Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Meta-Analysis

The Impact of ABCB1 SNPs on Tacrolimus Pharmacokinetics in Liver or Kidney Transplant Recipients: A Meta-analysis

Author(s): Ze Li, Xiaozhen Wang, Dandan Li, Sheng Cheng, Yiwen Dong, Hongge Yang and Xingang Li*

Volume 29, Issue 29, 2023

Published on: 10 October, 2023

Page: [2323 - 2335] Pages: 13

DOI: 10.2174/0113816128259239231009112019

Price: $65

conference banner
Abstract

Purpose: We aimed to investigate the association between ATP Binding Cassette Subfamily B Member 1 (ABCB1) single nucleotide polymorphisms (SNPs) and the pharmacokinetics of tacrolimus.

Methods: A search was conducted in Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (SCI), MEDLINE, and Embase from inception to November 2022. Outcomes included weightadjusted daily dose (DD) and dose-adjusted trough concentration (C0/Dose).

Results: A total of 1059 liver or kidney transplant recipients from 14 publications were included. For adult liver transplantation recipients, DD of ABCB1 3435C>T CC carriers was 0.03 mg/kg/day (WMD = 0.03, 95% CI: 0.01 to 0.05, I2 = 0%) higher than ABCB1 3435C>T T carriers at post-transplantation ≤ 7 days; C0/dose of ABCB1 3435C>T CC carriers were 31.88 (WMD = -31.88, 95% CI: -62.32 to -1.45, I2 = 83.5%) or 34.61 (ng/ml)/(mg/kg/day) (WMD = -34.61, 95% CI: -65.26 to -3.97, I2 = 55.3%) lower than ABCB1 3435C>T T carriers at post-transplantation ≤ 7 or 14 days, respectively. No difference in C0/dose was observed for ABCB1 2677G>T/A or ABCB1 1236C>T SNPs in both liver and kidney transplant recipients.

Conclusion: ABCB1 3435C>T SNP might have a potential impact on tacrolimus pharmacokinetics in the early stage after liver transplantation, indicating the probability of individualized immunosuppressive therapy based on genetic polymorphism. Given some limitations, further well-designed prospective studies are warranted to validate these conclusions..

Keywords: Liver, meta-analysis, ABCB1, SNPs, tacrolimus, pharmacokinetics, transplant recipients, kidney.

[1]
Ong SC, Gaston RS. Thirty years of tacrolimus in clinical practice. Transplantation 2021; 105(3): 484-95.
[http://dx.doi.org/10.1097/TP.0000000000003350] [PMID: 32541562]
[2]
Tocci MJ, Matkovich DA, Collier KA, et al. The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. J Immunol 1989; 143(2): 718-26.
[http://dx.doi.org/10.4049/jimmunol.143.2.718] [PMID: 2472451]
[3]
McMaster P, Mirza DF, Ismail T, Vennarecci G, Patapis P, Mayer AD. Therapeutic drug monitoring of tacrolimus in clinical transplantation. Ther Drug Monit 1995; 17(6): 602-5.
[http://dx.doi.org/10.1097/00007691-199512000-00010] [PMID: 8588228]
[4]
Millner L, Rodriguez C, Jortani SA. A clinical approach to solving discrepancies in therapeutic drug monitoring results for patients on sirolimus or tacrolimus: Towards personalized medicine, immunosuppression and pharmacogenomics. Clin Chim Acta 2015; 450: 15-8.
[http://dx.doi.org/10.1016/j.cca.2015.07.022] [PMID: 26232156]
[5]
Buendia JA, Bramuglia G, Staatz CE. Effects of combinational CYP3A5 6986A>G polymorphism in graft liver and native intestine on the pharmacokinetics of tacrolimus in liver transplant patients: A meta-analysis. Ther Drug Monit 2014; 36(4): 442-7.
[http://dx.doi.org/10.1097/FTD.0000000000000032] [PMID: 24378577]
[6]
Rojas L, Neumann I, Herrero MJ, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: A systematic review and meta-analysis of observational studies. Pharmacogenomics J 2015; 15(1): 38-48.
[http://dx.doi.org/10.1038/tpj.2014.38] [PMID: 25201288]
[7]
Shi WL, Tang HL, Zhai SD. Effects of the CYP3A4*1B genetic polymorphism on the pharmacokinetics of tacrolimus in adult renal transplant recipients: A meta-analysis. PLoS One 2015; 10(6): e0127995.
[http://dx.doi.org/10.1371/journal.pone.0127995] [PMID: 26039043]
[8]
Sharom FJ. ABC multidrug transporters: Structure, function and role in chemoresistance. Pharmacogenomics 2008; 9(1): 105-27.
[http://dx.doi.org/10.2217/14622416.9.1.105] [PMID: 18154452]
[9]
Anglicheau D, Verstuyft CCAA, Laurent-Puig P, et al. Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J Am Soc Nephrol 2003; 14(7): 1889-96.
[http://dx.doi.org/10.1097/01.ASN.0000073901.94759.36] [PMID: 12819250]
[10]
Naushad SM, Pavani A, Rupasree Y, Hussain T, Alrokayan SA, Kutala VK. Recipient ABCB1, donor and recipient CYP3A5 genotypes influence tacrolimus pharmacokinetics in liver transplant cases. Pharmacol Rep 2019; 71(3): 385-92.
[http://dx.doi.org/10.1016/j.pharep.2019.01.006] [PMID: 31003147]
[11]
Liu YY, Li C, Cui Z, et al. The effect of ABCB1 C3435T polymorphism on pharmacokinetics of tacrolimus in liver transplantation: A meta-analysis. Gene 2013; 531(2): 476-88.
[http://dx.doi.org/10.1016/j.gene.2013.09.024] [PMID: 24042126]
[12]
Li Y, Hu X, Cai B, et al. Meta-analysis of the effect of MDR1 C3435 polymorphism on tacrolimus pharmacokinetics in renal transplant recipients. Transpl Immunol 2012; 27(1): 12-8.
[http://dx.doi.org/10.1016/j.trim.2012.03.006] [PMID: 22504573]
[13]
Su L, Yin L, Yang J, Sun L. Correlation between gene polymorphism and blood concentration of calcineurin inhibitors in renal transplant recipients. Medicine 2019; 98(26): e16113.
[http://dx.doi.org/10.1097/MD.0000000000016113] [PMID: 31261526]
[14]
Peng W, Lin Y, Zhang H, Meng K. Effect of ABCB1 3435C>T genetic polymorphism on pharmacokinetic variables of tacrolimus in adult renal transplant recipients: A systematic review and meta-analysis. Clin Ther 2020; 42(10): 2049-65.
[http://dx.doi.org/10.1016/j.clinthera.2020.07.016] [PMID: 32888708]
[15]
Helal M, Obada M, Elrazek WA, Safan M, El-Hakim TA, El-Said H. Effect of ABCB1 (3435C>T) and CYP3A5 (6986A>G) genes polymorphism on tacrolimus concentrations and dosage requirements in liver transplant patients. Egypt J Med Hum Genet 2017; 18(3): 261-8.
[http://dx.doi.org/10.1016/j.ejmhg.2016.10.005]
[16]
Zhu LQ, Zhang Y, Wang N, et al. The relationship between CYP3A5 and MDR1 gene polymorphisms and tacrolimus concentration/dose ratio in liver transplant patients. Zhongguo Xin Yao Zazhi 2015; 24(5): 545-9.
[17]
Miyata Y, Akamatsu N, Sugawara Y, et al. Pharmacokinetics of a once-daily dose of tacrolimus early after liver transplantation: With special reference to CYP3A5 and ABCB1 single nucleotide polymorphisms. Ann Transplant 2016; 21: 491-9.
[http://dx.doi.org/10.12659/AOT.898358] [PMID: 27503662]
[18]
Yee ML, Tan HH, Sia WJ, Yau W-P. Influences of donor and recipient gene polymorphisms on tacrolimus dosing and pharmacokinetics in Asian liver transplant patients. OJOTS 2013; 3(3): 53-61.
[http://dx.doi.org/10.4236/ojots.2013.33011]
[19]
Shi Y, Li Y, Tang J, et al. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients. Gene 2013; 512(2): 226-31.
[http://dx.doi.org/10.1016/j.gene.2012.10.048] [PMID: 23107770]
[20]
Gómez-Bravo MA, Salcedo M, Fondevila C, et al. Impact of donor and recipient CYP3A5 and ABCB1 genetic polymorphisms on tacrolimus dosage requirements and rejection in Caucasian Spanish liver transplant patients. J Clin Pharmacol 2013; 53(11): 1146-54.
[http://dx.doi.org/10.1002/jcph.154] [PMID: 23900887]
[21]
Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. JAMA 2000; 283(15): 2008-12.
[http://dx.doi.org/10.1001/jama.283.15.2008] [PMID: 10789670]
[22]
Little J, Higgins JPT, Ioannidis JPA, et al. STrengthening the reporting of genetic association studies (STREGA)- An extension of the STROBE statement. PLoS Med 2009; 6(2): e1000022.
[http://dx.doi.org/10.1371/journal.pmed.1000022] [PMID: 19192942]
[23]
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315(7109): 629-34.
[http://dx.doi.org/10.1136/bmj.315.7109.629] [PMID: 9310563]
[24]
Li Y, Yan L, Shi Y, Bai Y, Tang J, Wang L. CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients. Springerplus 2015; 4(1): 637.
[http://dx.doi.org/10.1186/s40064-015-1425-5] [PMID: 26543771]
[25]
de Wildt SN, van Schaik RHN, Soldin OP, et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol 2011; 67(12): 1231-41.
[http://dx.doi.org/10.1007/s00228-011-1083-7] [PMID: 21698374]
[26]
Goto M, Masuda S, Saito H, et al. C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than Pgp in recipients of living-donor liver transplantation. Pharmacogenetics 2002; 12(6): 451-7.
[http://dx.doi.org/10.1097/00008571-200208000-00005] [PMID: 12172213]
[27]
Goto M, Masuda S, Kiuchi T, et al. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics 2004; 14(7): 471-8.
[http://dx.doi.org/10.1097/01.fpc.0000114747.08559.49] [PMID: 15226679]
[28]
Provenzani A, Notarbartolo M, Labbozzetta M, et al. The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients. Ann Transplant 2009; 14(1): 23-31.
[PMID: 19289993]
[29]
Provenzani A, Notarbartolo M, Labbozzetta M, et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients. Int J Mol Med 2011; 28(6): 1093-102.
[http://dx.doi.org/10.3892/ijmm.2011.794] [PMID: 21922127]
[30]
Wei-lin W, Jing J, Shu-sen Z, et al. Tacrolimus dose requirement in relation to donor and recipientABCB1 andCYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver Transpl 2006; 12(5): 775-80.
[http://dx.doi.org/10.1002/lt.20709] [PMID: 16628701]
[31]
Jin J, Wu LH, Wang WL, Yu SF, Yan S, Zheng SS. Impact of multidrug resistance 1 gene polymorphism on tacrolimus dose and concentration-to-dose ratio in Chinese liver transplantation recipients. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2005; 22(6): 616-20.
[PMID: 16331555]
[32]
Bonhomme-Faivre L, Picard F, et al. Effect of the ABCB1 3435C>T polymorphism on tacrolimus concentrations and dosage requirements in liver transplant recipients. Am J Health Syst Pharm 2009; 66(18): 1645-51.
[http://dx.doi.org/10.2146/ajhp080396] [PMID: 19729569]
[33]
Yu X, Xie H, Wei B, et al. Association of MDR1 gene SNPs and haplotypes with the tacrolimus dose requirements in Han Chinese liver transplant recipients. PLoS One 2011; 6(11): e25933.
[http://dx.doi.org/10.1371/journal.pone.0025933] [PMID: 22110582]
[34]
Rahsaz M, Azarpira N, Nikeghbalian S, et al. Association between tacrolimus concentration and genetic polymorphisms of CYP3A5 and ABCB1 during the early stage after liver transplant in an Iranian population. Exp Clin Transplant 2012; 10(1): 24-9.
[http://dx.doi.org/10.6002/ect.2011.0093] [PMID: 22309416]
[35]
Haufroid V, Mourad M, Van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004; 14(3): 147-54.
[http://dx.doi.org/10.1097/00008571-200403000-00002] [PMID: 15167702]
[36]
Saracino A, Muscaridola N, Cifarelli RA, Stallone G, Grandaliano G, Santarsia G. Multidrug-resistance 1 gene single-nucleotide polymorphisms do not influence long-term graft survival after kidney transplantation. Transplant Proc 2014; 46(7): 2214-9.
[http://dx.doi.org/10.1016/j.transproceed.2014.07.051] [PMID: 25242754]
[37]
Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology-drug disposition, action, and therapy in infants and children. N Engl J Med 2003; 349(12): 1157-67.
[http://dx.doi.org/10.1056/NEJMra035092] [PMID: 13679531]
[38]
Kim R, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70(2): 189-99.
[http://dx.doi.org/10.1067/mcp.2001.117412] [PMID: 11503014]
[39]
Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther 2013; 93(4): 324-5.
[http://dx.doi.org/10.1038/clpt.2013.4] [PMID: 23422873]
[40]
Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995; 29(6): 404-30.
[http://dx.doi.org/10.2165/00003088-199529060-00003] [PMID: 8787947]
[41]
Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 2004; 43(10): 623-53.
[http://dx.doi.org/10.2165/00003088-200443100-00001] [PMID: 15244495]
[42]
Wang Z, Wu S, Chen D, et al. Influence of TLR4 rs1927907 locus polymorphisms on tacrolimus pharmacokinetics in the early stage after liver transplantation. Eur J Clin Pharmacol 2014; 70(8): 925-31.
[http://dx.doi.org/10.1007/s00228-014-1673-2] [PMID: 24820765]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy