Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

A Review on the Progress of QbD Approach in Nanosystems Optimization: Current Updates and Strategic Applications

Author(s): Devika Tripathi*, Jyoti Kumari, Krislay Rathour, Princy Yadav, Vikas Shukla and Awani Kumar Rai

Volume 21, Issue 13, 2024

Published on: 10 October, 2023

Page: [2545 - 2566] Pages: 22

DOI: 10.2174/0115701808256947231004110357

Price: $65

Abstract

Nanotechnology has made great strides in developing targeted drug delivery systems over the past few decades. These systems have garnered attention for their unique biological properties and ability to deliver drugs in a stable and sustainable manner. Despite these advances, there are still concerns about quality, efficacy, and safety. Many fabrication techniques still need to be refined to address the complex structures and non-standard manufacturing processes that can impact the quality of drug delivery systems. Recently, optimization techniques such as Quality by Design (QbD) have gained popularity in the pharmaceutical industry. QbD is a structured approach that addresses many technological and trait-related issues by providing a deep understanding of the product and its operations. This review examines the current state of QbD in the design of various nano-drug delivery systems, including lipid nanoparticles, lipid carriers, nano micelles, beaded drug delivery systems, nanospheres, cubosomes, and novel cosmeceuticals. Various mathematical models and statistical tests have been used to identify the parameters that influence the physical characteristics of these nanosystems. Critical process attributes such as particle size, yield, and drug entrapment have been studied to assess risk factors during development. However, critical process parameters are often identified through trial and error. This review highlights common material attributes and process parameters that affect the quality of nano-drug delivery systems. Hence, this survey has disclosed the various material attributes and process parameters, quality variables of different nano-drug systems. QbD designs such as Central drug composite, Design of experiment, D-optimal Design, Box-Benkhen Design, and Face center Design in optimizing the nanosystems have also been added. Conclusively, QbD optimization in nano drug delivery systems is expected to be a time-honored strategy in the forthcoming years.

Keywords: Quality by design, nano drug delivery systems, process variables, response methodology, status, application.

Graphical Abstract
[1]
Fukuda, I.M.; Pinto, C.F.F.; Moreira, C.S.; Saviano, A.M.; Lourenço, F.R. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Braz. J. Pharm. Sci., 2018, 54(spe), 54.
[http://dx.doi.org/10.1590/s2175-97902018000001006]
[2]
Yang, Y.J.; Song, D.M.; Jiang, W.M.; Xiang, B.R. Rapid resolution RP-HPLC-DAD method for simultaneous determination of sildenafil, vardenafil, and tadalafil in pharmaceutical preparations and counterfeit drugs. Anal. Lett., 2010, 43(3), 373-380.
[http://dx.doi.org/10.1080/00032710903402283]
[3]
Pallagi, E.; Ambrus, R.; Szabó-Révész, P.; Csóka, I. Adaptation of the quality by design concept in early pharmaceutical development of an intranasal nanosized formulation. Int. J. Pharm., 2015, 491(1-2), 384-392.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.018] [PMID: 26134895]
[4]
Lionberger, R.A.; Lee, S.L.; Lee, L.; Raw, A.; Yu, L.X. Quality by design: Concepts for ANDAs. AAPS J., 2008, 10(2), 268-276.
[http://dx.doi.org/10.1208/s12248-008-9026-7] [PMID: 18465252]
[5]
Zhang, L.; Mao, S. Application of quality by design in the current drug development. Asian J. Pharm. Sci., 2017, 12(1), 1-8.
[http://dx.doi.org/10.1016/j.ajps.2016.07.006]
[6]
Rao, D.V.S.; Radhakrishnanand, P.; Himabindu, V.; Radha, K.P.; Himabindu, V. Stress degradation studies on tadalafil and development of a validated stability-indicating LC assay for bulk drug and pharmaceutical dosage form. Chromatographia, 2008, 67(1-2), 183-188.
[http://dx.doi.org/10.1365/s10337-007-0478-1]
[7]
Lee, A.R.; Kwon, S.Y.; Choi, D.H.; Park, E.S. Quality by Design (QbD) approach to optimize the formulation of a bilayer combination tablet (Telmiduo®) manufactured via high shear wet granulation. Int. J. Pharm., 2017, 534(1-2), 144-158.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.004] [PMID: 29031980]
[8]
Govani, P.; Bahekar, K.; Movaliya, V.; Vaghela, K.; Kanki, N.; Deshpande, S.; Zaveri, M. FDA’s new pharmaceutical quality initiative: Knowledge-aided assessment & structured applications. Int. J. Drug Regul. Aff., 2022, 10(4), 1-7.
[http://dx.doi.org/10.22270/ijdra.v10i4.523]
[9]
Pallagi, E.; Ismail, R.; Paál, T.L.; Csóka, I. Initial risk assessment as part of the quality by design in peptide drug containing formulation development. Eur. J. Pharm. Sci., 2018, 122, 160-169.
[http://dx.doi.org/10.1016/j.ejps.2018.07.003] [PMID: 30008428]
[10]
Ismael, O.A.; Ahmed, M.I. Using quality risk management in pharmaceutical industries: A case study. Calitatea., 2020, 21(178), 106-113.
[11]
Djuris, J.; Djuric, Z. Modeling in the quality by design environment: Regulatory requirements and recommendations for design space and control strategy appointment. Int. J. Pharm., 2017, 533(2), 346-356.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.070] [PMID: 28579542]
[12]
Nadpara, N.P.; Thumar, R.V.; Kalola, V.N.; Patel, P.B. Quality by design (QBD): A complete review. Int. J. Pharm. Sci. Rev. Res., 2012, 17(2), 20-28.
[13]
Winkle, H.N.; Nasr, M.M. FDA ON QBD-Understanding challenges to quality by design-center for drug evaluation and research directors summarize an FDA-commissioned report on QbD. Pharm. Technol., 2011, 35(9), 60.
[14]
Than, Y.M.; Titapiwatanakun, V. Tailoring immediate release FDM 3D printed tablets using a quality by design (QbD) approach. Int. J. Pharm., 2021, 599, 120402.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120402] [PMID: 33640426]
[15]
Sangshetti, J.N.; Deshpande, M.; Zaheer, Z.; Shinde, D.B.; Arote, R. Quality by design approach: Regulatory need. Arab. J. Chem., 2017, 10, S3412-S3425.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.025]
[16]
Ahn, S.; Lee, I.H.; Lee, E.; Kim, H.; Kim, Y.C.; Jon, S. Oral delivery of an anti-diabetic peptide drug via conjugation and complexation with low molecular weight chitosan. J. Control. Release, 2013, 170(2), 226-232.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.031] [PMID: 23747732]
[17]
Jain, S. Quality by design (QBD): A comprehensive understanding of implementation and challenges in pharmaceuticals development. Int. J. Pharm. Pharm. Sci., 2014, 6, 29-35.
[18]
Patil, A.S. Pethe, AM Quality by design (QbD): A new concept for development of quality pharmaceuticals. Int. J. Pharm. Qual., 2013, 4(2), 13-19.
[19]
Zhang, L; Mao, S. Application of Quality by design in the current drug development. Asia. j. pharma. sci., 2017, 12(1), 1-8.
[http://dx.doi.org/10.1016/j.ajps.2016.07.006]
[20]
Bak, A.; Leung, D.; Barrett, S.E.; Forster, S.; Minnihan, E.C.; Leithead, A.W.; Cunningham, J.; Toussaint, N.; Crocker, L.S. Physicochemical and formulation developability assessment for therapeutic peptide delivery--a primer. AAPS J., 2015, 17(1), 144-155.
[http://dx.doi.org/10.1208/s12248-014-9688-2] [PMID: 25398427]
[21]
de Sousa, J; Holt, D; Butterworth, PA Analytical method design, development, and lifecycle management. Pharmaceutical Quality by Design: A Practical Approach, 2018, 11, 257.
[http://dx.doi.org/10.1002/9781118895238.ch10]
[22]
Mishra, V.; Thakur, S.; Patil, A.; Shukla, A. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin. Drug Deliv., 2018, 15(8), 737-758.
[http://dx.doi.org/10.1080/17425247.2018.1504768] [PMID: 30044646]
[23]
Grymonpré, W.; Vanhoorne, V.; Van Snick, B.; Blahova Prudilova, B.; Detobel, F.; Remon, J.P.; De Beer, T.; Vervaet, C. Optimizing feed frame design and tableting process parameters to increase die-filling uniformity on a high-speed rotary tablet press. Int. J. Pharm., 2018, 548(1), 54-61.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.047] [PMID: 29940299]
[24]
Charoo, N.A.; Shamsher, A.A.A.; Zidan, A.S.; Rahman, Z. Quality by design approach for formulation development: A case study of dispersible tablets. Int. J. Pharm., 2012, 423(2), 167-178.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.024] [PMID: 22209997]
[25]
Rahman, Z.; Siddiqui, A.; Khan, M.A. Assessing the impact of nimodipine devitrification in the ternary cosolvent system through quality by design approach. Int. J. Pharm., 2013, 455(1-2), 113-123.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.049] [PMID: 23911342]
[26]
Mazivila, S.J.; Santos, J.L.M. A review on multivariate curve resolution applied to spectroscopic and chromatographic data acquired during the real-time monitoring of evolving multi-component processes: From process analytical chemistry (PAC) to process analytical technology (PAT). Trends Analyt. Chem., 2022, 157, 116698.
[http://dx.doi.org/10.1016/j.trac.2022.116698]
[27]
Khanolkar, A.; Thorat, V.; Raut, P.; Samanta, G. Application of Quality by design: Development to manufacturing of diclofenac sodium topical gel. AAPS PharmSciTech, 2017, 18(7), 2754-2763.
[http://dx.doi.org/10.1208/s12249-017-0755-8] [PMID: 28353174]
[28]
Willecke, N.; Szepes, A.; Wunderlich, M.; Remon, J.P.; Vervaet, C.; De Beer, T. A novel approach to support formulation design on twin screw wet granulation technology: Understanding the impact of overarching excipient properties on drug product quality attributes. Int. J. Pharm., 2018, 545(1-2), 128-143.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.017] [PMID: 29684559]
[29]
Srai, J.S.; Badman, C.; Krumme, M.; Futran, M.; Johnston, C. Future supply chains enabled by continuous processing—Opportunities and challenges. May 20–21, 2014 Continuous Manufacturing Symposium. J. Pharm. Sci., 2015, 104(3), 840-849.
[http://dx.doi.org/10.1002/jps.24343]
[30]
Awotwe-Otoo, D.; Agarabi, C.; Wu, G.K.; Casey, E.; Read, E.; Lute, S.; Brorson, K.A.; Khan, M.A.; Shah, R.B. Quality by design: Impact of formulation variables and their interactions on quality attributes of a lyophilized monoclonal antibody. Int. J. Pharm., 2012, 438(1-2), 167-175.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.033] [PMID: 22944306]
[31]
Trivedi, B. Quality by design (QbD) in pharmaceuticals. Int. J. Pharm. Pharm. Sci., 2012, 4(1), 17-29.
[32]
Raw, A.S.; Lionberger, R.; Yu, L.X. Pharmaceutical equivalence by design for generic drugs: Modified-release products. Pharm. Res., 2011, 28(7), 1445-1453.
[http://dx.doi.org/10.1007/s11095-011-0397-6] [PMID: 21387150]
[33]
Kristan, K.; Horvat, M. Rapid exploration of curing process design space for production of controlled-release pellets. J. Pharm. Sci., 2012, 101(10), 3924-3935.
[http://dx.doi.org/10.1002/jps.23277] [PMID: 22833184]
[34]
Saripella, K.K.; Loka, N.C.; Mallipeddi, R.; Rane, A.M.; Neau, S.H. A quality by experimental design approach to assess the effect of formulation and process variables on the extrusion and spheronization of drug-loaded pellets containing polyplasdone® XL-10. AAPS PharmSciTech, 2016, 17(2), 368-379.
[http://dx.doi.org/10.1208/s12249-015-0345-6] [PMID: 26169900]
[35]
Prpich, A.A.; Ende, M.T.; Katzschner, T.; Lubczyk, V.; Weyhers, H.; Bernhard, G. Drug product modeling predictions for scale-up of tablet film coating—a quality by design approach. Comput. Chem. Eng., 2010, 34(7), 1092-1097.
[http://dx.doi.org/10.1016/j.compchemeng.2010.03.006]
[36]
Rahman, Z.; Xu, X.; Katragadda, U.; Krishnaiah, Y.S.R.; Yu, L.; Khan, M.A. Quality by design approach for understanding the critical quality attributes of cyclosporine ophthalmic emulsion. Mol. Pharm., 2014, 11(3), 787-799.
[http://dx.doi.org/10.1021/mp400484g] [PMID: 24423028]
[37]
Kothari, B.H.; Fahmy, R.; Claycamp, H.G.; Moore, C.M.V.; Chatterjee, S.; Hoag, S.W. A systematic approach of employing QualityQuality by design principles: Risk assessment and design of experiments to demonstrate process understanding and identify the critical process parameters for coating of the ethylcellulose pseudolatex dispersion using non-conventional fluid bed process. AAPS PharmSciTech, 2017, 18(4), 1135-1157.
[http://dx.doi.org/10.1208/s12249-016-0569-0] [PMID: 27417225]
[38]
Marto, J.; Gouveia, L.F.; Gonçalves, L.M.; Gaspar, D.P.; Pinto, P.; Carvalho, F.A.; Oliveira, E.; Ribeiro, H.M.; Almeida, A.J. A Quality by design (QbD) approach on starch-based nanocapsules: A promising platform for topical drug delivery. Colloids Surf. B Biointerfaces, 2016, 143, 177-185.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.039] [PMID: 27003468]
[39]
Gijo, E.V. Application of tools and techniques of quality by design in pharmaceutical process. Int. J. Prod. Perform. Manag., 2022, 71(7), 2932-2950.
[http://dx.doi.org/10.1108/IJPPM-09-2020-0472]
[40]
Yacoub, F.; Lautens, J.; Lucisano, L.; Banh, W. Application of Quality by design principles to legacy drug products. J. Pharm. Innov., 2011, 6(2), 61-68.
[http://dx.doi.org/10.1007/s12247-011-9101-y]
[41]
Verma, S.; Lan, Y.; Gokhale, R.; Burgess, D.J. Quality by design approach to understand the process of nanosuspension preparation. Int. J. Pharm., 2009, 377(1-2), 185-198.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.006] [PMID: 19446617]
[42]
Mazumder, S.; Pavurala, N.; Manda, P.; Xu, X.; Cruz, C.N.; Krishnaiah, Y.S.R. Quality by design approach for studying the impact of formulation and process variables on product quality of oral disintegrating films. Int. J. Pharm., 2017, 527(1-2), 151-160.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.048] [PMID: 28549972]
[43]
Xu, X.; Khan, M.A.; Burgess, D.J. A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment. Int. J. Pharm., 2011, 419(1-2), 52-59.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.012] [PMID: 21787854]
[44]
Badawy, S.I.F.; Narang, A.S.; LaMarche, K.R.; Subramanian, G.A.; Varia, S.A.; Lin, J.; Stevens, T.; Shah, P.A. Integrated application of quality-by-design principles to drug product development: A case study of Brivanib alaninate film-coated tablets. J. Pharm. Sci., 2016, 105(1), 168-181.
[http://dx.doi.org/10.1016/j.xphs.2015.11.023] [PMID: 26852852]
[45]
Hu, B.; Lv, Z.; Chen, G.; Lu, J. Identification, synthesis, characterization, and a quality control strategy for high-risk chiral impurities in the antifungal drug substance posaconazole. Tetrahedron, 2022, 127, 133098.
[http://dx.doi.org/10.1016/j.tet.2022.133098]
[46]
Kim, J.Y.; Choi, D.H. Control strategy for excipient variability in the quality by design approach using statistical analysis and predictive model: Effect of microcrystalline cellulose variability on design space. Pharmaceutics, 2022, 14(11), 2416.
[http://dx.doi.org/10.3390/pharmaceutics14112416] [PMID: 36365234]
[47]
Chavez, P.F.; Stauffer, F.; Eeckman, F.; Bostijn, N.; Didion, D.; Schaefer, C.; Yang, H.; El Aalamat, Y.; Lories, X.; Warman, M.; Mathieu, B.; Mantanus, J. Control strategy definition for a drug product continuous wet granulation process: Industrial case study. Int. J. Pharm., 2022, 624, 121970.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121970] [PMID: 35781027]
[48]
van den Ban, S.; Goodwin, D.J. The impact of granule density on tableting and pharmaceutical product performance. Pharm. Res., 2017, 34(5), 1002-1011.
[http://dx.doi.org/10.1007/s11095-017-2115-5] [PMID: 28188541]
[49]
Dumarey, M.; Goodwin, D.J.; Davison, C. Multivariate modelling to study the effect of the manufacturing process on the complete tablet dissolution profile. Int. J. Pharm., 2015, 486(1-2), 112-120.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.040] [PMID: 25797055]
[50]
Kumar, S.; Gokhale, R.; Burgess, D.J. Quality by Design approach to spray drying processing of crystalline nanosuspensions. Int. J. Pharm., 2014, 464(1-2), 234-242.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.039] [PMID: 24412337]
[51]
Patil, H.; Feng, X.; Ye, X.; Majumdar, S.; Repka, M.A. Continuous production of fenofibrate solid lipid nanoparticles by hot-melt extrusion technology: A systematic study based on a quality by design approach. AAPS J., 2015, 17(1), 194-205.
[http://dx.doi.org/10.1208/s12248-014-9674-8] [PMID: 25344439]
[52]
Soni, G.; Kale, K.; Shetty, S.; Gupta, M.K.; Yadav, K.S. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon, 2020, 6(4), e03846.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03846] [PMID: 32373744]
[53]
Mishra, V.; Bansal, K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[54]
Nandi, U.; Dey, T.; Douroumis, D. Continuous Twin-Screw Granulation Processing.Optimization of Pharmaceutical Processes; Springer International Publishing: Cham, 2022, pp. 135-169.
[http://dx.doi.org/10.1007/978-3-030-90924-6_6]
[55]
Basalious, E.B.; El-Sebaie, W.; El-Gazayerly, O. Application of pharmaceutical QbD for enhancement of the solubility and dissolution of a class II BCS drug using polymeric surfactants and crystallization inhibitors: development of controlled-release tablets. AAPS PharmSciTech, 2011, 12(3), 799-810.
[http://dx.doi.org/10.1208/s12249-011-9646-6] [PMID: 21701960]
[56]
Visser, J.C.; Dohmen, W.M.C.; Hinrichs, W.L.J.; Breitkreutz, J.; Frijlink, H.W.; Woerdenbag, H.J. Quality by design approach for optimizing the formulation and physical properties of extemporaneously prepared orodispersible films. Int. J. Pharm., 2015, 485(1-2), 70-76.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.005] [PMID: 25746737]
[57]
Gavan, A.; Iurian, S.; Casian, T.; Porfire, A.; Porav, S.; Voina, I.; Oprea, A.; Tomuta, I. Fluidised bed granulation of two APIs: QbD approach and development of a NIR in-line monitoring method. Asian J. Pharma. Sci., 2020, 15(4), 506-517.
[http://dx.doi.org/10.1016/j.ajps.2019.03.003] [PMID: 32952673]
[58]
Mansuri, N.; Patel, K.; Mehta, M.; Vyas, G.; Reddy, J.P.; Shah, T.; Steinbach, D.; Desai, D. Quality by design (QbD) approach to match tablet glossiness. Pharm. Dev. Technol., 2020, 25(8), 1010-1017.
[http://dx.doi.org/10.1080/10837450.2020.1772291] [PMID: 32432492]
[59]
Butreddy, A.; Dudhipala, N.; Janga, K.Y.; Gaddam, R.P. Lyophilization of small-molecule injectables: An industry perspective on formulation development, process optimization, scale-up challenges, and drug product quality attributes. AAPS PharmSciTech, 2020, 21(7), 252.
[http://dx.doi.org/10.1208/s12249-020-01787-w] [PMID: 32885357]
[60]
Jose, H.; Dinesh Kumar, B.; Krishnakumar, K.; Nair, S.K. Quality by Design Approaches in Pharmaceutical Developments, 2023.
[61]
Castillo-Henríquez, L.; Murillo-Castillo, B.; Chaves-Siles, L.; Mora-Román, J.J.; Ramírez-Arguedas, N.; Hernández-Mora, É.; Vega-Baudrit, J. Quality by design: A suitable methodology in industrial pharmacy for costa rican universities. Sci. Pharm., 2022, 90(2), 34.
[http://dx.doi.org/10.3390/scipharm90020034]
[62]
Kasten, G.; Duarte, Í.; Paisana, M.; Löbmann, K.; Rades, T.; Grohganz, H. Process optimization and upscaling of spray-dried drug-amino acid co-amorphous formulations. Pharmaceutics, 2019, 11(1), 24.
[http://dx.doi.org/10.3390/pharmaceutics11010024] [PMID: 30634423]
[63]
Md, S.; Kuldeep Singh, J.K.A.P.; Waqas, M.; Pandey, M.; Choudhury, H.; Habib, H.; Hussain, F.; Hussain, Z. Nanoencapsulation of betamethasone valerate using high pressure homogenization–solvent evaporation technique: Optimization of formulation and process parameters for efficient dermal targeting. Drug Dev. Ind. Pharm., 2019, 45(2), 323-332.
[http://dx.doi.org/10.1080/03639045.2018.1542704] [PMID: 30404554]
[64]
Menon, A; Póczos, B; Feinberg, AW; Washburn, NR Optimization of silicone 3D printing with hierarchical machine learning. 3D printing and additive manufacturing., 2019, 6(4), 181-189.
[65]
Butreddy, A.; Bandari, S.; Repka, M.A. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. Eur. J. Pharm. Sci., 2021, 158, 105655.
[http://dx.doi.org/10.1016/j.ejps.2020.105655] [PMID: 33253883]
[66]
Raghavendra Naveen, N.; Kurakula, M.; Gowthami, B. Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles. Mater. Today Proc., 2020, 33, 2716-2724.
[http://dx.doi.org/10.1016/j.matpr.2020.01.491]
[67]
Ghosh, I.; Schenck, D.; Bose, S.; Liu, F.; Motto, M. Identification of critical process parameters and its interplay with nanosuspension formulation prepared by top down media milling technology – A QbD perspective. Pharm. Dev. Technol., 2013, 18(3), 719-729.
[http://dx.doi.org/10.3109/10837450.2012.723720] [PMID: 23061898]
[68]
Nigusse, B.; Gebre-Mariam, T.; Belete, A. Design, development and optimization of sustained release floating, bioadhesive and swellable matrix tablet of ranitidine hydrochloride. PLoS One, 2021, 16(6), e0253391.
[http://dx.doi.org/10.1371/journal.pone.0253391] [PMID: 34170952]
[69]
Irshad, A.; Yousuf, R.I.; Shoaib, M.H.; Qazi, F.; Saleem, M.T.; Siddiqui, F.; Ahmed, F.R.; Rehman, R.; Jabeen, S.; Farooqi, S.; Khan, M.Z.; Masood, R. Effect of starch, cellulose and povidone based superdisintegrants in a QbD-based approach for the development and optimization of Nitazoxanide orodispersible tablets: Physicochemical characterization, compaction behavior and in-silico PBPK modeling of its active metabolite Tizoxanide. J. Drug Deliv. Sci. Technol., 2023, 79, 104079.
[http://dx.doi.org/10.1016/j.jddst.2022.104079]
[70]
Thalluri, C.; Amin, R.; Mandhadi, J.R.; Gacem, A.; Emran, T.B.; Dey, B.K.; Roy, A.; Alqahtani, M.S.; Refat, M.S.; Safi, S.Z.; Alsuhaibani, A.M. Central composite designed fast dissolving tablets for improved solubility of the loaded drug ondansetron hydrochloride. BioMed Res. Int., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/2467574] [PMID: 36046453]
[71]
Liu, T.; Yu, X.; Yin, H. Study of top-down and bottom-up approaches by using design of experiment (DoE) to produce meloxicam nanocrystal capsules. AAPS PharmSciTech, 2020, 21(3), 79.
[http://dx.doi.org/10.1208/s12249-020-1621-7] [PMID: 31974817]
[72]
Renu; Puri, R. Material optimization for the development of delayed release formulation using computational tools. Mater. Today Proc., 2022, 68, 722-727.
[http://dx.doi.org/10.1016/j.matpr.2022.06.003]
[73]
Kumari, P.K.; Vastav, M.S.; Rao, Y.S. Development and optimization of orodispersible tablets of fexofenadine hydrochloride (FFH) by box-behnken statistical design (BBD). Technology, 2022, 12(3), 1357-1366.
[74]
Elsayed, M.M.A.; Aboelez, M.O.; Elsadek, B.E.M.; Sarhan, H.A.; Khaled, K.A.; Belal, A.; Khames, A.; Hassan, Y.A.; Abdel-Rheem, A.A.; Elkaeed, E.B.; Raafat, M.; Elsadek, M.E.M. Tolmetin sodium fast dissolving tablets for rheumatoid arthritis treatment: Preparation and optimization using Box-Behnken design and response surface methodology. Pharmaceutics, 2022, 14(4), 880.
[http://dx.doi.org/10.3390/pharmaceutics14040880] [PMID: 35456714]
[75]
Won, D.H.; Park, H.; Ha, E.S.; Kim, H.H.; Jang, S.W.; Kim, M.S. Optimization of bilayer tablet manufacturing process for fixed dose combination of sustained release high-dose drug and immediate release low-dose drug based on quality by design (QbD). Int. J. Pharm., 2021, 605, 120838.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120838] [PMID: 34197909]
[76]
Liyanapathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem., 2005, 93(1), 47-56.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.050]
[77]
Vishwakarma, P.; Choudhary, R. Micro sponges: A novel strategy to control the delivery rate of active agents with reduced skin irritancy. J. Drug Deliv. Ther., 2019, 9(6-s), 238-247.
[http://dx.doi.org/10.22270/jddt.v9i6-s.3757]
[78]
Nemr, A.A.; El-Mahrouk, G.M.; Badie, H.A. Hyaluronic acid-enriched bilosomes: An approach to enhance ocular delivery of agomelatine via D-optimal design: Formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits. Drug Deliv., 2022, 29(1), 2343-2356.
[http://dx.doi.org/10.1080/10717544.2022.2100513] [PMID: 35869684]
[79]
Chen, Y.; Kotamarthy, L.; Dan, A.; Sampat, C.; Bhalode, P.; Singh, R.; Glasser, B.J.; Ramachandran, R.; Ierapetritou, M. Optimization of key energy and performance metrics for drug product manufacturing. Int. J. Pharm., 2023, 631, 122487.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122487] [PMID: 36521636]
[80]
Aldawsari, H.M.; Naveen, N.R.; Alhakamy, N.A.; Goudanavar, P.S.; Rao, G.S.N.K.; Budha, R.R.; Nair, A.B.; Badr-Eldin, S.M. Compression-coated pulsatile chronomodulated therapeutic system: QbD assisted optimization. Drug Deliv., 2022, 29(1), 2258-2268.
[http://dx.doi.org/10.1080/10717544.2022.2094500] [PMID: 35838522]
[81]
Singh, B.; Kapil, R.; Nandi, M.; Ahuja, N. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin. Drug Deliv., 2011, 8(10), 1341-1360.
[http://dx.doi.org/10.1517/17425247.2011.605120] [PMID: 21790511]
[82]
Bandyopadhyay, S.; Beg, S.; Katare, O.; Sharma, G.; Singh, B. QbD-oriented development of self-nanoemulsifying drug delivery systems (SNEDDS) of valsartan with improved biopharmaceutical performance. Curr. Drug Deliv., 2015, 12(5), 544-563.
[http://dx.doi.org/10.2174/1567201812666150227125639] [PMID: 25731868]
[83]
Beg, S.; Sandhu, P.S.; Batra, R.S.; Khurana, R.K.; Singh, B. QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance. Drug Deliv., 2015, 22(6), 765-784.
[http://dx.doi.org/10.3109/10717544.2014.900154] [PMID: 24673611]
[84]
Beg, S.; Kaur, R.; Khurana, R.K.; Rana, V.; Sharma, T.; Singh, B. QbD-based development of cationic self-nanoemulsifying drug delivery systems of paclitaxel with improved biopharmaceutical attributes. AAPS PharmSciTech, 2019, 20(3), 118.
[http://dx.doi.org/10.1208/s12249-019-1319-x] [PMID: 30790136]
[85]
Sharma, T.; Jain, A.; Kaur, R.; Saini, S.; Katare, O.P.; Singh, B. Supersaturated LFCS type III self-emulsifying delivery systems of sorafenib tosylate with improved biopharmaceutical performance: QbD-enabled development and evaluation. Drug Deliv. Transl. Res., 2020, 10(4), 839-861.
[http://dx.doi.org/10.1007/s13346-020-00772-x] [PMID: 32415654]
[86]
Jain, A.; Sharma, T.; Kumar, R.; Katare, O.P.; Singh, B. Raloxifene-loaded SLNs with enhanced biopharmaceutical potential: QbD-steered development, in vitro evaluation, in vivo pharmacokinetics, and IVIVC. Drug Deliv. Transl. Res., 2022, 12(5), 1136-1160.
[http://dx.doi.org/10.1007/s13346-021-00990-x] [PMID: 33966178]
[87]
Singh, B.; Sharma, T.; Kaur, R.; Saini, S.; Kaur, R.; Beg, S. QbD-Steered systematic development of drug delivery nanoconstructs: Vital precepts, retrospect and prospects.Biomedical Translational Research: Drug Design and Discovery; Springer Nature Singapore: Singapore, 2022, pp. 315-350.
[http://dx.doi.org/10.1007/978-981-16-9232-1_18]
[88]
Patel, G.M.; Shelat, P.K.; Lalwani, A.N. QbD based development of proliposome of lopinavir for improved oral bioavailability. Eur. J. Pharm. Sci., 2017, 108, 50-61.
[http://dx.doi.org/10.1016/j.ejps.2016.08.057] [PMID: 27586019]
[89]
Komati, S.; Swain, S.; Rao, M.E.B.; Jena, B.R.; Unnam, S.; Dasi, V. QbD-based design and characterization of mucoadhesive microspheres of quetiapine fumarate with improved oral bioavailability and brain biodistribution potential. Bull. Fac. Pharm. Cairo Univ., 2018, 56(2), 129-145.
[http://dx.doi.org/10.1016/j.bfopcu.2018.09.002]
[90]
Bansal, S.; Beg, S.; Garg, B.; Asthana, A.; Asthana, G.S.; Singh, B. QbD-oriented development, and characterization of effervescent floating-bioadhesive tablets of cefuroxime axetil. AAPS PharmSciTech, 2016, 17(5), 1086-1099.
[http://dx.doi.org/10.1208/s12249-015-0431-9] [PMID: 26527606]
[91]
Waghule, T.; Rapalli, V.K.; Singhvi, G.; Manchanda, P.; Hans, N.; Dubey, S.K.; Hasnain, M.S.; Nayak, A.K. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J. Drug Deliv. Sci. Technol., 2019, 52, 303-315.
[http://dx.doi.org/10.1016/j.jddst.2019.04.026]
[92]
Prasad, P.S.; Imam, S.S.; Aqil, M.; Sultana, Y.; Ali, A. QbD-based carbopol transgel formulation: Characterization, pharmacokinetic assessment and therapeutic efficacy in diabetes. Drug Deliv., 2016, 23(3), 1047-1056.
[http://dx.doi.org/10.3109/10717544.2014.936536] [PMID: 25033041]
[93]
Choi, D.H.; Kim, Y.S.; Kim, D.D.; Jeong, S.H. QbD based development and evaluation of topical microemulsion-based hydrogel against superficial fungal infections. J. Pharm. Investig., 2019, 49(1), 87-103.
[http://dx.doi.org/10.1007/s40005-018-0386-4] [PMID: 31186979]
[94]
Jain, P.; Taleuzzaman, M.; Kala, C.; Kumar Gupta, D.; Ali, A.; Aslam, M. Quality by design (Qbd) assisted development of phytosomal gel of aloe vera extract for topical delivery. J. Liposome Res., 2021, 31(4), 381-388.
[http://dx.doi.org/10.1080/08982104.2020.1849279] [PMID: 33183121]
[95]
Saha, M.; Sikder, P.; Saha, A.; Shah, S.; Sultana, S.; Emran, T.; Banik, A.; Islam, Z.; Islam, M.S.; Sharker, S.M.; Reza, H.M. QbD approach towards robust design space for flutamide/piperineself-emulsifying drug delivery system with reduced liver injury. AAPS PharmSciTech, 2022, 23(1), 62.
[http://dx.doi.org/10.1208/s12249-022-02213-z] [PMID: 35080685]
[96]
Tiwari, G.; Tiwari, R.; Bannerjee, S.K.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[97]
Sharma, V.; Singh, L.; Verma, N. QbD enabled process variable study to develop sustained release chitosan-alginate embedded delivery system for improved patient compliance. Braz. J. Pharm. Sci., 2022, 58, e19803.
[http://dx.doi.org/10.1590/s2175-97902021000319803]
[98]
Vohra, A.M.; Patel, C.V.; Kumar, P.; Thakkar, H.P. Development of dual drug loaded solid self microemulsifying drug delivery system: Exploring interfacial interactions using QbD coupled risk based approach. J. Mol. Liq., 2017, 242, 1156-1168.
[http://dx.doi.org/10.1016/j.molliq.2017.08.002]
[99]
Sharma, V.; Singh, L.; Verma, N. Establishment and escalation of amino acid stacked repressible release embedded system using QbD. Turk. J. Pharm. Sci., 2019, 16(1), 20-26.
[100]
Hales, D.; Vlase, L.; Porav, S.A.; Bodoki, A.; Barbu-Tudoran, L.; Achim, M.; Tomuță, I. A quality by design (QbD) study on enoxaparin sodium loaded polymeric microspheres for colon-specific delivery. Eur. J. Pharm. Sci., 2017, 100, 249-261.
[http://dx.doi.org/10.1016/j.ejps.2017.01.006] [PMID: 28088371]
[101]
Badhwar, R.; Singh, R.; Popli, H. Implementation of quality by design (qbd) approach in development of qct-smedds with combination of agnps for diabetic foot ulcer management. Indian J. Pharm. Educ. Res., 2021, 55, 1207-1223.
[102]
Kesharwani, P.; Md, S.; Alhakamy, N.A.; Hosny, K.M.; Haque, A. QbD enabled azacitidine loaded liposomal nanoformulation and its in vitro evaluation. Polymers, 2021, 13(2), 250.
[http://dx.doi.org/10.3390/polym13020250] [PMID: 33451016]
[103]
Dobó, D.G.; Németh, Z.; Sipos, B.; Cseh, M.; Pallagi, E.; Berkesi, D.; Kozma, G.; Kónya, Z.; Csóka, I. Pharmaceutical development and design of thermosensitive liposomes based on the QbD approach. Molecules, 2022, 27(5), 1536.
[http://dx.doi.org/10.3390/molecules27051536] [PMID: 35268637]
[104]
Sylvester, B.; Porfire, A.; Muntean, D.M.; Vlase, L.; Lupuţ, L.; Licarete, E.; Sesarman, A.; Alupei, M.C.; Banciu, M.; Achim, M.; Tomuţă, I. Optimization of prednisolone-loaded long-circulating liposomes via application of Quality by Design (QbD) approach. J. Liposome Res., 2018, 28(1), 49-61.
[http://dx.doi.org/10.1080/08982104.2016.1254242] [PMID: 27788618]
[105]
Németh, Z.; Pallagi, E.; Dobó, D.G.; Kozma, G.; Kónya, Z.; Csóka, I. An updated risk assessment as part of the QbD-based liposome design and development. Pharmaceutics, 2021, 13(7), 1071.
[http://dx.doi.org/10.3390/pharmaceutics13071071] [PMID: 34371762]
[106]
Toma, I.; Tefas, L.R.; Bogdan, C.Ă.; Tomuta, I.O. Development and characterization of loratadine liposomal gel using qbd approach. Farmacia, 2022, 70(2), 204-213.
[http://dx.doi.org/10.31925/farmacia.2022.2.4]
[107]
Gurumukhi, V.C.; Bari, S.B. Quality by design (QbD)–based fabrication of atazanavir-loaded nanostructured lipid carriers for lymph targeting: Bioavailability enhancement using chylomicron flow block model and toxicity studies. Drug Deliv. Transl. Res., 2022, 12(5), 1230-1252.
[http://dx.doi.org/10.1007/s13346-021-01014-4] [PMID: 34110597]
[108]
Permana, A.D.; Tekko, I.A.; McCrudden, M.T.C.; Anjani, Q.K.; Ramadon, D.; McCarthy, H.O.; Donnelly, R.F. Solid lipid nanoparticle-based dissolving microneedles: A promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. J. Control. Release, 2019, 316, 34-52.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.004] [PMID: 31655132]
[109]
Panigrahi, K.C.; Jena, J.; Jena, G.K.; Patra, C.N.; Rao, M.E.B. QBD-based systematic development of Bosentan SNEDDS: Formulation, characterization and pharmacokinetic assessment. J. Drug Deliv. Sci. Technol., 2018, 47, 31-42.
[http://dx.doi.org/10.1016/j.jddst.2018.06.021]
[110]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[111]
Shah, V.H.; Jobanputra, A. Enhanced ungual permeation of terbinafine HCl delivered through liposome-loaded nail lacquer formulation optimized by QbD approach. AAPS PharmSciTech, 2018, 19(1), 213-224.
[http://dx.doi.org/10.1208/s12249-017-0831-0] [PMID: 28681334]
[112]
Cavalcanti, S.M.T.; Nunes, C.; Lima, S.A.C.; Soares-Sobrinho, J.L.; Reis, S. Multiple lipid nanoparticles (MLN), a new generation of lipid nanoparticles for drug delivery systems: Lamivudine-MLN experimental design. Pharm. Res., 2017, 34(6), 1204-1216.
[http://dx.doi.org/10.1007/s11095-017-2136-0] [PMID: 28315084]
[113]
Ma, Z.; Liu, J.; Li, X.; Xu, Y.; Liu, D.; He, H.; Wang, Y.; Tang, X. Hydroxycamptothecin (HCPT)-loaded PEGlated lipid–polymer hybrid nanoparticles for effective delivery of HCPT: QbD-based development and evaluation. Drug Deliv. Transl. Res., 2022, 12(1), 306-324.
[http://dx.doi.org/10.1007/s13346-021-00939-0] [PMID: 33712991]
[114]
Durgun, M.E.; Mesut, B.; Hacıoğlu, M.; Güngör, S.; Özsoy, Y. Optimization of the micellar-based in situ gelling systems posaconazole with quality by design (QBD) approach and characterization by in vitro studies. Pharmaceutics, 2022, 14(3), 526.
[http://dx.doi.org/10.3390/pharmaceutics14030526] [PMID: 35335902]
[115]
Mahmood, A.; Rapalli, V.K.; Waghule, T.; Gorantla, S.; Singhvi, G. Luliconazole loaded lyotropic liquid crystalline nanoparticles for topical delivery: QbD driven optimization, in-vitro characterization and dermatokinetic assessment. Chem. Phys. Lipids, 2021, 234, 105028.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.105028] [PMID: 33309940]
[116]
Waghule, T.; Patil, S.; Rapalli, V.K.; Girdhar, V.; Gorantla, S.; Kumar Dubey, S.; Saha, R.N.; Singhvi, G. Improved skin-permeated diclofenac-loaded lyotropic liquid crystal nanoparticles: QbD-driven industrial feasible process and assessment of skin deposition. Liq. Cryst., 2021, 48(7), 991-1009.
[http://dx.doi.org/10.1080/02678292.2020.1836276]
[117]
Ghose, D.; Patra, C.N.; Ravi Kumar, B.V.V.; Swain, S.; Jena, B.R.; Choudhury, P.; Shree, D. QbD-based formulation optimization and characterization of polymeric nanoparticles of cinacalcet hydrochloride with improved biopharmaceutical attributes. Turkish Journal of Pharmaceutical Sciences, 2021, 18(4), 452-464.
[http://dx.doi.org/10.4274/tjps.galenos.2020.08522] [PMID: 34496552]
[118]
Cao, L.; Russo, D.; Felton, K.; Salley, D.; Sharma, A.; Keenan, G.; Mauer, W.; Gao, H.; Cronin, L.; Lapkin, A.A. Optimization of formulations using robotic experiments driven by machine learning DoE. Cell Rep. Phy. Sci., 2021, 2(1), 100295.
[http://dx.doi.org/10.1016/j.xcrp.2020.100295]
[119]
Amasya, G.; Ozturk, C.; Aksu, B.; Tarimci, N. QbD based formulation optimization of semi-solid lipid nanoparticles as nano-cosmeceuticals. J. Drug Deliv. Sci. Technol., 2021, 66, 102737.
[http://dx.doi.org/10.1016/j.jddst.2021.102737]
[120]
Rizg, W.Y.; Naveen, N.R.; Kurakula, M.; Bukhary, H.A.; Safhi, A.Y.; Alfayez, E.; Sindi, A.M.; Ali, S.; Murshid, S.S.; Hosny, K.M. QbD supported optimization of the alginate-chitosan nanoparticles of simvastatin in enhancing the anti-proliferative activity against tongue carcinoma. Gels, 2022, 8(2), 103.
[http://dx.doi.org/10.3390/gels8020103] [PMID: 35200484]
[121]
Yasir, M.; Sara, U.V.S. Preparation and optimization of haloperidol loaded solid lipid nanoparticles by Box–Behnken design. J. Pharm. Res., 2013, 7(6), 551-558.
[http://dx.doi.org/10.1016/j.jopr.2013.05.022]
[122]
Kostevšek, N. A review on the optimal design of magnetic nanoparticle-based T 2 MRI contrast agents. Magnetochemistry, 2020, 6(1), 11.
[http://dx.doi.org/10.3390/magnetochemistry6010011]
[123]
Wang, M.; Wang, Y.; Qiao, C.; Wang, S. Study on central composite design method to optimize the preparation process of chrysophanol-pluronic F127 nanomicelles and pharmacokinetics. J. Nanomater., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/7428740]
[124]
Tarawneh, S.F.; Dahmash, E.Z.; Alyami, H.; Abu-Doleh, S.M.; Al-Ali, S.; Iyire, A.; Abuthawabeh, R. Mechanistic modelling of targeted pulmonary delivery of dactinomycin iron oxide loaded nanoparticles for lung cancer therapy. Pharma. Develop. and Techno., 2022, 1-35.
[125]
Ebrahimnejad, P.; Mahjoub, M.A.; Shahlaee, F.; Ebrahimi, P.; Sadeghi-Ghadi, Z. Preparation and optimization of controlled release nanoparticles containing cefixime using central composite design: An attempt to enrich its antimicrobial activity. Curr. Drug Deliv., 2022, 19(3), 369-378.
[http://dx.doi.org/10.2174/1567201818666210726160956] [PMID: 34315365]
[126]
Gupta, T.; Kenjale, P.; Pokharkar, V. QbD-based optimization of raloxifene-loaded cubosomal formulation for transdemal delivery: Ex vivo permeability and in vivo pharmacokinetic studies. Drug Deliv. Transl. Res., 2022, 12(12), 2979-2992.
[http://dx.doi.org/10.1007/s13346-022-01162-1] [PMID: 35462597]
[127]
Jiang, J.; Wu, H.; Zou, Z. In vitro and in vivo evaluation of a novel lidocaine-loaded cubosomal gel for prolonged local anesthesia. J. Biomater. Appl., 2022, 37(2), 315-323.
[http://dx.doi.org/10.1177/08853282221087346] [PMID: 35373629]
[128]
Waghule, T.; Laxmi Swetha, K.; Roy, A.; Narayan Saha, R.; Singhvi, G. Quality by design assisted optimization of temozolomide loaded PEGylated lyotropic liquid crystals: Investigating various formulation and process variables along with in-vitro characterization. J. Mol. Liq., 2022, 352, 118724.
[http://dx.doi.org/10.1016/j.molliq.2022.118724]
[129]
Gorantla, S.; Saha, R.N.; Singhvi, G. Exploring the affluent potential of glyceryl mono oleate – myristol liquid crystal nanoparticles mediated localized topical delivery of Tofacitinib: Study of systematic QbD, skin deposition and dermal pharmacokinetics assessment. J. Mol. Liq., 2022, 346, 117053.
[http://dx.doi.org/10.1016/j.molliq.2021.117053]
[130]
Puri, V.; Froelich, A.; Shah, P.; Pringle, S.; Chen, K.; Michniak-Kohn, B. Quality by design guided development of polymeric nanospheres of terbinafine hydrochloride for topical treatment of onychomycosis using a nano-gel formulation. Pharmaceutics, 2022, 14(10), 2170.
[http://dx.doi.org/10.3390/pharmaceutics14102170] [PMID: 36297605]
[131]
Aguilar-Jiménez, Z.; González-Ballesteros, M.; Dávila-Manzanilla, S.G.; Espinoza-Guillén, A.; Ruiz-Azuara, L. Development and in vitro and in vivo evaluation of an antineoplastic copper(II) compound (Casiopeina III-ia) loaded in nonionic vesicles using quality by design. Int. J. Mol. Sci., 2022, 23(21), 12756.
[http://dx.doi.org/10.3390/ijms232112756] [PMID: 36361549]

© 2024 Bentham Science Publishers | Privacy Policy