Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biochemistry, Mechanistic Intricacies, and Therapeutic Potential of Antimicrobial Peptides: An Alternative to Traditional Antibiotics

Author(s): Manish Dwivedi*, Meet Dineshbhai Parmar, Debalina Mukherjee, Anuradha Yadava, Hitendra Yadav and Nandini Pankaj Saini

Volume 31, Issue 37, 2024

Published on: 10 October, 2023

Page: [6110 - 6139] Pages: 30

DOI: 10.2174/0109298673268458230926105224

Price: $65

Abstract

The emergence of drug-resistant strains of pathogens becomes a major obstacle to treating human diseases. Antibiotics and antivirals are in the application for a long time but now these drugs are not much effective anymore against disease-causing drugresistant microbes and gradually it is becoming a serious complication worldwide. The development of new antibiotics cannot be a stable solution to treat drug-resistant strains due to their evolving nature and escaping antibiotics. At this stage, antimicrobial peptides (AMPs) may provide us with novel therapeutic leads against drug-resistant pathogens. Structurally, antimicrobial peptides are mostly α-helical peptide molecules with amphiphilic properties that carry the positive charge (cationic) and belong to host defense peptides. These positively charged AMPs can interact with negatively charged bacterial cell membranes and may cause the alteration in electrochemical potential on bacterial cell membranes and consequently lead to the death of microbial cells. In the present study, we will elaborate on the implication of AMPs in the treatment of various diseases along with their specific structural and functional properties. This review will provide information which assists in the development of new synthetic peptide analogues to natural AMPs. These analogues will eliminate the limitations of natural AMPs like toxicity and severe hemolytic activities.

Keywords: AMPs, disease, drug resistant, microbes, peptides, therapy.

[1]
Bahar, A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[2]
Dhingra, S; Rahman, NAA; Peile, E; Rahman, M; Sartelli, M; Hassali, MA; Islam, T; Islam, S; Haque, M Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front Public Health., 2020, 4(8), 535668.
[3]
Huemer, M; Mairpady, S.S; Brugger, SD; Zinkernagel, AS Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep,, 2020, 21(12), e51034.
[http://dx.doi.org/10.15252/embr.202051034]
[4]
Reddy, K.V.R.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents, 2004, 24(6), 536-547.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[5]
Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[6]
Wang, G; Li, X; Wang, Z APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res, 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278]
[7]
Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[8]
Mardirossian, M.; Grzela, R.; Giglione, C.; Meinnel, T.; Gennaro, R.; Mergaert, P.; Scocchi, M. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol., 2014, 21(12), 1639-1647.
[http://dx.doi.org/10.1016/j.chembiol.2014.10.009]
[9]
Subbalakshmi, C.; Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett., 1998, 160(1), 91.96)
[http://dx.doi.org/10.1111/j.1574-6968.1998.tb12896.x]
[10]
Cociancich, S.; Dupont, A.; Hegy, G.; Lanot, R.; Holder, F.; Hetru, C.; Hoffmann, J.A.; Bulet, P. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J., 1994, 300
[http://dx.doi.org/10.1042/bj3000567]
[11]
Miura, K.; Ueno, S.; Kamiya, K.; Kobayashi, J.; Matsuoka, H.; Ando, K.; Chinzei, Y. Cloning of mRNA sequences for two antibacterial peptides in a hemipteran insect, Riptortus clavatus. Zool. Sci., 1996, 13(1), 111-117.
[http://dx.doi.org/10.2108/zsj.13.111] [PMID: 8688805]
[12]
McCann, K.B.; Lee, A.; Wan, J.; Roginski, H.; Coventry, M.J. The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures. J. Appl. Microbiol., 2003, 95(5), 1026-1033.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02071.x] [PMID: 14633031]
[13]
Pietrantoni, A.; Ammendolia, M.; Tinari, A.; Siciliano, R.; Valenti, P.; Superti, F. Bovine lactoferrin peptidic fragments involved in inhibition of Echovirus 6 in vitro infection. Antiviral Res., 2006, 69(2), 98-106.
[http://dx.doi.org/10.1016/j.antiviral.2005.10.006] [PMID: 16386316]
[14]
Belaid, A.; Aouni, M.; Khelifa, R.; Trabelsi, A.; Jemmali, M.; Hani, K. In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J. Med. Virol., 2002, 66(2), 229-234.
[http://dx.doi.org/10.1002/jmv.2134] [PMID: 11782932]
[15]
Mettenleiter, T.C. Brief overview on cellular virus receptors. Virus Res., 2001, 82(1-2), 3-8.
[http://dx.doi.org/10.1016/S0168-1702(01)00380-X] [PMID: 11885946]
[16]
WuDunn, D.; Spear, P.G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol., 1989, 63(1), 52-58.
[http://dx.doi.org/10.1128/jvi.63.1.52-58.1989] [PMID: 2535752]
[17]
Sharma, M.; Sharma, S.; Prasad, R.; Rajwanshi, A.; Sethi, S.; Samanta, P.; Malhotra, S. Characterization of low molecular weight antimicrobial peptide from human female reproductive tract. Indian J. Med. Res., 2011, 134(5), 679-687.
[http://dx.doi.org/10.4103/0971-5916.90996] [PMID: 22199108]
[18]
Viruly, L.; Suhartono, M.T.; Nurilmala, M.; Saraswati, S.; Andarwulan, N. Identification and characterization of antimicrobial peptide (AMP) candidate from Gonggong Sea Snail (Leavistrombus turturella) extract. J. Food Sci. Technol., 2023, 60(1), 44-52.
[http://dx.doi.org/10.1007/s13197-022-05585-z] [PMID: 36618044]
[19]
Jirakkakul, J.; Punya, J.; Pongpattanakitshote, S.; Paungmoung, P.; Vorapreeda, N.; Tachaleat, A.; Klomnara, C.; Tanticharoen, M.; Cheevadhanarak, S. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology, 2008, 154(4), 995-1006.
[http://dx.doi.org/10.1099/mic.0.2007/013995-0] [PMID: 18375793]
[20]
Mahlapuu, M.; Björn, C.; Ekblom, J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol., 2020, 40(7), 978-992.
[http://dx.doi.org/10.1080/07388551.2020.1796576] [PMID: 32781848]
[21]
Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[22]
Wang, G.; Mishra, B.; Lau, K.; Lushnikova, T.; Golla, R.; Wang, X. Antimicrobial peptides in 2014. Pharmaceuticals, 2015, 8(1), 123-150.
[http://dx.doi.org/10.3390/ph8010123] [PMID: 25806720]
[23]
a) Vaara, M.; Vaara, T. Polycations as outer membrane-disorganizing agents. Antimicrob Agents Chemother., 1983, 24(1), 114-122.
[http://dx.doi.org/10.1128/AAC.24.1.114];
b) Teixeira, V.; Feio, M.J.; Bastos, M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res., 1912, 51(2), 149-177.
[24]
Hancock, R.E.; Chapple, D.S. Peptide antibiotics. Antimicrob Agents Chemother., 1999, 43(6), 1317-1323.
[25]
Yin, L.M.; Edwards, M.A.; Li, J.; Yip, C.M.; Deber, C.M. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem., 2012, 287(10), 7738-7745.
[http://dx.doi.org/10.1074/jbc.M111.303602] [PMID: 22253439]
[26]
Marion, D.; Zasloff, M.; Bax, A. A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett., 1988, 227(1), 21-26.
[http://dx.doi.org/10.1016/0014-5793(88)81405-4] [PMID: 3338566]
[27]
Haney, E.F.; Mansour, S.C.; Hancock, R.E. Antimicrobial peptides: An introduction. In: Antimicrobial Peptides; Humana Press: New York, NY, 2017; pp. 3-22.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1]
[28]
Hara, T.; Kodama, H.; Kondo, M.; Wakamatsu, K.; Takeda, A.; Tachi, T.; Matsuzaki, K. Effects of peptide dimerization on pore formation: Antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers., 2001, 58(4), 437-446.
[29]
Jin, Y.; Hammer, J.; Pate, M.; Zhang, Y.; Zhu, F.; Zmuda, E.; Blazyk, J. Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic beta-sheet and alpha-helical potentials. Antimicrob. Agents Chemother., 2005, 49(12), 4957-4964.
[http://dx.doi.org/10.1128/AAC.49.12.4957-4964.2005] [PMID: 16304158]
[30]
Yonezawa, A.; Kuwahara, J.; Fujii, N.; Sugiura, Y. Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry, 1992, 31(11), 2998-3004.
[http://dx.doi.org/10.1021/bi00126a022] [PMID: 1372516]
[31]
Fahrner, R.L.; Dieckmann, T.; Harwig, S.S.; Lehrer, R.I.; Eisenberg, D.; Feigon, J. Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chemistry & biology, 3(7), 543-550.1996,
[32]
Slavokhotova, A.A.; Shelenkov, A.A.; Korostyleva, T.V.; Rogozhin, E.A.; Melnikova, N.V.; Kudryavtseva, A.V.; Odintsova, T.I. Defense peptide repertoire of Stellaria media predicted by high throughput next generation sequencing. Biochimie, 2017, 135, 15-27.
[http://dx.doi.org/10.1016/j.biochi.2016.12.017] [PMID: 28038935]
[33]
Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: Versatile biological properties. Int. J. Pept., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/675391] [PMID: 23935642]
[34]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[35]
Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol., 2003, 3(9), 710-720.
[http://dx.doi.org/10.1038/nri1180] [PMID: 12949495]
[36]
Selsted, M.E.; Ouellette, A.J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol., 2005, 6(6), 551-557.
[http://dx.doi.org/10.1038/ni1206] [PMID: 15908936]
[37]
Tang, YQ.; Yuan, J.; Osapay, G.; Osapay, K.; Tran, D.; Miller, C.J.; Ouellette, A.J.; Selsted, M.E. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science., 1999, 286, 498, 502.
[38]
Lehrer, R.I.; Lu, W. α-Defensins in human innate immunity. Immunol. Rev., 2012, 245(1), 84-112.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01082.x] [PMID: 22168415]
[39]
Bevins, C.L.; Salzman, N.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol., 2011, 9(5), 356-368.
[http://dx.doi.org/10.1038/nrmicro2546] [PMID: 21423246]
[40]
Michaut, L.; Fehlbaum, P.; Moniatte, M.; Van Dorsselaer, A.; Reichhart, J.M.; Bulet, P. Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett., 1996, 395(1), 6-10.
[http://dx.doi.org/10.1016/0014-5793(96)00992-1] [PMID: 8849679]
[41]
Landon, C.; Sodano, P.; Hetru, C.; Hoffmann, J.; Ptak, M. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci., 1997, 6(9), 1878-1884.
[http://dx.doi.org/10.1002/pro.5560060908] [PMID: 9300487]
[42]
Jhong, J.H.; Chi, Y.H.; Li, W.C.; Lin, T.H.; Huang, K.Y.; Lee, T.Y. dbAMP: An integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res., 2019, 47(D1), D285-D297.
[http://dx.doi.org/10.1093/nar/gky1030] [PMID: 30380085]
[43]
Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H. DRAMP 3.0: An enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res., 2022, 50(D1), D488-D496.
[http://dx.doi.org/10.1093/nar/gkab651] [PMID: 34390348]
[44]
Lin, T.T.; Yang, L.Y.; Lu, I.H.; Cheng, W.C.; Hsu, Z.R.; Chen, S.H.; Lin, C.Y. AI4AMP: An antimicrobial peptide predictor using physicochemical property-based encoding method and deep learning. mSystems, 2021, 6(6), e00299-21.
[http://dx.doi.org/10.1128/mSystems.00299-21] [PMID: 34783578]
[45]
Dwivedi, R.; Aggarwal, P.; Bhavesh, N.S.; Kaur, K.J. Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy. Amino Acids, 2019, 51(10-12), 1443-1460.
[http://dx.doi.org/10.1007/s00726-019-02779-2] [PMID: 31485742]
[46]
Collin, F.; Maxwell, A. The microbial toxin microcin B17: Prospects for the development of new antibacterial agents. J. Mol. Biol., 2019, 431(18), 3400-3426.
[http://dx.doi.org/10.1016/j.jmb.2019.05.050] [PMID: 31181289]
[47]
Naimi, S.; Zirah, S.; Taher, M.B.; Theolier, J.; Fernandez, B.; Rebuffat, S.F.; Fliss, I. Microcin J25 exhibits inhibitory activity against Salmonella Newport in continuous fermentation model mimicking swine colonic conditions. Front. Microbiol., 2020, 11, 988.
[http://dx.doi.org/10.3389/fmicb.2020.00988] [PMID: 32528437]
[48]
Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[49]
McMillan, K.A.M.; Coombs, M.R.P. Review: Examining the natural role of amphibian antimicrobial peptide magainin. Molecules, 2020, 25(22), 5436.
[http://dx.doi.org/10.3390/molecules25225436] [PMID: 33233580]
[50]
Han, E.; Lee, H. Synergistic effects of magainin 2 and PGLa on their heterodimer formation, aggregation, and insertion into the bilayer. RSC Advances, 2015, 5(3), 2047-2055.
[http://dx.doi.org/10.1039/C4RA08480B]
[51]
Shen, W.; He, P.; Xiao, C.; Chen, X. From antimicrobial peptides to antimicrobial poly(α-amino acid)s. Adv. Healthc. Mater., 2018, 7(20), 1800354.
[http://dx.doi.org/10.1002/adhm.201800354] [PMID: 29923332]
[52]
Hale, J.D.F.; Hancock, R.E.W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther., 2007, 5(6), 951-959.
[http://dx.doi.org/10.1586/14787210.5.6.951] [PMID: 18039080]
[53]
Hancock, R.; Patrzykat, A. Clinical development of cationic antimicrobial peptides: From natural to novel antibiotics. Curr. Drug Targets Infect. Disord., 2002, 2(1), 79-83.
[http://dx.doi.org/10.2174/1568005024605855] [PMID: 12462155]
[54]
Rausch, J.M.; Marks, J.R.; Rathinakumar, R.; Wimley, W.C. β-sheet pore-forming peptides selected from a rational combinatorial library: mechanism of pore formation in lipid vesicles and activity in biological membranes. Biochemistry, 2007, 46(43), 12124-12139.
[http://dx.doi.org/10.1021/bi700978h] [PMID: 17918962]
[55]
Subramanian, H.; Gupta, K.; Guo, Q.; Price, R.; Ali, H. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: Resistance to receptor phosphorylation, desensitization, and internalization. J. Biol. Chem., 2011, 286(52), 44739-44749.
[http://dx.doi.org/10.1074/jbc.M111.277152] [PMID: 22069323]
[56]
Afacan, N.J.; Yeung, A.T.; Pena, O.M.; Hancock, R.E. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr. Pharm. Des., 2012, 18(6), 807-819.
[http://dx.doi.org/10.2174/138161212799277617] [PMID: 22236127]
[57]
Niyonsaba, F.; Iwabuchi, K.; Someya, A.; Hirata, M.; Matsuda, H.; Ogawa, H.; Nagaoka, I. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology, 2002, 106(1), 20-26.
[http://dx.doi.org/10.1046/j.1365-2567.2002.01398.x] [PMID: 11972628]
[58]
García, J.R.; Jaumann, F.; Schulz, S.; Krause, A.; Rodríguez-Jiménez, J.; Forssmann, U.; Adermann, K.; Klüver, E.; Vogelmeier, C.; Becker, D.; Hedrich, R.; Forssmann, W.G.; Bals, R. Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res., 2001, 306(2), 257-264.
[http://dx.doi.org/10.1007/s004410100433] [PMID: 11702237]
[59]
Liu, Y.J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell, 2001, 106(3), 259-262.
[http://dx.doi.org/10.1016/S0092-8674(01)00456-1] [PMID: 11509173]
[60]
Lang, J.; Yang, N.; Deng, J.; Liu, K.; Yang, P.; Zhang, G.; Jiang, C. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One., 2011, 6(8), e23710.
[61]
Campione, E.; Lanna, C.; Cosio, T.; Rosa, L.; Conte, M.P.; Iacovelli, F.; Romeo, A.; Falconi, M.; Del Vecchio, C.; Franchin, E.; Lia, M.S.; Minieri, M.; Chiaramonte, C.; Ciotti, M.; Nuccetelli, M.; Terrinoni, A.; Iannuzzi, I.; Coppeda, L.; Magrini, A.; Bernardini, S.; Sabatini, S.; Rosapepe, F.; Bartoletti, P.L.; Moricca, N.; Di Lorenzo, A.; Andreoni, M.; Sarmati, L.; Miani, A.; Piscitelli, P.; Valenti, P.; Bianchi, L. Lactoferrin against SARS-CoV-2: in vitro and in silico evidences. Front. Pharmacol., 2021, 12, 666600.
[http://dx.doi.org/10.3389/fphar.2021.666600] [PMID: 34220505]
[62]
Elnagdy, S.; AlKhazindar, M. The potential of antimicrobial peptides as an antiviral therapy against COVID-19. ACS Pharmacol. Transl. Sci., 2020, 3(4), 780-782.
[http://dx.doi.org/10.1021/acsptsci.0c00059] [PMID: 32821884]
[63]
Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; Csörgő, B.; Györkei, Á.; Bódi, Z.; Faragó, A.; Bodai, L.; Földesi, I.; Kata, D.; Maróti, G.; Pap, B.; Wirth, R.; Papp, B.; Pál, C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun, 2019, 10(1), 4538.
[http://dx.doi.org/10.1038/s41467-019-12364-6]
[64]
Shi, J.; Chen, C.; Wang, D.; Wang, Z.; Liu, Y. The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Commun. Biol., 2022, 5(1), 926.
[http://dx.doi.org/10.1038/s42003-022-03899-4] [PMID: 36071151]
[65]
Kintses, B.; Jangir, P.K.; Fekete, G.; Számel, M.; Méhi, O.; Spohn, R.; Daruka, L.; Martins, A.; Hosseinnia, A.; Gagarinova, A.; Kim, S.; Phanse, S.; Csörgő, B.; Györkei, Á.; Ari, E.; Lázár, V.; Nagy, I.; Babu, M.; Pál, C.; Papp, B. Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. Nat. Commun., 2019, 10(1), 5731.
[http://dx.doi.org/10.1038/s41467-019-13618-z] [PMID: 31844052]
[66]
Oyston, P.C.F.; Fox, M.A.; Richards, S.J.; Clark, G.C. Novel peptide therapeutics for treatment of infections. J. Med. Microbiol., 2009, 58(8), 977-987.
[http://dx.doi.org/10.1099/jmm.0.011122-0] [PMID: 19528155]
[67]
Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther., 2017, 17(6), 663-676.
[http://dx.doi.org/10.1080/14712598.2017.1315402] [PMID: 28368216]
[68]
Wang, T.T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; White, J.H. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol., 2004, 173(5), 2909-2912.
[http://dx.doi.org/10.4049/jimmunol.173.5.2909] [PMID: 15322146]
[69]
Wiig, M.E.; Dahlin, L.B.; Fridén, J.; Hagberg, L.; Larsen, S.E.; Wiklund, K.; Mahlapuu, M. PXL01 in sodium hyaluronate for improvement of hand recovery after flexor tendon repair surgery: Randomized controlled trial. PLoS One., 2014, 9(10), e110735.
[70]
DrugDataBase. Available from: http://www.drugsdb.eu/index.php?l=c (Accessed on: July 2018).
[71]
Usmani, S.S.; Bedi, G.; Samuel, J.S.; Singh, S.; Kalra, S.; Kumar, P.; Ahuja, A.A.; Sharma, M.; Gautam, A.; Raghava, G.P.S. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One, 2017, 12(7), e0181748.
[http://dx.doi.org/10.1371/journal.pone.0181748] [PMID: 28759605]
[72]
Davis, C.A.; Janssen, E.M.L. Environmental fate processes of antimicrobial peptides daptomycin, bacitracins, and polymyxins. Environ. Int., 2020, 134, 105271.
[http://dx.doi.org/10.1016/j.envint.2019.105271] [PMID: 31704562]
[73]
Lang, C.; Staiger, C. Tyrothricin--An underrated agent for the treatment of bacterial skin infections and superficial wounds? Pharmazie, 2016, 71(6), 299-305.
[PMID: 27455547]
[74]
Berditsch, M.; Trapp, M.; Afonin, S.; Weber, C.; Misiewicz, J.; Turkson, J.; Ulrich, A.S. Antimicrobial peptide gramicidin S is accumulated in granules of producer cells for storage of bacterial phosphagens. Sci Rep., 2017, 7, 44324.
[http://dx.doi.org/10.1038/srep44324]
[75]
Cunha, B.; Sessa, J.; Blum, S. Enhanced efficacy of high dose oral vancomycin therapy in Clostridium difficile diarrhea for hospitalized adults not responsive to conventional oral vancomycin therapy: Antibiotic stewardship implications. J. Clin. Med., 2018, 7(4), 75.
[http://dx.doi.org/10.3390/jcm7040075] [PMID: 29642570]
[76]
Golan, Y. Current treatment options for acute skin and skin-structure infections. Clin Infect Dis., 2019, 68(S3), S206-S212.
[http://dx.doi.org/10.1093/cid/ciz004]
[77]
Giannella, M.; Bartoletti, M.; Gatti, M.; Viale, P. Advances in the therapy of bacterial bloodstream infections. Clin. Microbiol. Infect., 2020, 26(2), 158-167.
[http://dx.doi.org/10.1016/j.cmi.2019.11.001] [PMID: 31733377]
[78]
Gomes, B.; Augusto, M.T.; Felício, M.R.; Hollmann, A.; Franco, O.L.; Gonçalves, S.; Santos, N.C. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol. Adv., 2018, 36(2), 415-429.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.004] [PMID: 29330093]
[79]
Estrada, S.; Lodise, T.P.; Tillotson, G.S.; Delaportas, D. The real-world economic and clinical management of adult patients with skin and soft tissue infections (SSTIs) with oritavancin: Data from two multicenter observational cohort studies. Drugs Real World Outcomes, 2020, 7(S1), 6-12.
[http://dx.doi.org/10.1007/s40801-020-00199-3] [PMID: 32588389]
[80]
Durante-Mangoni, E.; Gambardella, M.; Iula, V.D.; De Stefano, G.F.; Corrado, M.F.; Esposito, V.; Gentile, I.; Coppola, N. Current trends in the real-life use of dalbavancin: Report of a study panel. Int. J. Antimicrob. Agents, 2020, 56(4), 106107.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106107] [PMID: 32721599]
[81]
Kirker, K.R.; Fisher, S.T.; James, G.A. Potency and penetration of telavancin in staphylococcal biofilms. Int. J. Antimicrob. Agents, 2015, 46(4), 451-455.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.05.022] [PMID: 26213381]
[82]
Venkatraman, S. Discovery of boceprevir, a direct-acting NS3/4A protease inhibitor for treatment of chronic hepatitis C infections. Trends Pharmacol. Sci., 2012, 33(5), 289-294.
[http://dx.doi.org/10.1016/j.tips.2012.03.012] [PMID: 22521415]
[83]
Njoroge, F.G.; Chen, K.X.; Shih, N.Y.; Piwinski, J.J. Challenges in modern drug discovery: A case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc. Chem. Res., 2008, 41(1), 50-59.
[http://dx.doi.org/10.1021/ar700109k] [PMID: 18193821]
[84]
Saravolatz, L.D.; Stein, G.E. Oritavancin: A long-half-life lipoglycopeptide. Clin. Infect. Dis., 2015, 61(4), 627-632.
[http://dx.doi.org/10.1093/cid/civ311] [PMID: 25900171]
[85]
Saravolatz, L.D.; Pawlak, J.; Johnson, L.B. In vitro activity of oritavancin against community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA), vancomycin-intermediate S. aureus (VISA), vancomycin-resistant S. aureus (VRSA) and daptomycin-non-susceptible S. aureus (DNSSA). Int. J. Antimicrob. Agents, 2010, 36(1), 69-72.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.02.023] [PMID: 20413274]
[86]
Popovic, N.; Korac, M.; Nesic, Z.; Milosevic, B.; Urosevic, A.; Jevtovic, D.; Pelemis, M.; Delic, D.; Prostran, M.; Milosevic, I. Oral teicoplanin for successful treatment of severe refractory Clostridium difficile infection. J. Infect. Dev. Ctries., 2015, 9(10), 1062-1067.
[http://dx.doi.org/10.3855/jidc.6335] [PMID: 26517480]
[87]
Ojha, S.C.; Phanchana, M.; Harnvoravongchai, P.; Chankhamhaengdecha, S.; Singhakaew, S.; Ounjai, P.; Janvilisri, T. Teicoplanin suppresses vegetative clostridioides difficile and spore outgrowth. Antibiotics, 2021, 10(8), 984.
[http://dx.doi.org/10.3390/antibiotics10080984]
[88]
Giroir, B.P.; Scannon, P.J.; Levin, M. Bactericidal/permeability-increasing protein-Lessons learned from the phase III, randomized, clinical trial of rBPI21 for adjunctive treatment of children with severe meningococcemia. Crit. Care Med., 2001, 29(S7), S130-S135.
[http://dx.doi.org/10.1097/00003246-200107001-00039] [PMID: 11445748]
[89]
Schultz, H.; Hume, J.; Zhang, D.S.; Gioannini, T.L.; Weiss, J.P. A novel role for the bactericidal/permeability increasing protein in interactions of gram-negative bacterial outer membrane blebs with dendritic cells. J. Immunol., 2007, 179(4), 2477-2484.
[http://dx.doi.org/10.4049/jimmunol.179.4.2477] [PMID: 17675509]
[90]
Costa, F.; Teixeira, C.; Gomes, P.; Martins, M.C.L. Clinical application of AMPs. Adv. Exp. Med. Biol., 2019, 1117, 281-298.
[http://dx.doi.org/10.1007/978-981-13-3588-4_15] [PMID: 30980363]
[91]
von der Möhlen, M.A.M.; Kimmings, A.N.; Wedel, N.I.; Mevissen, M.L.C.M.; Jansen, J.; Friedmann, N.; Lorenz, T.J.; Nelson, B.J.; White, M.L.; Bauer, R.; Hack, C.E.; Eerenberg, A.J.M.; van Deventer, S.J.H. Inhibition of endotoxin-induced cytokine release and neutrophil activation in humans by use of recombinant bactericidal/permeability-increasing protein. J. Infect. Dis., 1995, 172(1), 144-151.
[http://dx.doi.org/10.1093/infdis/172.1.144] [PMID: 7797904]
[92]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[93]
Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: Back to the future? J. Med. Chem., 2018, 61(4), 1382-1414.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00318] [PMID: 28737935]
[94]
Ioannou, P.; Baliou, S.; Kofteridis, D.P. Antimicrobial peptides in infectious diseases and beyond-a narrative review. Life, 2023, 13(8), 1651.
[http://dx.doi.org/10.3390/life13081651] [PMID: 37629508]
[95]
Fan, L.; Sun, J.; Zhou, M.; Zhou, J.; Lao, X.; Zheng, H.; Xu, H. DRAMP: A comprehensive data repository of antimicrobial peptides. Sci. Rep., 2016, 6(1), 24482.
[http://dx.doi.org/10.1038/srep24482] [PMID: 27075512]
[96]
Malanovic, N.; Lohner, K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals., 2016, 9(3), 59.
[http://dx.doi.org/10.3390/ph9030059] [PMID: 27657092]
[97]
Fox, J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol., 2013, 31(5), 379-382.
[http://dx.doi.org/10.1038/nbt.2572] [PMID: 23657384]
[98]
Hojo, K.; Hara, A.; Kitai, H.; Onishi, M.; Ichikawa, H.; Fukumori, Y.; Kawasaki, K. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles. Chem. Cent. J., 2011, 5(1), 49.
[http://dx.doi.org/10.1186/1752-153X-5-49] [PMID: 21867548]
[99]
van der Does, A.M.; Hensbergen, P.J.; Bogaards, S.J.; Cansoy, M.; Deelder, A.M.; van Leeuwen, H.C.; Drijfhout, J.W.; van Dissel, J.T.; Nibbering, P.H. The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity. J Immunol., 2012, 188(10), 5012-5019.
[100]
Stallmann, H.P.; Faber, C.; Bronckers, A.L.J.J.; de Blieck-Hogervorst, J.M.A.; Brouwer, C.P.J.M.; Amerongen, A.V.N.; Wuisman, P.I.J.M. Histatin and lactoferrin derived peptides: Antimicrobial properties and effects on mammalian cells. Peptides, 2005, 26(12), 2355-2359.
[http://dx.doi.org/10.1016/j.peptides.2005.05.014] [PMID: 15979203]
[101]
Puri, S.; Edgerton, M. How does it kill?: Understanding the candidacidal mechanism of salivary histatin 5. Eukaryot. Cell, 2014, 13(8), 958-964.
[http://dx.doi.org/10.1128/EC.00095-14] [PMID: 24951439]
[102]
Eckert, R. Road to clinical efficacy: Challenges and novel strategies for antimicrobial peptide development. Future Microbiol., 2011, 6(6), 635-651.
[http://dx.doi.org/10.2217/fmb.11.27] [PMID: 21707311]
[103]
Kaplan, C.W.; Sim, J.H.; Shah, K.R.; Kolesnikova-Kaplan, A.; Shi, W.; Eckert, R. Selective membrane disruption: Mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob. Agents Chemother., 2011, 55(7), 3446-3452.
[http://dx.doi.org/10.1128/AAC.00342-11] [PMID: 21518845]
[104]
Kudrimoti, M.; Curtis, A.; Azawi, S.; Worden, F.; Katz, S.; Adkins, D.; Bonomi, M.; Elder, J.; Sonis, S.T.; Straube, R.; Donini, O. Dusquetide: A novel innate defense regulator demonstrating a significant and consistent reduction in the duration of oral mucositis in preclinical data and a randomized, placebo-controlled phase 2a clinical study. J. Biotechnol., 2016, 239, 115-125.
[http://dx.doi.org/10.1016/j.jbiotec.2016.10.010] [PMID: 27746305]
[105]
Greber, K.E.; Dawgul, M.; Kamysz, W.; Sawicki, W. Cationic net charge and counter ion type as antimicrobial activity determinant factors of short lipopeptides. Front. Microbiol., 2017, 8, 123.
[http://dx.doi.org/10.3389/fmicb.2017.00123] [PMID: 28203232]
[106]
Dijksteel, GS; Ulrich, MMW; Middelkoop, E; Boekema, BKHL Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol., 2021, 12, 616979.
[107]
Schneider, T.; Gries, K.; Josten, M.; Wiedemann, I.; Pelzer, S.; Labischinski, H.; Sahl, H.G. The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob. Agents Chemother., 2009, 53(4), 1610-1618.
[http://dx.doi.org/10.1128/AAC.01040-08] [PMID: 19164139]
[108]
Crowther, G.S.; Baines, S.D.; Todhunter, S.L.; Freeman, J.; Chilton, C.H.; Wilcox, M.H. Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection. J. Antimicrob. Chemother., 2013, 68(1), 168-176.
[http://dx.doi.org/10.1093/jac/dks359] [PMID: 22966180]
[109]
Lee, G.; Bae, H. Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules, 2016, 21(5), 616.
[http://dx.doi.org/10.3390/molecules21050616] [PMID: 27187328]
[110]
Isaksson, J.; Brandsdal, B.O.; Engqvist, M.; Flaten, G.E.; Svendsen, J.S.M.; Stensen, W. A synthetic antimicrobial peptidomimetic (LTX 109): Stereochemical impact on membrane disruption. J. Med. Chem., 2011, 54(16), 5786-5795.
[http://dx.doi.org/10.1021/jm200450h] [PMID: 21732630]
[111]
Sivertsen, A.; Isaksson, J.; Leiros, H.K.S.; Svenson, J.; Svendsen, J.S.; Brandsdal, B.O. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Struct. Biol., 2014, 14(1), 4.
[http://dx.doi.org/10.1186/1472-6807-14-4] [PMID: 24456893]
[112]
Malanovic, N.; Leber, R.; Schmuck, M.; Kriechbaum, M.; Cordfunke, R.A.; Drijfhout, J.W.; de Breij, A.; Nibbering, P.H.; Kolb, D.; Lohner, K. Phospholipid-driven differences determine the action of the synthetic antimicrobial peptide OP-145 on Gram-positive bacterial and mammalian membrane model systems. Biochim. Biophys. Acta Biomembr., 2015, 1848(10), 2437-2447.
[http://dx.doi.org/10.1016/j.bbamem.2015.07.010] [PMID: 26210299]
[113]
Welling, M.; Brouwer, C.; Roscini, L.; Cardinali, G.; Corte, L.; Casagrande, P.D. Structure-activity relationship study of synthetic variants derived from the highly potent human antimicrobial peptide hLF(1- 11). Cohesive J. Microbiol. Infect. Dis., 2018, 1(3)
[114]
Brown, K.L.; Poon, G.F.T.; Birkenhead, D.; Pena, O.M.; Falsafi, R.; Dahlgren, C.; Karlsson, A.; Bylund, J.; Hancock, R.E.W.; Johnson, P. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J. Immunol., 2011, 186(9), 5497-5505.
[http://dx.doi.org/10.4049/jimmunol.1002508] [PMID: 21441450]
[115]
Srinivas, N.; Jetter, P.; Ueberbacher, B.J.; Werneburg, M.; Zerbe, K.; Steinmann, J.; Van der Meijden, B.; Bernardini, F.; Lederer, A.; Dias, R.L.A.; Misson, P.E.; Henze, H.; Zumbrunn, J.; Gombert, F.O.; Obrecht, D.; Hunziker, P.; Schauer, S.; Ziegler, U.; Käch, A.; Eberl, L.; Riedel, K.; DeMarco, S.J.; Robinson, J.A. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science, 2010, 327(5968), 1010-1013.
[http://dx.doi.org/10.1126/science.1182749] [PMID: 20167788]
[116]
Guo, L.; McLean, J.S.; Yang, Y.; Eckert, R.; Kaplan, C.W.; Kyme, P.; Sheikh, O.; Varnum, B.; Lux, R.; Shi, W.; He, X. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc. Natl. Acad. Sci., 2015, 112(24), 7569-7574.
[http://dx.doi.org/10.1073/pnas.1506207112] [PMID: 26034276]
[117]
Mercer, D.K.; Robertson, J.C.; Miller, L.; Stewart, C.S.; O’Neil, D.A. NP213 (Novexatin®): A unique therapy candidate for onychomycosis with a differentiated safety and efficacy profile. Med. Mycol., 2020, 58(8), 1064-1072.
[http://dx.doi.org/10.1093/mmy/myaa015] [PMID: 32232410]
[118]
Leeds, J.A.; Sachdeva, M.; Mullin, S.; Dzink-Fox, J.; LaMarche, M.J. Mechanism of action of and mechanism of reduced susceptibility to the novel anti-Clostridium difficile compound LFF571. Antimicrob. Agents Chemother., 2012, 56(8), 4463-4465.
[http://dx.doi.org/10.1128/AAC.06354-11] [PMID: 22644023]
[119]
Travis, S.; Yap, L.M.; Hawkey, C.; Warren, B.; Lazarov, M.; Fong, T.; Tesi, R.J. RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm. Bowel Dis., 2005, 11(8), 713-719.
[http://dx.doi.org/10.1097/01.MIB.0000172807.26748.16] [PMID: 16043985]
[120]
Håkansson, J.; Ringstad, L.; Umerska, A.; Johansson, J.; Andersson, T.; Boge, L.; Rozenbaum, R.T.; Sharma, P.K.; Tollbäck, P.; Björn, C.; Saulnier, P.; Mahlapuu, M. Characterization of the in vitro, ex vivo, and in vivo efficacy of the antimicrobial peptide DPK-060 used for topical treatment. Front. Cell. Infect. Microbiol., 2019, 9, 174.
[http://dx.doi.org/10.3389/fcimb.2019.00174] [PMID: 31192163]
[121]
Peyrusson, F.; Butler, D.; Tulkens, P.M.; Van Bambeke, F. Cellular pharmacokinetics and intracellular activity of the novel peptide deformylase inhibitor GSK1322322 against Staphylococcus aureus laboratory and clinical strains with various resistance phenotypes: Tudies with human THP-1 monocytes and J774 murine macrophages. Antimicrob. Agents Chemother., 2015, 59(9), 5747-5760.
[http://dx.doi.org/10.1128/AAC.00827-15] [PMID: 26169402]
[122]
Edsfeldt, S.; Holm, B.; Mahlapuu, M.; Reno, C.; Hart, D.A.; Wiig, M. PXL01 in sodium hyaluronate results in increased PRG4 expression: A potential mechanism for anti-adhesion. Ups. J. Med. Sci., 2017, 122(1), 28-34.
[http://dx.doi.org/10.1080/03009734.2016.1230157] [PMID: 27658527]
[123]
Doi, K.; Hu, X.; Yuen, P.S.T.; Leelahavanichkul, A.; Yasuda, H.; Kim, S.M.; Schnermann, J.; Jonassen, T.E.N.; Frøkiær, J.; Nielsen, S.; Star, R.A. AP214, an analogue of α-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int., 2008, 73(11), 1266-1274.
[http://dx.doi.org/10.1038/ki.2008.97] [PMID: 18354376]
[124]
Mensa, B.; Howell, G.L.; Scott, R.; DeGrado, W.F. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob. Agents Chemother., 2014, 58(9), 5136-5145.
[http://dx.doi.org/10.1128/AAC.02955-14] [PMID: 24936592]
[125]
Ooi, N.; Miller, K.; Hobbs, J.; Rhys-Williams, W.; Love, W.; Chopra, I. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J. Antimicrob. Chemother., 2009, 64(4), 735-740.
[http://dx.doi.org/10.1093/jac/dkp299] [PMID: 19689976]
[126]
Jang, W.S.; Li, X.S.; Sun, J.N.; Edgerton, M. The P-113 fragment of histatin 5 requires a specific peptide sequence for intracellular translocation in Candida albicans, which is independent of cell wall binding. Antimicrob. Agents Chemother., 2008, 52(2), 497-504.
[http://dx.doi.org/10.1128/AAC.01199-07] [PMID: 17999963]
[127]
van Groenendael, R.; Kox, M.; van Eijk, L.T.; Pickkers, P. Immunomodulatory and kidney-protective effects of the human chorionic gonadotropin derivate EA-230. Nephron J., 2018, 140(2), 148-151.
[http://dx.doi.org/10.1159/000490772] [PMID: 29982253]
[128]
Yasir, M.; Dutta, D.; Hossain, K.R.; Chen, R.; Ho, K.K.K.; Kuppusamy, R.; Clarke, R.J.; Kumar, N.; Willcox, M.D.P. Mechanism of action of surface immobilized antimicrobial peptides against Pseudomonas aeruginosa. Front. Microbiol., 2020, 10, 3053.
[http://dx.doi.org/10.3389/fmicb.2019.03053] [PMID: 32038530]
[129]
Yasir, M.; Dutta, D.; Willcox, M.D.P. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One, 2019, 14(7), e0215703.
[http://dx.doi.org/10.1371/journal.pone.0215703] [PMID: 31356627]
[130]
David, J.M.; Rajasekaran, A.K. Gramicidin A: a new mission for an old antibiotic. J. Kidney Cancer VHL, 2015, 2(1), 15-24.
[http://dx.doi.org/10.15586/jkcvhl.2015.21] [PMID: 28326255]
[131]
Yu, Z.; Qin, W.; Lin, J.; Fang, S.; Qiu, J. Antibacterial mechanisms of polymyxin and bacterial resistance. BioMed Res. Int., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/679109] [PMID: 25664322]
[132]
Taylor, S.D.; Palmer, M. The action mechanism of daptomycin. Bioorg. Med. Chem., 2016, 24(24), 6253-6268.
[http://dx.doi.org/10.1016/j.bmc.2016.05.052] [PMID: 27288182]
[133]
Muchintala, D.; Suresh, V.; Raju, D.; Sashidhar, R.B. Synthesis and characterization of cecropin peptide-based silver nanocomposites: Its antibacterial activity and mode of action. Mater. Sci. Eng. C, 2020, 110, 110712.
[http://dx.doi.org/10.1016/j.msec.2020.110712] [PMID: 32204024]
[134]
Alam, M.Z.; Wu, X.; Mascio, C.; Chesnel, L.; Hurdle, J.G. Mode of action and bactericidal properties of surotomycin against growing and nongrowing Clostridium difficile. Antimicrob. Agents Chemother., 2015, 59(9), 5165-5170.
[http://dx.doi.org/10.1128/AAC.01087-15] [PMID: 26055381]
[135]
Gottler, L.M.; Ramamoorthy, A. Structure, membrane orientation, mechanism, and function of pexiganan — A highly potent antimicrobial peptide designed from magainin. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1680-1686.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.009] [PMID: 19010301]
[136]
Easton, D.M.; Nijnik, A.; Mayer, M.L.; Hancock, R.E.W. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol., 2009, 27(10), 582-590.
[http://dx.doi.org/10.1016/j.tibtech.2009.07.004] [PMID: 19683819]
[137]
Rubinchik, E.; Dugourd, D.; Algara, T.; Pasetka, C.; Friedland, H.D. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int. J. Antimicrob. Agents, 2009, 34(5), 457-461.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.05.003] [PMID: 19524411]
[138]
Vorland, L.H. Lactoferrin: A multifunctional glycoprotein. Acta Pathol. Microbiol. Scand. Suppl., 1999, 107(7-12), 971-981.
[http://dx.doi.org/10.1111/j.1699-0463.1999.tb01499.x] [PMID: 10598868]
[139]
Bruni, N.; Capucchio, M.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules, 2016, 21(6), 752.
[http://dx.doi.org/10.3390/molecules21060752] [PMID: 27294909]
[140]
Yamauchi, K.; Tomita, M.; Giehl, T.J.; Ellison, R.T., III Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun., 1993, 61(2), 719-728.
[http://dx.doi.org/10.1128/iai.61.2.719-728.1993] [PMID: 8423097]
[141]
Vorland, L.H.; Ulvatne, H.; Andersen, J.; Haukland, H.; Rekdal, O.; Svendsen, J.S.; Gutteberg, T.J. Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand. J. Infect. Dis., 1998, 30(5), 513-517.
[http://dx.doi.org/10.1080/00365549850161557] [PMID: 10066056]
[142]
Silva, T.; Magalhães, B.; Maia, S.; Gomes, P.; Nazmi, K.; Bolscher, J.G.M.; Rodrigues, P.N.; Bastos, M.; Gomes, M.S. Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob. Agents Chemother., 2014, 58(6), 3461-3467.
[http://dx.doi.org/10.1128/AAC.02728-13] [PMID: 24709266]
[143]
Ulvatne, H.; Haukland, H.H.; Olsvik, O.; Vorland, L.H. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. FEBS Lett., 2001, 492(1-2), 62-65.
[144]
van der Strate, B.W.A.; Beljaars, L.; Molema, G.; Harmsen, M.C.; Meijer, D.K.F. Antiviral activities of lactoferrin. Antiviral Res., 2001, 52(3), 225-239.
[http://dx.doi.org/10.1016/S0166-3542(01)00195-4] [PMID: 11675140]
[145]
Superti, F.; Ammendolia, M.G.; Valenti, P.; Seganti, L. Antirotaviral activity of milk proteins: Lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med. Microbiol. Immunol., 1997, 186(2-3), 83-91.
[http://dx.doi.org/10.1007/s004300050049] [PMID: 9403835]
[146]
Ikeda, M.; Nozaki, A.; Sugiyama, K.; Tanaka, T.; Naganuma, A.; Tanaka, K.; Sekihara, H.; Shimotohno, K.; Saito, M.; Kato, N. Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res., 2000, 66(1), 51-63.
[http://dx.doi.org/10.1016/S0168-1702(99)00121-5] [PMID: 10653917]
[147]
Arzanlou, M.; Chai, W.C.; Venter, H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem., 2017, 61(1), 49-59.
[148]
Vesga, O.; Groeschel, M.C.; Otten, M.F.; Brar, D.W.; Vann, J.M.; Proctor, R.A. Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. J. Infect. Dis., 1996, 173(3), 739-742.
[http://dx.doi.org/10.1093/infdis/173.3.739] [PMID: 8627043]
[149]
Guina, T.; Yi, E.C.; Wang, H.; Hackett, M.; Miller, S.I. A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J. Bacteriol., 2000, 182(14), 4077-4086.
[http://dx.doi.org/10.1128/JB.182.14.4077-4086.2000] [PMID: 10869088]
[150]
Groisman, E.A.; Duprey, A.; Choi, J. How the PhoP/PhoQ system controls virulence and Mg 2+ Homeostasis: Lessons in signal transduction, pathogenesis, physiology, and evolution. Microbiol. Mol. Biol. Rev., 2021, 85(3), e00176-20.
[http://dx.doi.org/10.1128/MMBR.00176-20] [PMID: 34191587]
[151]
Guo, L.; Lim, K.B.; Gunn, J.S.; Bainbridge, B.; Darveau, R.P.; Hackett, M.; Miller, S.I. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science, 1997, 276(5310), 250-253.
[http://dx.doi.org/10.1126/science.276.5310.250] [PMID: 9092473]
[152]
Sader, H.S.; Dale, G.E.; Rhomberg, P.R.; Flamm, R.K. Antimicrobial activity of murepavadin tested against clinical isolates of Pseudomonas aeruginosa from the United States, Europe, and China. Antimicrob Agents Chemother., 2018, 62(7), e00311-e00318.
[153]
Shao, C.; Zhu, Y.; Lai, Z.; Tan, P.; Shan, A. Antimicrobial peptides with protease stability: Progress and perspective. Future Med. Chem., 2019, 11(16), 2047-2050.
[http://dx.doi.org/10.4155/fmc-2019-0167] [PMID: 31538527]
[154]
Dathe, M.; Wieprecht, T. Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta Biomembr., 1999, 1462(1-2), 71-87.
[http://dx.doi.org/10.1016/S0005-2736(99)00201-1] [PMID: 10590303]
[155]
Martin-Loeches, I.; Dale, G.E.; Torres, A. Murepavadin: A new antibiotic class in the pipeline. Expert Rev. Anti Infect. Ther., 2018, 16(4), 259-268.
[http://dx.doi.org/10.1080/14787210.2018.1441024] [PMID: 29451043]
[156]
Wang, K.; Yan, J.; Chen, R.; Dang, W.; Zhang, B.; Zhang, W.; Song, J.; Wang, R. Membrane-active action mode of polybia-CP, a novel antimicrobial peptide isolated from the venom of Polybia paulista. Antimicrob. Agents Chemother., 2012, 56(6), 3318-3323.
[http://dx.doi.org/10.1128/AAC.05995-11] [PMID: 22450985]
[157]
Jia, F; Wang, J; Peng, J; Zhao, P; Kong, Z; Wang, K; Yan, W; Wang, R D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin, 2017, 49(10), 916-925.
[158]
Zheng, R.; Yao, B.; Yu, H.; Wang, H.; Bian, J.; Feng, F. Novel family of antimicrobial peptides from the skin of Rana shuchinae. Peptides, 2010, 31(9), 1674-1677.
[http://dx.doi.org/10.1016/j.peptides.2010.05.014] [PMID: 20553780]
[159]
Mant, C.T.; Jiang, Z.; Gera, L.; Davis, T.; Hodges, R.S. Design of novel amphipathic α-helical antimicrobial peptides with no toxicity as therapeutics against the antibiotic-resistant gram-negative bacterial pathogen, Acinetobacter Baumannii. J Med Chem Drug Des., 2019, 2(2), 114.
[PMID: 34377965]
[160]
Sun, S.; Zhao, G.; Huang, Y.; Cai, M.; Yan, Q.; Wang, H.; Chen, Y. Enantiomeric effect of d-amino acid substitution on the mechanism of action of α-helical membrane-active peptides. Int. J. Mol. Sci., 2017, 19(1), 67.
[http://dx.doi.org/10.3390/ijms19010067]
[161]
The amide linkage: Structural significance in chemistry, biochemistry, and materials science; Greenberg, A.; Breneman, C.M.; Liebman, J.F., Eds.; John Wiley & Sons, 2002.
[162]
Raibaut, L.; El Mahdi, O.; Melnyk, O. Solid phase protein chemical synthesis. Top. Curr. Chem., 2014, 363, 103-154.
[http://dx.doi.org/10.1007/128_2014_609] [PMID: 25791484]
[163]
Martin, V.; Egelund, P.H.G.; Johansson, H.; Thordal Le Quement, S.; Wojcik, F.; Sejer Pedersen, D. Greening the synthesis of peptide therapeutics: An industrial perspective. RSC Advances, 2020, 10(69), 42457-42492.
[http://dx.doi.org/10.1039/D0RA07204D] [PMID: 35516773]
[164]
Müller, H.; Salzig, D.; Czermak, P. Considerations for the process development of insect-derived antimicrobial peptide production. Biotechnol. Prog., 2015, 31(1), 1-11.
[http://dx.doi.org/10.1002/btpr.2002] [PMID: 25311397]
[165]
da Cunha, N.B.; Cobacho, N.B.; Viana, J.F.C.; Lima, L.A.; Sampaio, K.B.O.; Dohms, S.S.M.; Ferreira, A.C.R.; de la Fuente-Núñez, C.; Costa, F.F.; Franco, O.L.; Dias, S.C. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today, 2017, 22(2), 234-248.
[http://dx.doi.org/10.1016/j.drudis.2016.10.017] [PMID: 27890668]
[166]
Zhang, B.; Shanmugaraj, B.; Daniell, H. Expression and functional evaluation of biopharmaceuticals made in plant chloroplasts. Curr. Opin. Chem. Biol., 2017, 38, 17-23.
[http://dx.doi.org/10.1016/j.cbpa.2017.02.007] [PMID: 28229907]
[167]
Lee, S.B.; Li, B.; Jin, S.; Daniell, H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J., 2011, 9(1), 100-115.
[http://dx.doi.org/10.1111/j.1467-7652.2010.00538.x] [PMID: 20553419]
[168]
Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol., 2016, 17(1), 134.
[http://dx.doi.org/10.1186/s13059-016-1004-2] [PMID: 27339192]
[169]
Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[170]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[171]
Nordström, R.; Malmsten, M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci., 2017, 242, 17-34.
[http://dx.doi.org/10.1016/j.cis.2017.01.005] [PMID: 28159168]
[172]
Malmsten, M. Soft drug delivery systems. Soft Matter, 2006, 2(9), 760-769.
[http://dx.doi.org/10.1039/b608348j] [PMID: 32680216]
[173]
Li, P.; Nielsen, H.M.; Müllertz, A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin. Drug Deliv., 2012, 9(10), 1289-1304.
[http://dx.doi.org/10.1517/17425247.2012.717068] [PMID: 22897647]
[174]
Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as potential drug carrier systems for drug delivery. In: Application of Nanotechnology in Drug Delivery; Intechopen, 2014.
[http://dx.doi.org/10.5772/58459]
[175]
Wessman, P.; Morin, M.; Reijmar, K.; Edwards, K. Effect of α-helical peptides on liposome structure: A comparative study of melittin and alamethicin. J. Colloid Interface Sci., 2010, 346(1), 127-135.
[http://dx.doi.org/10.1016/j.jcis.2010.02.032] [PMID: 20226468]
[176]
Ron-Doitch, S.; Sawodny, B.; Kühbacher, A.; David, M.M.N.; Samanta, A.; Phopase, J.; Burger-Kentischer, A.; Griffith, M.; Golomb, G.; Rupp, S. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J. Control. Release, 2016, 229(229), 163-171.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.025] [PMID: 27012977]
[177]
Taylor, T.M.; Gaysinsky, S.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Characterization of antimicrobial-bearing liposomes by ζ-Potential, vesicle size, and encapsulation efficiency. Food Biophys., 2007, 2(1), 1-9.
[http://dx.doi.org/10.1007/s11483-007-9023-x]
[178]
Sadiq, S.; Imran, M.; Habib, H.; Shabbir, S.; Ihsan, A.; Zafar, Y.; Hafeez, F.Y. Potential of monolaurin based food-grade nano-micelles loaded with nisin Z for synergistic antimicrobial action against Staphylococcus aureus. Lebensm. Wiss. Technol., 2016, 71, 227-233.
[http://dx.doi.org/10.1016/j.lwt.2016.03.045]
[179]
Reinhardt, A.; Neundorf, I. Design and application of antimicrobial peptide conjugates. Int. J. Mol. Sci., 2016, 17(5), 701.
[http://dx.doi.org/10.3390/ijms17050701]
[180]
d’Angelo, I.; Casciaro, B.; Miro, A.; Quaglia, F.; Mangoni, M.L.; Ungaro, F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf. B Biointerfaces, 2015, 135, 717-725.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.027] [PMID: 26340361]
[181]
Yüksel, E.; Karakeçili, A.; Demirtaş, T.T.; Gümüşderelioğlu, M. Preparation of bioactive and antimicrobial PLGA membranes by magainin II/EGF functionalization. Int. J. Biol. Macromol., 2016, 86, 162-168.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.061] [PMID: 26802245]
[182]
Mariathasan, S.; Tan, M.W. Antibody–antibiotic conjugates: A novel therapeutic platform against bacterial infections. Trends Mol. Med., 2017, 23(2), 135-149.
[http://dx.doi.org/10.1016/j.molmed.2016.12.008] [PMID: 28126271]
[183]
Lehar, S.M.; Pillow, T.; Xu, M.; Staben, L.; Kajihara, K.K.; Vandlen, R.; DePalatis, L.; Raab, H.; Hazenbos, W.L.; Morisaki, J.H.; Kim, J.; Park, S.; Darwish, M.; Lee, B.C.; Hernandez, H.; Loyet, K.M.; Lupardus, P.; Fong, R.; Yan, D.; Chalouni, C.; Luis, E.; Khalfin, Y.; Plise, E.; Cheong, J.; Lyssikatos, J.P.; Strandh, M.; Koefoed, K.; Andersen, P.S.; Flygare, J.A.; Wah Tan, M.; Brown, E.J.; Mariathasan, S. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature., 2015, 527(7578), 323-328.
[184]
Lee, H.; Lim, S.I.; Shin, S.H.; Lim, Y.; Koh, J.W.; Yang, S. Conjugation of cell-penetrating peptides to antimicrobial peptides enhances antibacterial activity. ACS Omega, 2019, 4(13), 15694-15701.
[http://dx.doi.org/10.1021/acsomega.9b02278] [PMID: 31572872]
[185]
Umstätter, F; Domhan, C; Hertlein, T; Ohlsen, K; Mühlberg, E; Kleist, C; Zimmermann, S; Beijer, B; Klika, KD; Haberkorn, U; Mier, W; Uhl, P Vancomycin resistance is overcome by conjugation of polycationic peptides. Angew Chem Int Ed Engl., 2020, 59(23), 8823-8827.
[186]
Siriwardena, T.N.; Capecchi, A.; Gan, B.H.; Jin, X.; He, R.; Wei, D.; Ma, L.; Köhler, T.; van Delden, C.; Javor, S.; Reymond, J.L. Optimizing antimicrobial peptide dendrimers in chemical space. Angew. Chem. Int. Ed., 2018, 57(28), 8483-8487.
[http://dx.doi.org/10.1002/anie.201802837] [PMID: 29767453]
[187]
McCarthy, T.D.; Karellas, P.; Henderson, S.A.; Giannis, M.; O’Keefe, D.F.; Heery, G.; Paull, J.R.A.; Matthews, B.R.; Holan, G. Dendrimers as drugs: Discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm., 2005, 2(4), 312-318.
[http://dx.doi.org/10.1021/mp050023q] [PMID: 16053334]
[188]
Gide, M.; Nimmagadda, A.; Su, M.; Wang, M.; Teng, P.; Li, C.; Gao, R.; Xu, H.; Li, Q.; Cai, J. Nano-sized lipidated dendrimers as potent and broad-spectrum antibacterial agents. Macromol. Rapid Commun., 2018, 39(24), 1800622.
[http://dx.doi.org/10.1002/marc.201800622] [PMID: 30408252]
[189]
García-Gallego, S.; Franci, G.; Falanga, A.; Gómez, R.; Folliero, V.; Galdiero, S.; de la Mata, F.; Galdiero, M. Function oriented molecular design: Dendrimers as novel antimicrobials. Molecules, 2017, 22(10), 1581.
[http://dx.doi.org/10.3390/molecules22101581] [PMID: 28934169]
[190]
Scorciapino, M.; Serra, I.; Manzo, G.; Rinaldi, A. Antimicrobial dendrimeric peptides: Structure, activity and new therapeutic applications. Int. J. Mol. Sci., 2017, 18(3), 542.
[http://dx.doi.org/10.3390/ijms18030542] [PMID: 28273806]
[191]
Pompilio, A.; Geminiani, C.; Mantini, P.; Siriwardena, T.N.; Di Bonaventura, I.; Reymond, J.L.; Di Bonaventura, G. Peptide dendrimers as “lead compounds” for the treatment of chronic lung infections by Pseudomonas aeruginosa in cystic fibrosis patients: in vitro and in vivo studies. Infect. Drug Resist., 2018, 11, 1767-1782.
[http://dx.doi.org/10.2147/IDR.S168868] [PMID: 30349334]
[192]
Liu, Z.; Young, A.W.; Hu, P.; Rice, A.J.; Zhou, C.; Zhang, Y.; Kallenbach, N.R. Tuning the membrane selectivity of antimicrobial peptides by using multivalent design. ChemBioChem, 2007, 8(17), 2063-2065.
[http://dx.doi.org/10.1002/cbic.200700502] [PMID: 17924379]
[193]
Pires, J.; Siriwardena, T.N.; Stach, M.; Tinguely, R.; Kasraian, S.; Luzzaro, F.; Leib, S.L.; Darbre, T.; Reymond, J.L.; Endimiani, A. In vitro activity of the novel antimicrobial peptide dendrimer G3KL against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2015, 59(12), 7915-7918.
[http://dx.doi.org/10.1128/AAC.01853-15] [PMID: 26459893]
[194]
Batoni, G.; Maisetta, G.; Lisa Brancatisano, F.; Esin, S.; Campa, M. Use of antimicrobial peptides against microbial biofilms: Advantages and limits. Curr. Med. Chem., 2011, 18(2), 256-279.
[http://dx.doi.org/10.2174/092986711794088399] [PMID: 21110801]
[195]
Syryamina, V.N.; Samoilova, R.I.; Tsvetkov, Y.D.; Ischenko, A.V.; De Zotti, M.; Gobbo, M.; Toniolo, C.; Formaggio, F.; Dzuba, S.A. Peptides on the Surface: Spin-label EPR and PELDOR study of adsorption of the antimicrobial peptides trichogin GA IV and ampullosporin a on the silica nanoparticles. Appl. Magn. Reson., 2016, 47(3), 309-320.
[http://dx.doi.org/10.1007/s00723-015-0745-5]
[196]
Godoy-Gallardo, M.; Mas-Moruno, C.; Yu, K.; Manero, J.M.; Gil, F.J.; Kizhakkedathu, J.N.; Rodriguez, D. Antibacterial properties of hLf1-11 peptide onto titanium surfaces: A comparison study between silanization and surface initiated polymerization. Biomacromolecules, 2015, 16(2), 483-496.
[http://dx.doi.org/10.1021/bm501528x] [PMID: 25545728]
[197]
Chen, W.Y.; Chang, H.Y.; Lu, J.K.; Huang, Y.C.; Harroun, S.G.; Tseng, Y.T.; Li, Y.J.; Huang, C.C.; Chang, H.T. Self-assembly of antimicrobial peptides on gold nanodots: Against multidrug-resistant bacteria and wound-healing application. Adv. Funct. Mater., 2015, 25(46), 7189-7199.
[http://dx.doi.org/10.1002/adfm.201503248]
[198]
Chaudhari, A.A.; Ashmore, D.; Nath, S.; Kate, K.; Dennis, V.; Singh, S.R.; Owen, D.R.; Palazzo, C.; Arnold, R.D.; Miller, M.E.; Pillai, S.R. A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide. J. Nanobiotechnology, 2016, 14(1), 58.
[http://dx.doi.org/10.1186/s12951-016-0211-z] [PMID: 27412259]
[199]
Galdiero, E.; Siciliano, A.; Maselli, V.; Gesuele, R.; Guida, M.; Fulgione, D.; Galdiero, S.; Lombardi, L.; Falanga, A. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. Int. J. Nanomedicine, 2016, 11, 4199-4211.
[http://dx.doi.org/10.2147/IJN.S107752] [PMID: 27616887]
[200]
Kanchanapally, R; Viraka Nellore, BP; Sinha, SS; Pedraza, F; Jones, SJ; Pramanik, A; Chavva, SR; Tchounwou, C; Shi, Y; Vangara, A; Sardar, D; Ray, PC Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Adv., 2015, 5(24), 18881-18887.
[http://dx.doi.org/10.1039/C5RA01321F]
[201]
Dostalova, S.; Moulick, A.; Milosavljevic, V.; Guran, R.; Kominkova, M.; Cihalova, K.; Heger, Z.; Blazkova, L.; Kopel, P.; Hynek, D.; Vaculovicova, M.; Adam, V.; Kizek, R. Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5. Monatsh. Chem., 2016, 147(5), 905-918.
[http://dx.doi.org/10.1007/s00706-016-1675-0]
[202]
Vivero-Escoto, J.L.; Slowing, I.I.; Trewyn, B.G.; Lin, V.S.Y. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 2010, 6(18), 1952-1967.
[http://dx.doi.org/10.1002/smll.200901789] [PMID: 20690133]
[203]
Urbán, P.; Jose Valle-Delgado, J.; Moles, E.; Marques, J.; Díez, C.; Fernàndez-Busquets, X. Nanotools for the delivery of antimicrobial peptides. Curr. Drug Targets, 2012, 13(9), 1158-1172.
[http://dx.doi.org/10.2174/138945012802002302] [PMID: 22664075]
[204]
Imanparast, F.; Faramarzi, M.A.; Vatannejad, A.; Paknejad, M.; Deiham, B.; Kobarfard, F.; Amani, A.; Doosti, M. mZD7349 peptide-conjugated PLGA nanoparticles directed against VCAM-1 for targeted delivery of simvastatin to restore dysfunctional HUVECs. Microvasc. Res., 2017, 112, 14-19.
[http://dx.doi.org/10.1016/j.mvr.2017.02.002] [PMID: 28161429]
[205]
Martin-Serrano, Á.; Gómez, R.; Ortega, P.; de la Mata, F.J. Nanosystems as vehicles for the delivery of antimicrobial peptides (AMPs). Pharmaceutics, 2019, 11(9), 448.
[http://dx.doi.org/10.3390/pharmaceutics11090448] [PMID: 31480680]
[206]
Makowski, M.; Silva, Í.C.; Pais do Amaral, C.; Gonçalves, S.; Santos, N.C. Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics, 2019, 11(11), 588.
[http://dx.doi.org/10.3390/pharmaceutics11110588] [PMID: 31717337]
[207]
Abbina, S; Vappala, S; Kumar, P; Siren, EMJ; La, CC; Abbasi, U; Brooks, DE; Kizhakkedathu, JN Hyperbranched polyglycerols: Recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B., 2017, 5(47), 9249-9277.
[208]
Zurawski, D.V.; McLendon, M.K. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics, 2020, 9(4), 155.
[http://dx.doi.org/10.3390/antibiotics9040155] [PMID: 32244733]
[209]
Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.B. Polymeric micelles as drug delivery vehicles. RSC Advances, 2014, 4(33), 17028-17038.
[http://dx.doi.org/10.1039/C3RA47370H]
[210]
Jhaveri, A.M.; Torchilin, V.P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol., 2014, 5, 77.
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[211]
Kwon, G.S.; Kataoka, K. Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev., 1995, 16(2-3), 295-309.
[http://dx.doi.org/10.1016/0169-409X(95)00031-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy