Hyperbranched polyglycerols: Recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B., 2017, 5(47), 9249-9277.
[208]
Zurawski, D.V.; McLendon, M.K. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics, 2020, 9(4), 155.
[http://dx.doi.org/10.3390/antibiotics9040155] [PMID: 32244733]
[209]
Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.B. Polymeric micelles as drug delivery vehicles. RSC Advances, 2014, 4(33), 17028-17038.
[http://dx.doi.org/10.1039/C3RA47370H]
[210]
Jhaveri, A.M.; Torchilin, V.P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol., 2014, 5, 77.
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[211]
Kwon, G.S.; Kataoka, K. Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev., 1995, 16(2-3), 295-309.
[http://dx.doi.org/10.1016/0169-409X(95)00031-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy