Review Article

阿尔茨海默病治疗的最新进展:多靶点定向配体方法

卷 31, 期 37, 2024

发表于: 09 October, 2023

页: [6032 - 6062] 页: 31

弟呕挨: 10.2174/0109298673264076230921065945

价格: $65

conference banner
摘要

阿尔茨海默病(AD)是一种神经退行性疾病,是进行性痴呆的主要原因之一,影响着全球5000万人。许多致病过程,包括β淀粉样蛋白聚集、tau蛋白过度磷酸化、氧化应激、神经元死亡和胆碱能神经元功能恶化,都与其进展有关。由于阿尔茨海默病的多面性,单化合物-单靶点治疗模式在治疗AD方面不成功。近年来,多靶点定向配体研究的发展已经探索了与疾病相关的互补途径。我们的目的是发现MTDL在治疗AD中的关键作用和进展;因此,我们检索了“Pub- Med”、“ScienceDirect”、“ACS”和“Bentham Science”上近十年的文献,关键词为神经退行性疾病、阿尔茨海默病和多靶点定向配体。根据工作质量和与AD的相关性对文献进行进一步筛选。因此,本文综述了目前多靶点定向配体相对于传统单靶点药物的进展和优势,以及其治疗AD的最新进展。

关键词: 神经退行性疾病,阿尔茨海默病,痴呆,多靶点定向配体,大脑,淀粉样蛋白。

[1]
Patel, D.V.; Patel, N.R.; Kanhed, A.M.; Teli, D.M.; Patel, K.B.; Gandhi, P.M.; Patel, S.P.; Chaudhary, B.N.; Shah, D.B.; Prajapati, N.K.; Patel, K.V.; Yadav, M.R. Further studies on triazinoindoles as potential novel multitarget-directed anti-Alzheimer’s agents. ACS Chem. Neurosci., 2020, 11(21), 3557-3574.
[http://dx.doi.org/10.1021/acschemneuro.0c00448] [PMID: 33073564]
[2]
Blaikie, L.; Kay, G.; Kong, T.L.P. Current and emerging therapeutic targets of Alzheimer’s disease for the design of multi-target directed ligands. MedChemComm, 2019, 10(12), 2052-2072.
[http://dx.doi.org/10.1039/C9MD00337A] [PMID: 32206241]
[3]
Uddin, M.S.; Kabir, M.T.; Jeandet, P.; Mathew, B.; Ashraf, G.M.; Perveen, A.; Bin-Jumah, M.N.; Mousa, S.A.; Abdel-Daim, M.M. Novel anti-Alzheimer’s therapeutic molecules targeting amyloid precursor protein processing. Oxid. Med. Cell. Longev., 2020, 2020, 1-19.
[http://dx.doi.org/10.1155/2020/7039138] [PMID: 32411333]
[4]
Castanho, I.; Lunnon, K. Epigenetic Processes in Alzheimer’s Disease. In: Chromatin Signaling and Neurological Disorders; Elsevier Inc., 2019; pp. 153-180.
[http://dx.doi.org/10.1016/B978-0-12-813796-3.00008-0]
[5]
Pérez-Areales, F.J.; Garrido, M.; Aso, E.; Bartolini, M.; De Simone, A.; Espargaró, A.; Ginex, T.; Sabate, R.; Pérez, B.; Andrisano, V.; Puigoriol-Illamola, D.; Pallàs, M.; Luque, F.J.; Loza, M.I.; Brea, J.; Ferrer, I.; Ciruela, F.; Messeguer, A.; Muñoz-Torrero, D. Centrally active multitarget anti-Alzheimer agents derived from the antioxidant lead CR-6. J. Med. Chem., 2020, 63(17), 9360-9390.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00528] [PMID: 32706255]
[6]
Pasieka, A.; Panek, D.; Szałaj, N.; Espargaró, A.; Więckowska, A.; Malawska, B.; Sabaté, R.; Bajda, M. Dual inhibitors of amyloid-β and tau aggregation with amyloid-β disaggregating properties: Extended in cellulo, in silico, and kinetic studies of multifunctional anti-Alzheimer’s agents. ACS Chem. Neurosci., 2021, 12(11), 2057-2068.
[http://dx.doi.org/10.1021/acschemneuro.1c00235] [PMID: 34019757]
[7]
Zhao, J.; Shi, Q.; Tian, H.; Li, Y.; Liu, Y.; Xu, Z.; Robert, A.; Liu, Q.; Meunier, B. TDMQ20, a specific copper chelator, reduces memory impairments in Alzheimer’s disease mouse models. ACS Chem. Neurosci., 2021, 12(1), 140-149.
[http://dx.doi.org/10.1021/acschemneuro.0c00621] [PMID: 33322892]
[8]
Pawge, G.; Khatik, G.L. p53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochem. Pharmacol., 2021, 190, 114651.
[http://dx.doi.org/10.1016/j.bcp.2021.114651] [PMID: 34118220]
[9]
2022 Alzheimer’s disease facts and figures. Alzheimers Dement., 2022, 18(4), 700-789.
[http://dx.doi.org/10.1002/alz.12638] [PMID: 35289055]
[10]
Roggo, S. Inhibition of BACE, a promising approach to Alzheimer’s disease therapy. Curr. Top. Med. Chem., 2002, 2(4), 359-370.
[http://dx.doi.org/10.2174/1568026024607490] [PMID: 11966460]
[11]
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372.
[http://dx.doi.org/10.1021/jm7009364] [PMID: 18181565]
[12]
Campora, M.; Francesconi, V.; Schenone, S.; Tasso, B.; Tonelli, M. Journey on naphthoquinone and anthraquinone derivatives: New insights in Alzheimer’s disease. Pharmaceuticals., 2021, 14(1), 33.
[http://dx.doi.org/10.3390/ph14010033] [PMID: 33466332]
[13]
Uddin, M.S.; Kabir, M.T.; Rahman, M.M.; Mathew, B.; Shah, M.A.; Ashraf, G.M. TV 3326 for Alzheimer’s dementia: A novel multimodal ChE and MAO inhibitors to mitigate Alzheimer’s-like neuropathology. J. Pharm. Pharmacol., 2020, 72(8), 1001-1012.
[http://dx.doi.org/10.1111/jphp.13244] [PMID: 32149402]
[14]
Morsy, A.; Trippier, P.C. Current and emerging pharmacological targets for the treatment of Alzheimer’s disease. J. Alzheimers Dis., 2019, 72(s1), S145-S176.
[http://dx.doi.org/10.3233/JAD-190744] [PMID: 31594236]
[15]
Uddin, M.S.; Ashraf, G.M.; Mamun, A.A.; Mathew, B. Toxic tau: Structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res., 2020, 15(8), 1417-1420.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[16]
Arnsten, A.F.T.; Datta, D.; Del Tredici, K.; Braak, H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimers Dement., 2021, 17(1), 115-124.
[http://dx.doi.org/10.1002/alz.12192] [PMID: 33075193]
[17]
Evans, P.H. Free radicals in brain metabolism and pathology. Br. Med. Bull., 1993, 49(3), 577-587.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072632] [PMID: 8221024]
[18]
Samanta, S.; Rajasekhar, K.; Babagond, V.; Govindaraju, T. Small molecule inhibits metal-dependent and -independent multifaceted toxicity of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(8), 3611-3621.
[http://dx.doi.org/10.1021/acschemneuro.9b00216] [PMID: 31140779]
[19]
Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep., 2016, 4(5), 519-522.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[20]
Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci., 2021, 13, 617588.
[http://dx.doi.org/10.3389/fnagi.2021.617588] [PMID: 33679375]
[21]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[22]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Khachaturian, A.S.; Vergallo, A.; Farlow, M.R.; Snyder, P.J.; Giacobini, E.; Khachaturian, Z.S. Revisiting the cholinergic hypothesis in Alzheimer’s disease: Emerging evidence from translational and clinical research. J. Prev. Alzheimers Dis., 2019, 6(1), 2-15.
[PMID: 30569080]
[23]
Soma, S.; Suematsu, N.; Sato, A.Y.; Tsunoda, K.; Bramian, A.; Reddy, A.; Takabatake, K.; Karube, F.; Fujiyama, F.; Shimegi, S. Acetylcholine from the nucleus basalis magnocellularis facilitates the retrieval of well-established memory. Neurobiol. Learn. Mem., 2021, 183, 107484.
[http://dx.doi.org/10.1016/j.nlm.2021.107484] [PMID: 34175450]
[24]
Chaney, A.M.; Lopez-Picon, F.R.; Serrière, S.; Wang, R.; Bochicchio, D.; Webb, S.D.; Vandesquille, M.; Harte, M.K.; Georgiadou, C.; Lawrence, C.; Busson, J.; Vercouillie, J.; Tauber, C.; Buron, F.; Routier, S.; Reekie, T.; Snellman, A.; Kassiou, M.; Rokka, J.; Davies, K.E.; Rinne, J.O.; Salih, D.A.; Edwards, F.A.; Orton, L.D.; Williams, S.R.; Chalon, S.; Boutin, H. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: A collaborative multi-modal study. Theranostics, 2021, 11(14), 6644-6667.
[http://dx.doi.org/10.7150/thno.56059] [PMID: 34093845]
[25]
Oddo, S.; LaFerla, F.M. The role of nicotinic acetylcholine receptors in Alzheimer’s disease. J. Physiol. Paris, 2006, 99(2-3), 172-179.
[http://dx.doi.org/10.1016/j.jphysparis.2005.12.080] [PMID: 16448808]
[26]
Prati, F.; De Simone, A.; Bisignano, P.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; Monti, B.; Massenzio, F.; Polito, L.; Racchi, M.; Favia, A.D.; Bottegoni, G.; Martinez, A.; Bolognesi, M.L.; Cavalli, A. Multitarget drug discovery for Alzheimer’s disease: triazinones as BACE-1 and GSK-3β inhibitors. Angew. Chem. Int. Ed., 2015, 54(5), 1578-1582.
[http://dx.doi.org/10.1002/anie.201410456] [PMID: 25504761]
[27]
Guan, Z. Cross-talk between oxidative stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer’s disease. Acta Pharmacol. Sin., 2008, 29(7), 773-780.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00819.x] [PMID: 18565274]
[28]
Rui, W.; Reddy, H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57, 1041-1048.
[29]
Zhong, W.; Wu, A.; Berglund, K.; Gu, X.; Jiang, M.Q.; Talati, J.; Zhao, J.; Wei, L.; Yu, S.P. Pathogenesis of sporadic Alzheimer’s disease by deficiency of NMDA receptor subunit GluN3A. Alzheimers Dement., 2022, 18(2), 222-239.
[http://dx.doi.org/10.1002/alz.12398] [PMID: 34151525]
[30]
Yang, G.J.; Liu, H.; Ma, D.L.; Leung, C.H. Rebalancing metal dyshomeostasis for Alzheimer’s disease therapy. J. Biol. Inorg. Chem., 2019, 24(8), 1159-1170.
[http://dx.doi.org/10.1007/s00775-019-01712-y] [PMID: 31486954]
[31]
Squitti, R.; Faller, P.; Hureau, C.; Granzotto, A.; White, A.R.; Kepp, K.P. Copper imbalance in Alzheimer’s disease and its link with the amyloid hypothesis: Towards a combined clinical, chemical, and genetic etiology. J. Alzheimers Dis., 2021, 83(1), 23-41.
[http://dx.doi.org/10.3233/JAD-201556] [PMID: 34219710]
[32]
Bush, A.I.; Tanzi, R.E. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics, 2008, 5(3), 421-432.
[http://dx.doi.org/10.1016/j.nurt.2008.05.001] [PMID: 18625454]
[33]
Li, Y.; Jiao, Q.; Xu, H.; Du, X.; Shi, L.; Jia, F.; Jiang, H. Biometal dyshomeostasis and toxic metal accumulations in the development of Alzheimer’s disease. Front. Mol. Neurosci., 2017, 10, 339.
[http://dx.doi.org/10.3389/fnmol.2017.00339] [PMID: 29114205]
[34]
Lovell, M.A.; Robertson, J.D.; Teesdale, W.J.; Campbell, J.L.; Markesbery, W.R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci., 1998, 158(1), 47-52.
[http://dx.doi.org/10.1016/S0022-510X(98)00092-6] [PMID: 9667777]
[35]
Barão, S.; Moechars, D.; Lichtenthaler, S.F.; De Strooper, B. BACE1 physiological functions may limit its use as therapeutic target for Alzheimer’s disease. Trends Neurosci., 2016, 39(3), 158-169.
[http://dx.doi.org/10.1016/j.tins.2016.01.003] [PMID: 26833257]
[36]
Vassar, R.; Kandalepas, P.C. The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer’s disease. Alzheimers Res. Ther., 2011, 3(3), 20.
[http://dx.doi.org/10.1186/alzrt82] [PMID: 21639952]
[37]
Patel, S.; Bansoad, A.V.; Singh, R.; Khatik, G.L. BACE1: A key regulator in Alzheimer’s disease progression and current development of its inhibitors. Curr. Neuropharmacol., 2022, 20(6), 1174-1193.
[http://dx.doi.org/10.2174/1570159X19666211201094031] [PMID: 34852746]
[38]
Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain, 2011, 4(1), 3.
[http://dx.doi.org/10.1186/1756-6606-4-3] [PMID: 21214928]
[39]
Fahrenholz, F. Alpha-secretase as a therapeutic target. Curr. Alzheimer Res., 2007, 4(4), 412-417.
[http://dx.doi.org/10.2174/156720507781788837] [PMID: 17908044]
[40]
Basi, G.S.; Hemphill, S.; Brigham, E.F.; Liao, A.; Aubele, D.L.; Baker, J.; Barbour, R.; Bova, M.; Chen, X.H.; Dappen, M.S.; Eichenbaum, T.; Goldbach, E.; Hawkinson, J.; Lawler-Herbold, R.; Hu, K.; Hui, T.; Jagodzinski, J.J.; Keim, P.S.; Kholodenko, D.; Latimer, L.H.; Lee, M.; Marugg, J.; Mattson, M.N.; McCauley, S.; Miller, J.L.; Motter, R.; Mutter, L.; Neitzel, M.L.; Ni, H.; Nguyen, L.; Quinn, K.; Ruslim, L.; Semko, C.M.; Shapiro, P.; Smith, J.; Soriano, F.; Szoke, B.; Tanaka, K.; Tang, P.; Tucker, J.A.; Ye, X.M.; Yu, M.; Wu, J.; Xu, Y.; Garofalo, A.W.; Sauer, J.M.; Konradi, A.W.; Ness, D.; Shopp, G.; Pleiss, M.A.; Freedman, S.B.; Schenk, D. Amyloid precursor protein selective gamma-secretase inhibitors for treatment of Alzheimer’s disease. Alzheimers Res. Ther., 2010, 2(6), 36.
[http://dx.doi.org/10.1186/alzrt60] [PMID: 21190552]
[41]
Schedin-Weiss, S.; Inoue, M.; Hromadkova, L.; Teranishi, Y.; Yamamoto, N.G.; Wiehager, B.; Bogdanovic, N.; Winblad, B.; Sandebring-Matton, A.; Frykman, S.; Tjernberg, L.O. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther., 2017, 9(1), 57.
[http://dx.doi.org/10.1186/s13195-017-0279-1] [PMID: 28764767]
[42]
Kumar, B.; Dwivedi, A.R.; Sarkar, B.; Gupta, S.K.; Krishnamurthy, S.; Mantha, A.K.; Parkash, J.; Kumar, V. 4,6-Diphenylpyrimidine derivatives as dual inhibitors of monoamine oxidase and acetylcholinesterase for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(1), 252-265.
[http://dx.doi.org/10.1021/acschemneuro.8b00220] [PMID: 30296051]
[43]
Yeung, A.W.K.; Georgieva, M.G.; Atanasov, A.G.; Tzvetkov, N.T. Monoamine oxidases (MAOs) as privileged molecular targets in neuroscience: Research literature analysis. Front. Mol. Neurosci., 2019, 12, 143.
[http://dx.doi.org/10.3389/fnmol.2019.00143] [PMID: 31191248]
[44]
Fiore, M.; Forli, S.; Manetti, F. Targeting mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2, MK2): Medicinal chemistry efforts to lead small molecule inhibitors to clinical trials. J. Med. Chem., 2016, 59(8), 3609-3634.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01457] [PMID: 26502061]
[45]
Duraisamy, S.; Bajpai, M.; Bughani, U.; Dastidar, S.G.; Ray, A.; Chopra, P. MK2: a novel molecular target for anti-inflammatory therapy. Expert Opin. Ther. Targets, 2008, 12(8), 921-936.
[http://dx.doi.org/10.1517/14728222.12.8.921] [PMID: 18620516]
[46]
Corrêa, S.A.L.; Eales, K.L. The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J. Signal Transduct., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/649079] [PMID: 22792454]
[47]
Liu, S.L.; Wang, C.; Jiang, T.; Tan, L.; Xing, A.; Yu, J.T. The role of Cdk5 in Alzheimer’s disease. Mol. Neurobiol., 2016, 53(7), 4328-4342.
[http://dx.doi.org/10.1007/s12035-015-9369-x] [PMID: 26227906]
[48]
Silva, T.; Reis, J.; Teixeira, J.; Borges, F. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev., 2014, 15, 116-145.
[http://dx.doi.org/10.1016/j.arr.2014.03.008] [PMID: 24726823]
[49]
Arfeen, M.; Bhagat, S.; Patel, R.; Prasad, S.; Roy, I.; Chakraborti, A.K.; Bharatam, P.V. Design, synthesis and biological evaluation of 5-benzylidene-2-iminothiazolidin-4-ones as selective GSK-3β inhibitors. Eur. J. Med. Chem., 2016, 121, 727-736.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.075] [PMID: 27423119]
[50]
Fan, S.J.; Huang, F.I.; Liou, J.P.; Yang, C.R. The novel histone de acetylase 6 inhibitor, MPT0G211, ameliorates tau phosphorylation and cognitive deficits in an Alzheimer’s disease model. Cell Death Dis., 2018, 9(6), 655.
[http://dx.doi.org/10.1038/s41419-018-0688-5] [PMID: 29844403]
[51]
Vitolo, O.V.; Sant’Angelo, A.; Costanzo, V.; Battaglia, F.; Arancio, O.; Shelanski, M. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci., 2002, 99(20), 13217-13221.
[http://dx.doi.org/10.1073/pnas.172504199] [PMID: 12244210]
[52]
Cuadrado-tejedor, M.; Franco, R. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem. Neurosci., 2012, 2012(3), 832-844.
[53]
Wu, Y.; Li, Z.; Huang, Y.Y.; Wu, D.; Luo, H.B. Novel phosphodiesterase inhibitors for cognitive improvement in Alzheimer’s disease. J. Med. Chem., 2018, 61(13), 5467-5483.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01370] [PMID: 29363967]
[54]
Desvergne, B.; Wahli, W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr. Rev., 1999, 20(5), 649-688.
[PMID: 10529898]
[55]
Li, M.; Meng, Y.; Chu, B.; Shen, Y.; Xue, X.; Song, C.; Liu, X.; Ding, M.; Cao, X.; Wang, P.; Xu, S.; Bi, J.; Xie, Z. Orexin-A exacerbates Alzheimer’s disease by inducing mitochondrial impairment. Neurosci. Lett., 2020, 718, 134741.
[http://dx.doi.org/10.1016/j.neulet.2020.134741] [PMID: 31927055]
[56]
Lim, G.P.; Yang, F.; Chu, T.; Chen, P.; Beech, W.; Teter, B.; Tran, T.; Ubeda, O.; Ashe, K.H.; Frautschy, S.A.; Cole, G.M. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci., 2000, 20, 5709-5714.
[57]
Li, H.; Wu, J.; Zhu, L.; Sha, L.; Yang, S.; Wei, J.; Ji, L.; Tang, X.; Mao, K.; Cao, L.; Wei, N.; Xie, W.; Yang, Z. Insulin degrading enzyme contributes to the pathology in a mixed model of Type 2 diabetes and Alzheimer’s disease: Possible mechanisms of IDE in T2D and AD. Biosci. Rep., 2018, 38(1), BSR20170862.
[http://dx.doi.org/10.1042/BSR20170862] [PMID: 29222348]
[58]
Garcia-Alloza, M.; Hirst, W.D.; Chen, C.P.L-H.; Lasheras, B.; Francis, P.T.; Ramírez, M.J. Differential involvement of 5-HT(1B/1D) and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer’s disease. Neuropsychopharmacology, 2004, 29(2), 410-416.
[http://dx.doi.org/10.1038/sj.npp.1300330] [PMID: 14571255]
[59]
de Bruin, N.; Kruse, C. 5-HT6 receptor antagonists: Potential efficacy for the treatment of cognitive impairment in schizophrenia. Curr. Pharm. Des., 2015, 21(26), 3739-3759.
[http://dx.doi.org/10.2174/1381612821666150605112105] [PMID: 26044973]
[60]
Dias, K.S.T.; de Paula, C.T.; dos Santos, T.; Souza, I.N.O.; Boni, M.S.; Guimarães, M.J.R.; da Silva, F.M.R.; Castro, N.G.; Neves, G.A.; Veloso, C.C.; Coelho, M.M.; de Melo, I.S.F.; Giusti, F.C.V.; Giusti-Paiva, A.; da Silva, M.L.; Dardenne, L.E.; Guedes, I.A.; Pruccoli, L.; Morroni, F.; Tarozzi, A.; Viegas, C. Jr Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 130, 440-457.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.043] [PMID: 28282613]
[61]
Gervais, F.G.; Xu, D.; Robertson, G.S.; Vaillancourt, J.P.; Zhu, Y.; Huang, J.; LeBlanc, A.; Smith, D.; Rigby, M.; Shearman, M.S.; Clarke, E.E.; Zheng, H.; Van Der Ploeg, L.H.T.; Ruffolo, S.C.; Thornberry, N.A.; Xanthoudakis, S.; Zamboni, R.J.; Roy, S.; Nicholson, D.W. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-β precursor protein and amyloidogenic A β peptide formation. Cell, 1999, 97(3), 395-406.
[http://dx.doi.org/10.1016/S0092-8674(00)80748-5] [PMID: 10319819]
[62]
Kwak, S.; Weiss, J.H. Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr. Opin. Neurobiol., 2006, 16(3), 281-287.
[http://dx.doi.org/10.1016/j.conb.2006.05.004] [PMID: 16698262]
[63]
Joshi, S.; Kapur, J. Mechanisms of status epilepticus: α -Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor hypothesis. Epilepsia, 2018, 59(S2), 78-81.
[http://dx.doi.org/10.1111/epi.14482] [PMID: 30159880]
[64]
Kanninen, K.; Malm, T.M.; Jyrkkänen, H.K.; Goldsteins, G.; Keksa-Goldsteine, V.; Tanila, H.; Yamamoto, M.; Ylä-Herttuala, S.; Levonen, A.L.; Koistinaho, J. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol. Cell. Neurosci., 2008, 39(3), 302-313.
[http://dx.doi.org/10.1016/j.mcn.2008.07.010] [PMID: 18706502]
[65]
Gameiro, I.; Michalska, P.; Tenti, G.; Cores, Á.; Buendia, I.; Rojo, A.I.; Georgakopoulos, N.D.; Hernández-Guijo, J.M.; Teresa Ramos, M.; Wells, G.; López, M.G.; Cuadrado, A.; Menéndez, J.C.; León, R. Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer’s disease. Sci. Rep., 2017, 7(1), 45701.
[http://dx.doi.org/10.1038/srep45701] [PMID: 28361919]
[66]
Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P.V.; Snaedal, J.; Bjornsson, S.; Huttenlocher, J.; Levey, A.I.; Lah, J.J.; Rujescu, D.; Hampel, H.; Giegling, I.; Andreassen, O.A.; Engedal, K.; Ulstein, I.; Djurovic, S.; Ibrahim-Verbaas, C.; Hofman, A.; Ikram, M.A.; van Duijn, C.M.; Thorsteinsdottir, U.; Kong, A.; Stefansson, K. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 107-116.
[http://dx.doi.org/10.1056/NEJMoa1211103] [PMID: 23150908]
[67]
Lill, C.M.; Rengmark, A.; Pihlstrøm, L.; Fogh, I.; Shatunov, A.; Sleiman, P.M.; Wang, L.S.; Liu, T.; Lassen, C.F.; Meissner, E.; Alexopoulos, P.; Calvo, A.; Chio, A.; Dizdar, N.; Faltraco, F.; Forsgren, L.; Kirchheiner, J.; Kurz, A.; Larsen, J.P.; Liebsch, M.; Linder, J.; Morrison, K.E.; Nissbrandt, H.; Otto, M.; Pahnke, J.; Partch, A.; Restagno, G.; Rujescu, D.; Schnack, C.; Shaw, C.E.; Shaw, P.J.; Tumani, H.; Tysnes, O.B.; Valladares, O.; Silani, V.; Berg, L.H.; Rheenen, W.; Veldink, J.H.; Lindenberger, U.; Steinhagen-Thiessen, E.; Teipel, S.; Perneczky, R.; Hakonarson, H.; Hampel, H.; Arnim, C.A.F.; Olsen, J.H.; Van Deerlin, V.M.; Al-Chalabi, A.; Toft, M.; Ritz, B.; Bertram, L. The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement., 2015, 11(12), 1407-1416.
[http://dx.doi.org/10.1016/j.jalz.2014.12.009] [PMID: 25936935]
[68]
Xu, K.; Dai, X.L.; Huang, H.C.; Jiang, Z.F. Targeting HDACs: A promising therapy for Alzheimer’s disease. Oxid. Med. Cell. Longev., 2011, 2011, 143269.
[http://dx.doi.org/10.1155/2011/143269]
[69]
Houtkooper, R.H.; Pirinen, E.; Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 225-238.
[http://dx.doi.org/10.1038/nrm3293] [PMID: 22395773]
[70]
Staderini, M.; Martín, M.A.; Bolognesi, M.L.; Menéndez, J.C. Imaging of β-amyloid plaques by near infrared fluorescent tracers: A new frontier for chemical neuroscience. Chem. Soc. Rev., 2015, 44(7), 1807-1819.
[http://dx.doi.org/10.1039/C4CS00337C] [PMID: 25622714]
[71]
Golde, T.E.; Bacskai, B.J. Bringing amyloid into focus. Nat. Biotechnol., 2005, 23(5), 552-554.
[http://dx.doi.org/10.1038/nbt0505-552] [PMID: 15877070]
[72]
Cui, M. Past and recent progress of molecular imaging probes for β-amyloid plaques in the brain. Curr. Med. Chem., 2013, 21(1), 82-112.
[http://dx.doi.org/10.2174/09298673113209990216] [PMID: 23992340]
[73]
Tong, H.; Lou, K.; Wang, W. Near-infrared fluorescent probes for imaging of amyloid plaques in Alzheimer׳s disease. Acta Pharm. Sin. B, 2015, 5(1), 25-33.
[http://dx.doi.org/10.1016/j.apsb.2014.12.006] [PMID: 26579421]
[74]
Tsoi, K.K.F.; Chan, J.Y.C.; Chan, F.C.H.; Hirai, H.W.; Kwok, T.C.Y.; Wong, S.Y.S. Monotherapy is good enough for patients with mild‐to‐moderate Alzheimer’s disease: A network meta‐analysis of 76 randomized controlled trials. Clin. Pharmacol. Ther., 2019, 105(1), 121-130.
[http://dx.doi.org/10.1002/cpt.1104] [PMID: 29717478]
[75]
scarpini, E.; Schelterns, P.; Feldman, H. Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol., 2003, 2(9), 539-547.
[http://dx.doi.org/10.1016/S1474-4422(03)00502-7] [PMID: 12941576]
[76]
Olin, J.; Schneider, L. Galantamine for Alzheimer’s disease. Cochrane Database Syst. Rev., 2002, (3), CD001747.
[PMID: 12137632]
[77]
Knorz, A.L.; Quante, A. Alzheimer’s disease: Efficacy of mono- and combination therapy. A systematic review. J. Geriatr. Psychiatry Neurol., 2022, 35(4), 475-486.
[http://dx.doi.org/10.1177/08919887211044746] [PMID: 34476990]
[78]
Álvarez, X.A.; Linares, C.; Masliah, E. Combination drug therapy for the treatment of Alzheimer’s disease. Eur. Neurol. Rev., 2012, 7, 23-25.
[79]
Kabir, M.T.; Uddin, M.S.; Mamun, A.A.; Jeandet, P.; Aleya, L.; Mansouri, R.A.; Ashraf, G.M.; Mathew, B.; Bin-Jumah, M.N.; Abdel-Daim, M.M. Combination drug therapy for the management of Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(9), 3272.
[http://dx.doi.org/10.3390/ijms21093272] [PMID: 32380758]
[80]
Deardorff, W.J.; Grossberg, G. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des. Devel. Ther., 2016, 10, 3267-3279.
[http://dx.doi.org/10.2147/DDDT.S86463] [PMID: 27757016]
[81]
Feldman, H.H.; Schmitt, F.A.; Olin, J.T.; Olin, J.T. Activities of daily living in moderate-to-severe Alzheimer disease: An analysis of the treatment effects of memantine in patients receiving stable donepezil treatment. Alzheimer Dis. Assoc. Disord., 2006, 20(4), 263-268.
[http://dx.doi.org/10.1097/01.wad.0000213859.35355.59] [PMID: 17132971]
[82]
Choi, S.H.; Park, K.W.; Na, D.L.; Han, H.J.; Kim, E.J.; Shim, Y.S.; Lee, J.H. Tolerability and efficacy of memantine add-on therapy to rivastigmine transdermal patches in mild to moderate Alzheimer’s disease: A multicenter, randomized, open-label, parallel-group study. Curr. Med. Res. Opin., 2011, 27(7), 1375-1383.
[http://dx.doi.org/10.1185/03007995.2011.582484] [PMID: 21561398]
[83]
Farlow, M.R.; Alva, G.; Meng, X.; Olin, J.T. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: A post hoc analysis. Curr. Med. Res. Opin., 2010, 26(2), 263-269.
[http://dx.doi.org/10.1185/03007990903434914] [PMID: 19929593]
[84]
Mullard, A. Landmark Alzheimer’s drug approval confounds research community. Nature, 2021, 594(7863), 309-310.
[http://dx.doi.org/10.1038/d41586-021-01546-2] [PMID: 34103732]
[85]
Mahase, E. Alzheimer’s disease: FDA approves lecanemab amid cost and safety concerns. BMJ, 2023, 380, 73.
[http://dx.doi.org/10.1136/bmj.p73] [PMID: 36631154]
[86]
Cummings, J.; Lee, G.; Nahed, P.; Kambar, M.E.Z.N.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s Disease Drug Development Pipeline: 2022 In: Alzheimer’s Dement;; Cambridge University Press,, 2022; p. 8.
[http://dx.doi.org/10.1017/9781108975759]
[87]
ClinicalTrials.gov. Available from: https://clinicaltrials.gov/(Accessed on: Dec 17, 2021).
[88]
Zimmermann, G.R.; Lehár, J.; Keith, C.T. Multi-target therapeutics: When the whole is greater than the sum of the parts. Drug Discov. Today, 2007, 12(1-2), 34-42.
[http://dx.doi.org/10.1016/j.drudis.2006.11.008] [PMID: 17198971]
[89]
Frantz, S. Playing dirty. Nature, 2005, 437(7061), 942-943.
[http://dx.doi.org/10.1038/437942a] [PMID: 16222266]
[90]
Morphy, R.; Kay, C.; Rankovic, Z.; Morphy, R. From magic bullets to designed multiple ligands. Drug Discov. Today, 2004, 9(15), 641-651.
[http://dx.doi.org/10.1016/S1359-6446(04)03163-0] [PMID: 15279847]
[91]
Zhou, J.; Jiang, X.; He, S.; Jiang, H.; Feng, F.; Liu, W.; Qu, W.; Sun, H. Rational design of multitarget-directed ligands: Strategies and emerging paradigms. J. Med. Chem., 2019, 62(20), 8881-8914.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00017] [PMID: 31082225]
[92]
Morphy, R.; Rankovic, Z. Designing multiple ligands - medicinal chemistry strategies and challenges. Curr. Pharm. Des., 2009, 15(6), 587-600.
[http://dx.doi.org/10.2174/138161209787315594] [PMID: 19199984]
[93]
Hopkins, A.; Mason, J.; Overington, J. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol., 2006, 16(1), 127-136.
[http://dx.doi.org/10.1016/j.sbi.2006.01.013] [PMID: 16442279]
[94]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[95]
Savelieff, M.G.; Nam, G.; Kang, J.; Lee, H.J.; Lee, M.; Lim, M.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev., 2019, 119(2), 1221-1322.
[http://dx.doi.org/10.1021/acs.chemrev.8b00138] [PMID: 30095897]
[96]
Ismaili, L.; Refouvelet, B.; Benchekroun, M.; Brogi, S.; Brindisi, M.; Gemma, S.; Campiani, G.; Filipic, S.; Agbaba, D.; Esteban, G.; Unzeta, M.; Nikolic, K.; Butini, S.; Marco-Contelles, J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog. Neurobiol., 2017, 151, 4-34.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.003] [PMID: 26797191]
[97]
Sultana, R.; Ravagna, A.; Mohmmad-Abdul, H.; Calabrese, V.; Butterfield, D.A. Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J. Neurochem., 2005, 92(4), 749-758.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02899.x] [PMID: 15686476]
[98]
Xie, S.S.; Lan, J.S.; Wang, X.; Wang, Z.M.; Jiang, N.; Li, F.; Wu, J.J.; Wang, J.; Kong, L.Y. Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(7), 1528-1539.
[http://dx.doi.org/10.1016/j.bmc.2016.02.023] [PMID: 26917219]
[99]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[100]
Posadas, I.; López-Hernández, B.; Ceña, V. Nicotinic receptors in neurodegeneration. Curr. Neuropharmacol., 2013, 11(3), 298-314.
[http://dx.doi.org/10.2174/1570159X11311030005] [PMID: 24179465]
[101]
Alam, S.; Lingenfelter, K.S.; Bender, A.M.; Lindsley, C.W. Classics in chemical neuroscience. Memantine. ACS Chem. Neurosci., 2017, 8(9), 1823-1829.
[http://dx.doi.org/10.1021/acschemneuro.7b00270] [PMID: 28737885]
[102]
Takada-Takatori, Y.; Kume, T.; Sugimoto, M.; Katsuki, H.; Sugimoto, H.; Akaike, A. Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology, 2006, 51(3), 474-486.
[http://dx.doi.org/10.1016/j.neuropharm.2006.04.007] [PMID: 16762377]
[103]
Simoni, E.; Daniele, S.; Bottegoni, G.; Pizzirani, D.; Trincavelli, M.L.; Goldoni, L.; Tarozzo, G.; Reggiani, A.; Martini, C.; Piomelli, D.; Melchiorre, C.; Rosini, M.; Cavalli, A. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease. J. Med. Chem., 2012, 55(22), 9708-9721.
[http://dx.doi.org/10.1021/jm3009458] [PMID: 23033965]
[104]
Onor, M.L.; Trevisiol, M.; Aguglia, E. Rivastigmine in the treatment of Alzheimer’s disease: An update. Clin. Interv. Aging, 2007, 2(1), 17-32.
[http://dx.doi.org/10.2147/ciia.2007.2.1.17] [PMID: 18044073]
[105]
Matthews, D.C.; Ritter, A.; Thomas, R.G.; Andrews, R.D.; Lukic, A.S.; Revta, C.; Kinney, J.W.; Tousi, B.; Leverenz, J.B.; Fillit, H.; Zhong, K.; Feldman, H.H.; Cummings, J. Rasagiline effects on glucose metabolism, cognition, and tau in Alzheimer’s dementia. Alzheimers Dement., 2021, 7(1), e12106.
[http://dx.doi.org/10.1002/trc2.12106] [PMID: 33614888]
[106]
Sterling, J.; Herzig, Y.; Goren, T.; Finkelstein, N.; Lerner, D.; Goldenberg, W.; Miskolczi, I.; Molnar, S.; Rantal, F.; Tamas, T.; Toth, G.; Zagyva, A.; Zekany, A.; Lavian, G.; Gross, A.; Friedman, R.; Razin, M.; Huang, W.; Krais, B.; Chorev, M.; Youdim, M.B.; Weinstock, M.; Weinstock, M. Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J. Med. Chem., 2002, 45(24), 5260-5279.
[http://dx.doi.org/10.1021/jm020120c] [PMID: 12431053]
[107]
Weinreb, O.; Amit, T.; Bar-Am, O.; Youdim, M.B.H. Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr. Drug Targets, 2012, 13(4), 483-494.
[http://dx.doi.org/10.2174/138945012799499794] [PMID: 22280345]
[108]
Zheng, H.; Youdim, M.B.H.; Fridkin, M. Site-activated multifunctional chelator with acetylcholinesterase and neuroprotective-neurorestorative moieties for Alzheimer’s therapy. J. Med. Chem., 2009, 52(14), 4095-4098.
[http://dx.doi.org/10.1021/jm900504c] [PMID: 19485411]
[109]
Wilkinson, D.G. The pharmacology of donepezil: A new treatment for Alzheimer’s disease. Expert Opin. Pharmacother., 1999, 1(1), 121-135.
[http://dx.doi.org/10.1517/14656566.1.1.121] [PMID: 11249555]
[110]
Relman, A.S. Tacrine as a treatment for Alzheimer’s dementia: editor’s note. An interim report from the FDA. A response from Summers et al. N. Engl. J. Med., 1991, 324(5), 349-352.
[http://dx.doi.org/10.1056/NEJM199101313240525] [PMID: 1986300]
[111]
Potkin, S.G.; Anand, R.; Fleming, K.; Alva, G.; Keator, D.; Carreon, D.; Messina, J.; Wu, J.C.; Hartman, R.; Fallon, J.H. Brain metabolic and clinical effects of rivastigmine in Alzheimer’s disease. Int. J. Neuropsychopharmacol., 2001, 4(3), 223-230.
[http://dx.doi.org/10.1017/S1461145701002528] [PMID: 11602028]
[112]
Piazzi, L.; Cavalli, A.; Colizzi, F.; Belluti, F.; Bartolini, M.; Mancini, F.; Recanatini, M.; Andrisano, V.; Rampa, A. Multi-target-directed coumarin derivatives : HAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg. Med. Chem. Lett., 2008, 18, 423-426.
[113]
Viña, D.; Matos, M.J.; Yáñez, M.; Santana, L.; Uriarte, E. 3-Substituted coumarins as dual inhibitors of AChE and MAO for the treatment of Alzheimer’s disease. MedChemComm, 2012, 3(2), 213-218.
[http://dx.doi.org/10.1039/C1MD00221J]
[114]
Li, S.Y.; Wang, X.B.; Xie, S.S.; Jiang, N.; Wang, K.D.G.; Yao, H.Q.; Sun, H.B.; Kong, L.Y. Multifunctional tacrine-flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 69, 632-646.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.024] [PMID: 24095756]
[115]
Weinreb, O.; Mandel, S.; Bar-Am, O.; Yogev-Falach, M.; Avramovich-Tirosh, Y.; Amit, T.; Youdim, M.B.H. Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer’s disease drugs. Neurotherapeutics, 2009, 6(1), 163-174.
[http://dx.doi.org/10.1016/j.nurt.2008.10.030] [PMID: 19110207]
[116]
Nobili, A.; Latagliata, E.C.; Viscomi, M.T.; Cavallucci, V.; Cutuli, D.; Giacovazzo, G.; Krashia, P.; Rizzo, F.R.; Marino, R.; Federici, M.; De Bartolo, P.; Aversa, D.; Dell’Acqua, M.C.; Cordella, A.; Sancandi, M.; Keller, F.; Petrosini, L.; Puglisi-Allegra, S.; Mercuri, N.B.; Coccurello, R.; Berretta, N.; D’Amelio, M. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat. Commun., 2017, 8(1), 14727.
[http://dx.doi.org/10.1038/ncomms14727] [PMID: 28367951]
[117]
Pi, R.; Mao, X.; Chao, X.; Cheng, Z.; Liu, M.; Duan, X.; Ye, M.; Chen, X.; Mei, Z.; Liu, P.; Li, W.; Han, Y. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo. PLoS One, 2012, 7(2), e31921.
[http://dx.doi.org/10.1371/journal.pone.0031921] [PMID: 22384101]
[118]
Ma, T.; Tan, M.S.; Yu, J.T.; Tan, L. Resveratrol as a therapeutic agent for Alzheimer’s disease. BioMed Res. Int., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/350516] [PMID: 25525597]
[119]
Ferrero, H.; Solas, M.; Francis, P.T.; Ramirez, M.J. Serotonin 5-HT6 receptor antagonists in Alzheimer’s disease: Therapeutic rationale and current development status. CNS Drugs, 2017, 31(1), 19-32.
[http://dx.doi.org/10.1007/s40263-016-0399-3] [PMID: 27914038]
[120]
Wang, Z.; Hu, J.; Yang, X.; Feng, X.; Li, X.; Huang, L.; Chan, A.S.C. Design, synthesis, and evaluation of orally bioavailable quinoline-indole derivatives as innovative multitarget-directed ligands: Promotion of cell proliferation in the adult murine hippocampus for the treatment of Alzheimer’s disease. J. Med. Chem., 2018, 61(5), 1871-1894.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01417] [PMID: 29420891]
[121]
Chen, Y.; Bian, Y.; Sun, Y.; Kang, C.; Yu, S.; Fu, T.; Li, W.; Pei, Y.; Sun, H. Identification of 4-aminoquinoline core for the design of new cholinesterase inhibitors. PeerJ, 2016, 4, e2140.
[http://dx.doi.org/10.7717/peerj.2140] [PMID: 27441112]
[122]
Jordan, J.B.; Whittington, D.A.; Bartberger, M.D.; Sickmier, E.A.; Chen, K.; Cheng, Y.; Judd, T. Fragment-linking approach using 19 F NMR spectroscopy to obtain highly potent and selective inhibitors of β-secretase. J. Med. Chem., 2016, 59(8), 3732-3749.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01917] [PMID: 26978477]
[123]
Hiremathad, A.; Keri, R.S.; Esteves, A.R.; Cardoso, S.M.; Chaves, S.; Santos, M.A. Novel tacrine-hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease. Eur. J. Med. Chem., 2018, 148, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.023] [PMID: 29466775]
[124]
Bag, S.; Tulsan, R.; Sood, A.; Cho, H.; Redjeb, H.; Zhou, W.; LeVine, H., III; Török, B.; Török, M. Sulfonamides as multifunctional agents for Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25(3), 626-630.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.006] [PMID: 25537270]
[125]
Fang, Y.; Zhou, H.; Gu, Q.; Xu, J. Synthesis and evaluation of tetrahydroisoquinoline-benzimidazole hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2019, 167, 133-145.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.008] [PMID: 30771601]
[126]
Jenagaratnam, L.; McShane, R. Clioquinol for the treatment of Alzheimer’s disease. Cochrane Database Syst. Rev., 2006, (1), CD005380.
[PMID: 16437529]
[127]
Prati, F.; Cavalli, A.; Bolognesi, M. Navigating the chemical space of multitarget-directed ligands: From hybrids to fragments in Alzheimer’s disease. Molecules, 2016, 21(4), 466.
[http://dx.doi.org/10.3390/molecules21040466] [PMID: 27070562]
[128]
Czarnecka, K.; Girek, M.; Maciejewska, K.; Skibiński, R.; Jończyk, J.; Bajda, M.; Kabziński, J.; Sołowiej, P.; Majsterek, I.; Szymański, P.; Girek, M.; Maciejewska, K.; Skibiński, R.; Jończyk, J.; Bajda, M.; Kabziński, J.; Sołowiej, P.; Majsterek, I. New cyclopentaquinoline hybrids with multifunctional capacities for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 158-170.
[http://dx.doi.org/10.1080/14756366.2017.1406485] [PMID: 29210299]
[129]
Chalupova, K.; Korabecny, J.; Bartolini, M.; Monti, B.; Lamba, D.; Caliandro, R.; Pesaresi, A.; Brazzolotto, X.; Gastellier, A.J.; Nachon, F.; Pejchal, J.; Jarosova, M.; Hepnarova, V.; Jun, D.; Hrabinova, M.; Dolezal, R.; Zdarova Karasova, J.; Mzik, M.; Kristofikova, Z.; Misik, J.; Muckova, L.; Jost, P.; Soukup, O.; Benkova, M.; Setnicka, V.; Habartova, L.; Chvojkova, M.; Kleteckova, L.; Vales, K.; Mezeiova, E.; Uliassi, E.; Valis, M.; Nepovimova, E.; Bolognesi, M.L.; Kuca, K. Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer’s disease. Eur. J. Med. Chem., 2019, 168, 491-514.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.021] [PMID: 30851693]
[130]
Makhaeva, G.F.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Lushchekina, S.V.; Faingold, I.I.; Poletaeva, D.A.; Soldatova, Y.V.; Kotelnikova, R.A.; Serkov, I.V.; Ustinov, A.K.; Proshin, A.N. New multifunctional agents based on conjugates of hydroxytoluene for Alzheimer’s disease treatment. Molecules, 2020, 25, 5891.
[http://dx.doi.org/10.3390/molecules25245891] [PMID: 33322783]
[131]
Nazari, M.; Rezaee, E.; Hariri, R.; Akbarzadeh, T.; Tabatabai, S.A. Novel 1,2,4-oxadiazole derivatives as selective butyrylcholinesterase inhibitors: Design, synthesis and biological evaluation. EXCLI J., 2021, 20, 907-921.
[PMID: 34121977]
[132]
Wen-Juan, H.; Xia, L.Z.; Jia-cheng, S.; Jia-li, C.; Zhi-qiang, S. Synthesis and evaluation of coumarin/1,2,4-oxadiazole hybrids as selective BChE inhibitors with neuroprotective activity. J. Asian Nat. Prod. Res., 2018, 6020, 1-14.
[133]
Sun, Q.; Peng, D.Y.; Yang, S.G.; Zhu, X.L.; Yang, W.C.; Yang, G.F. Syntheses of coumarin-tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorg. Med. Chem., 2014, 22(17), 4784-4791.
[http://dx.doi.org/10.1016/j.bmc.2014.06.057] [PMID: 25088549]
[134]
Digiacomo, M.; Chen, Z.; Wang, S.; Lapucci, A.; Macchia, M.; Yang, X.; Chu, J.; Han, Y.; Pi, R.; Rapposelli, S. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg. Med. Chem. Lett., 2015, 25(4), 807-810.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.084] [PMID: 25597007]
[135]
Panek, D.; Więckowska, A.; Wichur, T.; Bajda, M.; Godyń, J.; Jończyk, J.; Mika, K.; Janockova, J.; Soukup, O.; Knez, D.; Korabecny, J.; Gobec, S.; Malawska, B. Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur. J. Med. Chem., 2017, 125, 676-695.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.078] [PMID: 27721153]
[136]
Gazova, Z.; Soukup, O.; Sepsova, V.; Siposova, K.; Drtinova, L.; Jost, P.; Spilovska, K.; Korabecny, J.; Nepovimova, E.; Fedunova, D.; Horak, M.; Kaniakova, M.; Wang, Z.J.; Hamouda, A.K.; Kuca, K. Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer’s disease treatment. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 607-619.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.020] [PMID: 27865910]
[137]
Panek, D.; Więckowska, A.; Jończyk, J.; Godyń, J.; Bajda, M.; Wichur, T.; Pasieka, A.; Knez, D.; Pišlar, A.; Korabecny, J.; Soukup, O.; Sepsova, V.; Sabaté, R.; Kos, J.; Gobec, S.; Malawska, B. Design, synthesis, and biological evaluation of 1-Benzylamino-2-hydroxyalkyl derivatives as new potential disease-modifying multifunctional anti-alzheimer’s agents. ACS Chem. Neurosci., 2018, 9(5), 1074-1094.
[http://dx.doi.org/10.1021/acschemneuro.7b00461] [PMID: 29345897]
[138]
Sakata, R.P.; Antoniolli, G.; Lancellotti, M.; Kawano, D.F.; Guimarães Barbosa, E.; Almeida, W.P. Synthesis and biological evaluation of 2′-Aminochalcone: A multi-target approach to find drug candidates to treat Alzheimer’s disease. Bioorg. Chem., 2020, 103, 104201.
[http://dx.doi.org/10.1016/j.bioorg.2020.104201] [PMID: 32890999]
[139]
Wang, L.; Esteban, G.; Ojima, M.; Bautista-Aguilera, O.M.; Inokuchi, T.; Moraleda, I.; Iriepa, I.; Samadi, A.; Youdim, M.B.H.; Romero, A.; Soriano, E.; Herrero, R.; Fernández Fernández, A.P. Ricardo-Martínez-Murillo; Marco-Contelles, J.; Unzeta, M. Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 80, 543-561.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.078] [PMID: 24813882]
[140]
Benek, O.; Soukup, O.; Pasdiorova, M.; Hroch, L.; Sepsova, V.; Jost, P.; Hrabinova, M.; Jun, D.; Kuca, K.; Zala, D.; Ramsay, R.R.; Marco-Contelles, J.; Musilek, K. Design, synthesis and in vitro evaluation of indolotacrine analogues as multitarget-directed ligands for the treatment of Alzheimer’s disease. ChemMedChem, 2016, 11(12), 1264-1269.
[http://dx.doi.org/10.1002/cmdc.201500383] [PMID: 26427608]
[141]
Marco-Contelles, J.; Unzeta, M.; Bolea, I.; Esteban, G.; Ramsay, R.R.; Romero, A.; Martínez-Murillo, R.; Carreiras, M.C.; Ismaili, L. ASS234, as a new multi-target directed propargylamine for Alzheimer’s disease therapy. Front. Neurosci., 2016, 10, 294.
[http://dx.doi.org/10.3389/fnins.2016.00294] [PMID: 27445665]
[142]
Plazas, E.; Hagenow, S.; Avila Murillo, M.; Stark, H.; Cuca, L.E. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem., 2020, 98, 103722.
[http://dx.doi.org/10.1016/j.bioorg.2020.103722] [PMID: 32155491]
[143]
Piemontese, L.; Tomás, D.; Hiremathad, A.; Capriati, V.; Candeias, E.; Cardoso, S.M.; Chaves, S.; Santos, M.A.; Tomás, D.; Hiremathad, A.; Capriati, V.; Cardoso, S.M.; Chaves, S.; Donepezil, M.A.S. Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s drug candidates. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1212-1224.
[http://dx.doi.org/10.1080/14756366.2018.1491564] [PMID: 30160188]
[144]
Wang, Z.; Cao, M.; Xiang, H.; Wang, W.; Feng, X.; Yang, X. WBQ5187, a multitarget directed agent, ameliorates cognitive impairment in a transgenic mouse model of Alzheimer’s disease and modulates cerebral β-amyloid, gliosis, cAMP levels, and neurodegeneration. ACS Chem. Neurosci., 2019, 10(12), 4787-4799.
[http://dx.doi.org/10.1021/acschemneuro.9b00409] [PMID: 31697472]
[145]
Gandini, A.; Bartolini, M.; Tedesco, D.; Martinez-Gonzalez, L.; Roca, C.; Campillo, N.E.; Zaldivar-Diez, J.; Perez, C.; Zuccheri, G.; Miti, A.; Feoli, A.; Castellano, S.; Petralla, S.; Monti, B.; Rossi, M.; Moda, F.; Legname, G.; Martinez, A.; Bolognesi, M.L. Tau-centric multitarget approach for Alzheimer’s Disease: Development of first-in-class dual glycogen synthase kinase 3β and tau-aggregation inhibitors. J. Med. Chem., 2018, 61(17), 7640-7656.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00610] [PMID: 30078314]
[146]
Wang, M.; Liu, T.; Chen, S.; Wu, M.; Han, J.; Li, Z. Design and synthesis of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives as novel GSK-3β inhibitors and evaluation of their potential as multifunctional anti-Alzheimer agents. Eur. J. Med. Chem., 2021, 209, 112874.
[http://dx.doi.org/10.1016/j.ejmech.2020.112874] [PMID: 33017743]
[147]
Poliseno, V.; Chaves, S.; Brunetti, L.; Loiodice, F.; Carrieri, A.; Laghezza, A.; Tortorella, P.; Magalhães, J.D.; Cardoso, S.M.; Santos, M.A.; Piemontese, L. Derivatives of tenuazonic acid as potential new multi-target anti-Alzheimer’s disease agents. Biomolecules, 2021, 11(1), 111.
[http://dx.doi.org/10.3390/biom11010111] [PMID: 33467709]
[148]
Kou, X.; Song, L.; Wang, Y.; Yu, Q.; Ju, H.; Yang, A.; Shen, R. Design, synthesis and anti-Alzheimer’s disease activity study of xanthone derivatives based on multi-target strategy. Bioorg. Med. Chem. Lett., 2020, 30(4), 126927.
[http://dx.doi.org/10.1016/j.bmcl.2019.126927] [PMID: 31901382]
[149]
He, F.; Chou, C.J.; Scheiner, M.; Poeta, E.; Chen, Y. Melatonin-and ferulic acid-based hdac6 selective inhibitors exhibit pronounced immunomodulatory effects in vitro and neuroprotective effects in a pharmacological Alzheimer’s disease mouse model. J. Med. Chem., 2021, 64, 3794-3812.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01940] [PMID: 33769811]
[150]
Guo, J.; Cheng, M.; Liu, P.; Cao, D.; Luo, J.; Wan, Y.; Fang, Y.; Jin, Y.; Xie, S.S.; Liu, J. A multi-target directed ligands strategy for the treatment of Alzheimer’s disease: Dimethyl fumarate plus Tranilast modified Dithiocarbate as AChE inhibitor and Nrf2 activator. Eur. J. Med. Chem., 2022, 242, 114630.
[http://dx.doi.org/10.1016/j.ejmech.2022.114630] [PMID: 35987018]
[151]
Codony, S.; Pont, C.; Griñán-Ferré, C.; Di Pede-Mattatelli, A.; Calvó-Tusell, C.; Feixas, F.; Osuna, S.; Jarné-Ferrer, J.; Naldi, M.; Bartolini, M.; Loza, M.I.; Brea, J.; Pérez, B.; Bartra, C.; Sanfeliu, C.; Juárez-Jiménez, J.; Morisseau, C.; Hammock, B.D.; Pallàs, M.; Vázquez, S.; Muñoz-Torrero, D. Discovery and in vivo proof of concept of a highly potent dual inhibitor of soluble epoxide hydrolase and acetylcholinesterase for the treatment of Alzheimer’s disease. J. Med. Chem., 2022, 65(6), 4909-4925.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02150] [PMID: 35271276]
[152]
Singh, J.V.; Thakur, S.; Kumar, N.; Singh, H.; Mithu, V.S.; Singh, H.; Bhagat, K.; Gulati, H.K.; Sharma, A.; Singh, H.; Sharma, S.; Bedi, P.M.S. Donepezil-inspired multitargeting indanone derivatives as effective anti-Alzheimer’s agents. ACS Chem. Neurosci., 2022, 13(6), 733-750.
[http://dx.doi.org/10.1021/acschemneuro.1c00535] [PMID: 35195392]
[153]
Leuci, R.; Brunetti, L.; Laghezza, A.; Piemontese, L.; Carrieri, A.; Pisani, L.; Tortorella, P.; Catto, M.; Loiodice, F.; Pisani, L.; Tortorella, P.; Catto, M.; Loiodice, F.; Carrieri, A. A new series of aryloxyacetic acids endowed with multi-target activity towards peroxisome proliferator-activated receptors (PPARs), Fatty Acid Amide Hydrolase (FAAH), and Acetylcholinesterase (AChE). Molecules, 2022, 27(3), 958.
[http://dx.doi.org/10.3390/molecules27030958] [PMID: 35164223]
[154]
Peschiulli, A.; Oehlrich, D.; Van Gool, M.; Austin, N.; Van Brandt, S.; Surkyn, M.; De Cleyn, M.; Vos, A.; Tresadern, G.; Rombouts, F.J.R.; Macdonald, G.J.; Moechars, D.; Trabanco, A.A.; Gijsen, H.J.M. A brain-penetrant and bioavailable pyrazolopiperazine BACE1 inhibitor elicits sustained reduction of amyloid β in vivo. ACS Med. Chem. Lett., 2022, 13(1), 76-83.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00445] [PMID: 35059126]
[155]
Azmy, E.M.; Nassar, I.F. New Indole Derivatives as Multitarget Anti-Alzheimer’s Agents : Synthesis; Biological Evaluation and Molecular Dynamics, 2023.
[156]
Hassan, A.S.; Morsy, N.M.; Aboulthana, W.M.; Ragab, A. Exploring novel derivatives of isatin-based Schiff bases as multi-target agents: design, synthesis, in vitro biological evaluation, and in silico ADMET analysis with molecular modeling simulations. RSC Advances, 2023, 13(14), 9281-9303.
[http://dx.doi.org/10.1039/D3RA00297G] [PMID: 36950709]
[157]
Muğlu, H.; Sönmez, F.; Çavuş, M.S.; Kurt, B.Z.; Yakan, H. New Schiff bases based on isatin and (thio)/carbohydrazone: Preparation, experimental-theoretical spectroscopic characterization, and DFT approach to antioxidant characteristics. Res. Chem. Intermed., 2023, 49(4), 1463-1484.
[http://dx.doi.org/10.1007/s11164-022-04908-1]
[158]
Chen, H.; Mi, J.; Li, S.; Liu, Z.; Yang, J.; Chen, R.; Wang, Y.; Ban, Y.; Zhou, Y.; Dong, W.; Sang, Z. Design, synthesis and evaluation of quinoline- O -carbamate derivatives as multifunctional agents for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2169682.
[http://dx.doi.org/10.1080/14756366.2023.2169682] [PMID: 36688444]
[159]
Cong, S.; Shi, Y.; Yu, G.; Zhong, F.; Li, J.; Liu, J.; Ye, C.; Tan, Z.; Deng, Y. Discovery of novel 5-(2-hydroxyphenyl)-2-phthalide-3(3H)-pyrazolones as balanced multifunctional agents against Alzheimer’s disease. Eur. J. Med. Chem., 2023, 250, 115216.
[http://dx.doi.org/10.1016/j.ejmech.2023.115216] [PMID: 36857812]
[160]
Yelamanda Rao, K.; Jeelan Basha, S.; Monika, K.; Sreelakshmi, M.; Sivakumar, I.; Mallikarjuna, G.; Yadav, R.M.; Kumar, S.; Subramanyam, R.; Damu, A.G. Synthesis and anti-Alzheimer potential of novel α-amino phosphonate derivatives and probing their molecular interaction mechanism with acetylcholinesterase. Eur. J. Med. Chem., 2023, 253, 115288.
[http://dx.doi.org/10.1016/j.ejmech.2023.115288] [PMID: 37031527]
[161]
Madhav, H.; Abdel-Rahman, S.A.; Hashmi, M.A.; Rahman, M.A.; Rehan, M.; Pal, K.; Nayeem, S.M.; Gabr, M.T.; Hoda, N. Multicomponent Petasis reaction for the identification of pyrazine based multi-target directed anti-Alzheimer’s agents: In-silico design, synthesis, and characterization. Eur. J. Med. Chem., 2023, 254, 115354.
[http://dx.doi.org/10.1016/j.ejmech.2023.115354] [PMID: 37043996]
[162]
Liu, P.; Cheng, M.; Guo, J.; Cao, D.; Luo, J.; Wan, Y.; Fang, Y.; Jin, Y.; Xie, S.S.; Liu, J. Dual functional antioxidant and butyrylcholinesterase inhibitors for the treatment of Alzheimer’s disease: Design, synthesis and evaluation of novel melatonin-alkylbenzylamine hybrids. Bioorg. Med. Chem., 2023, 78, 117146.
[http://dx.doi.org/10.1016/j.bmc.2022.117146] [PMID: 36580744]
[163]
Pasieka, A.; Panek, D.; Zaręba, P.; Sługocka, E.; Gucwa, N.; Espargaró, A.; Latacz, G.; Khan, N.; Bucki, A.; Sabaté, R.; Więckowska, A.; Malawska, B. Novel drug-like fluorenyl derivatives as selective butyrylcholinesterase and β-amyloid inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2023, 88-89, 117333.
[http://dx.doi.org/10.1016/j.bmc.2023.117333] [PMID: 37236021]
[164]
Qin, P.; Ran, Y.; Xie, F.; Liu, Y.; Wei, C.; Luan, X.; Wu, J. Design, synthesis, and biological evaluation of novel N-Benzyl piperidine derivatives as potent HDAC/AChE inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2023, 80, 117178.
[http://dx.doi.org/10.1016/j.bmc.2023.117178] [PMID: 36706609]
[165]
Liu, X.; Yu, C.; Yao, Y.; Lai, H.; Ye, X.; Xu, J.; Guo, J.; Xiao, X.; Lin, C.; Huang, Z.; Lin, J.; Yu, C.; Zha, D. Novel neuroprotective pyromeconic acid derivatives with concurrent anti-Aβ deposition, anti-inflammatory, and anti-oxidation properties for treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2023, 248, 115120.
[http://dx.doi.org/10.1016/j.ejmech.2023.115120] [PMID: 36682173]
[166]
Makhaeva, G.F.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Grishchenko, M.V.; Lushchekina, S.V.; Astakhova, T.Y.; Serebryakova, O.G.; Timokhina, E.N.; Zhilina, E.F.; Shchegolkov, E.V.; Ulitko, M.V.; Radchenko, E.V.; Palyulin, V.A.; Burgart, Y.V.; Saloutin, V.I.; Bachurin, S.O.; Richardson, R.J. Conjugates of tacrine and salicylic acid derivatives as new promising multitarget agents for Alzheimer’s disease. Int. J. Mol. Sci., 2023, 24(3), 2285.
[http://dx.doi.org/10.3390/ijms24032285] [PMID: 36768608]
[167]
Rogers, S.L.; Farlow, M.R.; Doody, R.S.; Mohs, R.; Friedhoff, L.T. Donepezil Study Group. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology, 1989, 50(1), 136-145.
[168]
Linse, S.; Scheidt, T.; Bernfur, K.; Vendruscolo, M.; Dobson, C.M.; Cohen, S.I.A.; Sileikis, E.; Lundqvist, M.; Qian, F.; O’Malley, T.; Bussiere, T.; Weinreb, P.H.; Xu, C.K.; Meisl, G.; Devenish, S.R.A.; Knowles, T.P.J.; Hansson, O. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat. Struct. Mol. Biol., 2020, 27(12), 1125-1133.
[http://dx.doi.org/10.1038/s41594-020-0505-6] [PMID: 32989305]
[169]
Honig, L.S.; Vellas, B.; Woodward, M.; Boada, M.; Bullock, R.; Borrie, M.; Hager, K.; Andreasen, N.; Scarpini, E.; Liu-Seifert, H.; Case, M.; Dean, R.A.; Hake, A.; Sundell, K.; Poole Hoffmann, V.; Carlson, C.; Khanna, R.; Mintun, M.; DeMattos, R.; Selzler, K.J.; Siemers, E. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N. Engl. J. Med., 2018, 378(4), 321-330.
[http://dx.doi.org/10.1056/NEJMoa1705971] [PMID: 29365294]
[170]
Ostrowitzki, S.; Lasser, R.A.; Dorflinger, E.; Scheltens, P.; Barkhof, F.; Nikolcheva, T.; Ashford, E.; Retout, S.; Hofmann, C.; Delmar, P.; Klein, G.; Andjelkovic, M.; Dubois, B.; Boada, M.; Blennow, K.; Santarelli, L.; Fontoura, P. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res. Ther., 2017, 9(1), 95.
[http://dx.doi.org/10.1186/s13195-017-0318-y] [PMID: 29221491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy