Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Stem Cell Therapy for the Management of Type 1 Diabetes: Advances and Perspectives

Author(s): Priyanshi Goyal and Rishabha Malviya*

Volume 24, Issue 5, 2024

Published on: 08 October, 2023

Page: [549 - 561] Pages: 13

DOI: 10.2174/0118715303256582230919093535

Price: $65

conference banner
Abstract

Due to insulin resistance and excessive blood sugar levels, type 1 diabetes mellitus (T1DM) is characterized by pancreatic cell loss. This condition affects young people at a higher rate than any other chronic autoimmune disease. Regardless of the method, exogenous insulin cannot substitute for insulin produced by a healthy pancreas. An emerging area of medicine is pancreatic and islet transplantation for type 1 diabetics to restore normal blood sugar regulation. However, there are still obstacles standing in the way of the widespread use of these therapies, including very low availability of pancreatic and islets supplied from human organ donors, challenging transplantation conditions, high expenses, and a lack of easily accessible methods. Efforts to improve Type 1 Diabetes treatment have been conducted in response to the disease's increasing prevalence. Type 1 diabetes may one day be treated with stem cell treatment. Stem cell therapy has proven to be an effective treatment for type 1 diabetes. Recent progress in stem cell-based diabetes treatment is summarised, and the authors show how to isolate insulin-producing cells (IPCs) from a variety of progenitor cells.

Keywords: Diabetes, stem cells, pancreatic cell, mesenchymal stem cell, insulin, autoimmune disease.

Graphical Abstract
[1]
Pal, R.; Banerjee, M. Are people with uncontrolled diabetes mellitus at high risk of reinfections with COVID-19? Prim. Care Diabetes, 2021, 15(1), 18-20.
[http://dx.doi.org/10.1016/j.pcd.2020.08.002] [PMID: 32800450]
[2]
Khajeh, H.; Bahari, A.; Rashki, A. TCF7L2 polymorphisms in type 2 diabetes, insight from HRM and ARMS techniques. Int. J. Adv. Biol. Biomed. Res., 2021, 9(3), 204-214.
[http://dx.doi.org/10.22034/ijabbr.2021.525681.1351]
[3]
Suwanwongse, K.; Shabarek, N. Newly diagnosed diabetes mellitus, DKA, and COVID‐19: Causality or coincidence? A report of three cases. J. Med. Virol., 2021, 93(2), 1150-1153.
[http://dx.doi.org/10.1002/jmv.26339] [PMID: 32706395]
[4]
Oriot, P.; Hermans, M.P. Euglycemic diabetic ketoacidosis in a patient with type 1 diabetes and SARS-CoV-2 pneumonia: Case report and review of the literature. Acta Clin. Belg., 2020, 1-5.
[http://dx.doi.org/10.1080/17843286.2020.1780390] [PMID: 32544373]
[5]
Barron, E.; Bakhai, C.; Kar, P.; Weaver, A.; Bradley, D.; Ismail, H.; Knighton, P.; Holman, N.; Khunti, K.; Sattar, N.; Wareham, N.J.; Young, B.; Valabhji, J. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. Lancet Diabetes Endocrinol., 2020, 8(10), 813-822.
[http://dx.doi.org/10.1016/S2213-8587(20)30272-2] [PMID: 32798472]
[6]
Cerna, M. Epigenetic regulation in etiology of type 1 diabetes mellitus. Int. J. Mol. Sci., 2019, 21(1), 36.
[http://dx.doi.org/10.3390/ijms21010036] [PMID: 31861649]
[7]
Jerram, S.; Leslie, R.D. The genetic architecture of type 1 diabetes. Genes, 2017, 8(8), 209.
[http://dx.doi.org/10.3390/genes8080209] [PMID: 28829396]
[8]
Tamborlane, W.V.; Beck, R.W.; Bode, B.W.; Buckingham, B.; Chase, H.P.; Clemons, R.; Fiallo-Scharer, R.; Fox, L.A.; Gilliam, L.K.; Hirsch, I.B.; Huang, E.S.; Kollman, C.; Kowalski, A.J.; Laffel, L.; Lawrence, J.M.; Lee, J.; Mauras, N.; O’Grady, M.; Ruedy, K.J.; Tansey, M.; Tsalikian, E.; Weinzimer, S.; Wilson, D.M.; Wolpert, H.; Wysocki, T.; Xing, D. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med., 2008, 359(14), 1464-1476.
[http://dx.doi.org/10.1056/NEJMoa0805017] [PMID: 18779236]
[9]
Bellofatto, K.; Moeckli, B.; Wassmer, C.H.; Laurent, M.; Oldani, G.; Andres, A.; Berney, T.; Berishvili, E.; Toso, C.; Peloso, A. Bioengineered islet cell transplantation. Curr. Transplant. Rep., 2021, 2021, 1-10.
[10]
Johnson, P.R.; Brandhorst, D. Pancreas, and islet cell transplantation. In: Pediatric Surgery: General Pediatric Surgery, Tumors, Trauma and Transplantation; University of Oxford, 2021; pp. 407-420.
[http://dx.doi.org/10.1007/978-3-662-43559-5_120]
[11]
Migliorini, A.; Nostro, M.C.; Sneddon, J.B. Human pluripotent stem cell-derived insulin-producing cells: A regenerative medicine perspective. Cell Metab., 2021, 33(4), 721-731.
[http://dx.doi.org/10.1016/j.cmet.2021.03.021] [PMID: 33826915]
[12]
Damyar, K.; Farahmand, V.; Whaley, D.; Alexander, M.; Lakey, J.R.T. An overview of current advancements in pancreatic islet transplantation into the omentum. Islets, 2021, 13(5-6), 115-120.
[http://dx.doi.org/10.1080/19382014.2021.1954459] [PMID: 34402725]
[13]
Lanzoni, G.; Ricordi, C. Transplantation of stem cell-derived pancreatic islet cells. Nat. Rev. Endocrinol., 2021, 17(1), 7-8.
[http://dx.doi.org/10.1038/s41574-020-00430-9] [PMID: 33087845]
[14]
Khan, M.S.; Cuda, S.; Karere, G.M.; Cox, L.A.; Bishop, A.C. Breath biomarkers of insulin resistance in pre-diabetic Hispanic adolescents with obesity. Sci. Rep., 2022, 12(1), 339.
[http://dx.doi.org/10.1038/s41598-021-04072-3] [PMID: 35013420]
[15]
Costa, L.A.; Eiro, N.; Fraile, M.; Gonzalez, L.O.; Saá, J.; Garcia-Portabella, P.; Vega, B.; Schneider, J.; Vizoso, F.J. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: Implications for further clinical uses. Cell. Mol. Life Sci., 2021, 78(2), 447-467.
[http://dx.doi.org/10.1007/s00018-020-03600-0] [PMID: 32699947]
[16]
Nobre, A.R.; Risson, E.; Singh, D.K.; Di Martino, J.S.; Cheung, J.F.; Wang, J.; Johnson, J.; Russnes, H.G.; Bravo-Cordero, J.J.; Birbrair, A.; Naume, B.; Azhar, M.; Frenette, P.S.; Aguirre-Ghiso, J.A. Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy via TGF-β2. Nat. Can., 2021, 2(3), 327-339.
[http://dx.doi.org/10.1038/s43018-021-00179-8] [PMID: 34993493]
[17]
Fiorina, P.; Jurewicz, M.; Augello, A.; Vergani, A.; Dada, S.; La Rosa, S.; Selig, M.; Godwin, J.; Law, K.; Placidi, C.; Smith, R.N.; Capella, C.; Rodig, S.; Adra, C.N.; Atkinson, M.; Sayegh, M.H.; Abdi, R. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J. Immunol., 2009, 183(2), 993-1004.
[http://dx.doi.org/10.4049/jimmunol.0900803] [PMID: 19561093]
[18]
Refaie, A.F.; Elbassiouny, B.L.; Kloc, M.; Sabek, O.M.; Khater, S.M.; Ismail, A.M.; Mohamed, R.H.; Ghoneim, M.A. From mesenchymal stromal/stem cells to insulin-producing cells: Immunological considerations. Front. Immunol., 2021, 12, 690623.
[http://dx.doi.org/10.3389/fimmu.2021.690623] [PMID: 34248981]
[19]
Shrestha, M.; Nguyen, T.T.; Park, J.; Choi, J.U.; Yook, S.; Jeong, J.H. Immunomodulation effect of mesenchymal stem cells in islet transplantation. Biomed. Pharmacother., 2021, 142, 112042.
[http://dx.doi.org/10.1016/j.biopha.2021.112042] [PMID: 34403963]
[20]
Karimi-Shahri, M.; Javid, H.; Sharbaf Mashhad, A.; Yazdani, S.; Hashemy, S.I. Mesenchymal stem cells in cancer therapy; the art of harnessing a foe to a friend. Iran. J. Basic Med. Sci., 2021, 24(10), 1307-1323.
[PMID: 35096289]
[21]
Hwa, A.J.; Weir, G.C. Transplantation of macroencapsulated insulin-producing cells. Curr. Diab. Rep., 2018, 18(8), 50.
[http://dx.doi.org/10.1007/s11892-018-1028-y] [PMID: 29909496]
[22]
Qi, W.; Wang, G.; Wang, L. A novel satiety sensor detects circulating glucose and suppresses food consumption via insulin-producing cells in Drosophila. Cell Res., 2021, 31(5), 580-588.
[http://dx.doi.org/10.1038/s41422-020-00449-7] [PMID: 33273704]
[23]
Enderami, S.E.; Soleimani, M.; Mortazavi, Y.; Nadri, S.; Salimi, A. Generation of insulin‐producing cells from human adipose‐derived mesenchymal stem cells on PVA scaffold by optimized differentiation protocol. J. Cell. Physiol., 2018, 233(5), 4327-4337.
[http://dx.doi.org/10.1002/jcp.26266] [PMID: 29150935]
[24]
Nishikawa, G.; Kawada, K.; Nakagawa, J.; Toda, K.; Ogawa, R.; Inamoto, S.; Mizuno, R.; Itatani, Y.; Sakai, Y. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression via CCR5. Cell Death Dis., 2019, 10(4), 264.
[http://dx.doi.org/10.1038/s41419-019-1508-2] [PMID: 30890699]
[25]
Nakano, M.; Kubota, K.; Kobayashi, E.; Chikenji, T.S.; Saito, Y.; Konari, N.; Fujimiya, M. Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer’s disease model by increasing the expression of microRNA-146a in hippocampus. Sci. Rep., 2020, 10(1), 10772.
[http://dx.doi.org/10.1038/s41598-020-67460-1] [PMID: 32612165]
[26]
Blum, B.; Hrvatin, S.; Schuetz, C.; Bonal, C.; Rezania, A.; Melton, D.A. Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat. Biotechnol., 2012, 30(3), 261-264.
[http://dx.doi.org/10.1038/nbt.2141] [PMID: 22371083]
[27]
van der Meulen, T.; Donaldson, C.J.; Cáceres, E.; Hunter, A.E.; Cowing-Zitron, C.; Pound, L.D.; Adams, M.W.; Zembrzycki, A.; Grove, K.L.; Huising, M.O. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med., 2015, 21(7), 769-776.
[http://dx.doi.org/10.1038/nm.3872] [PMID: 26076035]
[28]
Henquin, J.C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes, 2000, 49(11), 1751-1760.
[http://dx.doi.org/10.2337/diabetes.49.11.1751] [PMID: 11078440]
[29]
Komatsu, M.; Takei, M.; Ishii, H.; Sato, Y. Glucose-stimulated insulin secretion: A newer perspective. J. Diabetes Investig., 2013, 4(6), 511-516.
[http://dx.doi.org/10.1111/jdi.12094] [PMID: 24843702]
[30]
Zhao, S. Mugabo, Y.; Iglesias, J.; Xie, L.; Delghingaro-Augusto, V.; Lussier, R.; Peyot, M.L.; Joly, E.; Taïb, B.; Davis, M.A.; Brown, J.M.; Abousalham, A.; Gaisano, H.; Madiraju, S.R.M.; Prentki, M. α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab., 2014, 19(6), 993-1007.
[http://dx.doi.org/10.1016/j.cmet.2014.04.003] [PMID: 24814481]
[31]
Ferdaoussi, M.; Dai, X.; Jensen, M.V.; Wang, R.; Peterson, B.S.; Huang, C.; Ilkayeva, O.; Smith, N.; Miller, N.; Hajmrle, C.; Spigelman, A.F.; Wright, R.C.; Plummer, G.; Suzuki, K.; Mackay, J.P.; van de Bunt, M.; Gloyn, A.L.; Ryan, T.E.; Norquay, L.D.; Brosnan, M.J.; Trimmer, J.K.; Rolph, T.P.; Kibbey, R.G.; Manning Fox, J.E.; Colmers, W.F.; Shirihai, O.S.; Neufer, P.D.; Yeh, E.T.H.; Newgard, C.B.; MacDonald, P.E. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J. Clin. Invest., 2015, 125(10), 3847-3860.
[http://dx.doi.org/10.1172/JCI82498] [PMID: 26389676]
[32]
Gooding, J.R.; Jensen, M.V.; Dai, X.; Wenner, B.R.; Lu, D.; Arumugam, R.; Ferdaoussi, M.; MacDonald, P.E.; Newgard, C.B. Adenylosuccinate is an insulin secretagogue derived from glucose- induced purine metabolism. Cell Rep., 2015, 13(1), 157-167.
[http://dx.doi.org/10.1016/j.celrep.2015.08.072] [PMID: 26411681]
[33]
Pullen, T.J.; Khan, A.M.; Barton, G.; Butcher, S.A.; Sun, G.; Rutter, G.A. Identification of genes selectively disallowed in the pancreatic islet. Islets, 2010, 2(2), 89-95.
[http://dx.doi.org/10.4161/isl.2.2.11025] [PMID: 21099300]
[34]
Thorrez, L.; Laudadio, I.; Van Deun, K.; Quintens, R.; Hendrickx, N.; Granvik, M.; Lemaire, K.; Schraenen, A.; Van Lommel, L.; Lehnert, S.; Aguayo-Mazzucato, C.; Cheng-Xue, R.; Gilon, P.; Van Mechelen, I.; Bonner-Weir, S.; Lemaigre, F.; Schuit, F. Tissue-specific disallowance of housekeeping genes: The other face of cell differentiation. Genome Res., 2011, 21(1), 95-105.
[http://dx.doi.org/10.1101/gr.109173.110] [PMID: 21088282]
[35]
Lemaire, K.; Thorrez, L.; Schuit, F. Disallowed and allowed gene expression: Two faces of mature islet beta cells. Annu. Rev. Nutr., 2016, 36(1), 45-71.
[http://dx.doi.org/10.1146/annurev-nutr-071715-050808] [PMID: 27146011]
[36]
Taylor, B.L.; Liu, F.F.; Sander, M. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep., 2013, 4(6), 1262-1275.
[http://dx.doi.org/10.1016/j.celrep.2013.08.010] [PMID: 24035389]
[37]
Gu, C.; Stein, G.H.; Pan, N.; Goebbels, S.; Hörnberg, H.; Nave, K.A.; Herrera, P.; White, P.; Kaestner, K.H.; Sussel, L.; Lee, J.E. Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metab., 2010, 11(4), 298-310.
[http://dx.doi.org/10.1016/j.cmet.2010.03.006] [PMID: 20374962]
[38]
Gosmain, Y.; Katz, L.S.; Masson, M.H.; Cheyssac, C.; Poisson, C.; Philippe, J. Pax6 is crucial for β-cell function, insulin biosynthesis, and glucose-induced insulin secretion. Mol. Endocrinol., 2012, 26(4), 696-709.
[http://dx.doi.org/10.1210/me.2011-1256] [PMID: 22403172]
[39]
Aguayo-Mazzucato, C.; Zavacki, A.M.; Marinelarena, A.; Hollister-Lock, J.; El Khattabi, I.; Marsili, A.; Weir, G.C.; Sharma, A.; Larsen, P.R.; Bonner-Weir, S. Thyroid hormone promotes postnatal rat pancreatic β-cell development and glucose-responsive insulin secretion through MAFA. Diabetes, 2013, 62(5), 1569-1580.
[http://dx.doi.org/10.2337/db12-0849] [PMID: 23305647]
[40]
Huang, C.; Walker, E.M.; Dadi, P.K.; Hu, R.; Xu, Y.; Zhang, W.; Sanavia, T.; Mun, J.; Liu, J.; Nair, G.G.; Tan, H.Y.A.; Wang, S.; Magnuson, M.A.; Stoeckert, C.J., Jr; Hebrok, M.; Gannon, M.; Han, W.; Stein, R.; Jacobson, D.A.; Gu, G. Synaptotagmin 4 regulates pancreatic β cell maturation by modulating the Ca2+ sensitivity of insulin secretion vesicles. Dev. Cell, 2018, 45(3), 347-361.e5.
[http://dx.doi.org/10.1016/j.devcel.2018.03.013] [PMID: 29656931]
[41]
Fiorina, P.; Voltarelli, J.; Zavazava, N. Immunological applications of stem cells in type 1 diabetes. Endocr. Rev., 2011, 32(6), 725-754.
[http://dx.doi.org/10.1210/er.2011-0008] [PMID: 21862682]
[42]
Barcala Tabarrozzi, A.E.; Castro, C.N.; Dewey, R.A.; Sogayar, M.C.; Labriola, L.; Perone, M.J. Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus. Clin. Exp. Immunol., 2013, 171(2), 135-146.
[http://dx.doi.org/10.1111/cei.12019] [PMID: 23286940]
[43]
Fändrich, F.; Ungefroren, H. Customized cell-based treatment options to combat autoimmunity and restore beta-cell function in type 1 diabetes mellitus: Current protocols and future perspectives. Adv. Exp. Med. Biol., 2010, 654, 641-665.
[http://dx.doi.org/10.1007/978-90-481-3271-3_28] [PMID: 20217518]
[44]
Sims, E.; Evans-Molina, C. Stem cells as a tool to improve outcomes of islet transplantation. J. Transplant., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/736491] [PMID: 22970344]
[45]
Madec, A.M.; Mallone, R.; Afonso, G.; Abou Mrad, E.; Mesnier, A.; Eljaafari, A.; Thivolet, C. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 2009, 52(7), 1391-1399.
[http://dx.doi.org/10.1007/s00125-009-1374-z] [PMID: 19421731]
[46]
Jurewicz, M.; Yang, S.; Augello, A.; Godwin, J.G.; Moore, R.F.; Azzi, J.; Fiorina, P.; Atkinson, M.; Sayegh, M.H.; Abdi, R. Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes, 2010, 59(12), 3139-3147.
[http://dx.doi.org/10.2337/db10-0542] [PMID: 20841611]
[47]
Rackham, C.L.; Chagastelles, P.C.; Nardi, N.B.; Hauge-Evans, A.C.; Jones, P.M.; King, A.J.F. Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia, 2011, 54(5), 1127-1135.
[http://dx.doi.org/10.1007/s00125-011-2053-4] [PMID: 21267536]
[48]
Arrighi, N. Defnition and classifcation of stem cells. Stem Cells, 2018, 2018, 1-45.
[49]
Hwang, N.S.; Varghese, S.; Elisseeff, J. Controlled differentiation of stem cells. Adv. Drug Deliv. Rev., 2008, 60(2), 199-214.
[http://dx.doi.org/10.1016/j.addr.2007.08.036] [PMID: 18006108]
[50]
Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391), 1145-1147.
[51]
Rippon, H.J.; Bishop, A.E. Embryonic stem cells. Cell Prolif., 2004, 37(1), 23-34.
[http://dx.doi.org/10.1111/j.1365-2184.2004.00298.x] [PMID: 14871235]
[52]
Baeyens, L.; Lemper, M.; Leuckx, G.; De Groef, S.; Bonfanti, P.; Stangé, G.; Shemer, R.; Nord, C.; Scheel, D.W.; Pan, F.C.; Ahlgren, U.; Gu, G.; Stoffers, D.A.; Dor, Y.; Ferrer, J.; Gradwohl, G.; Wright, C.V.E.; Van de Casteele, M.; German, M.S.; Bouwens, L.; Heimberg, H. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat. Biotechnol., 2014, 32(1), 76-83.
[http://dx.doi.org/10.1038/nbt.2747] [PMID: 24240391]
[53]
Poulsom, R.; Alison, M.R.; Forbes, S.J.; Wright, N.A. Adult stem cell plasticity. J. Pathol., 2002, 197(4), 441-456.
[54]
Brignier, A.C.; Gewirtz, A.M. Embryonic and adult stem cell therapy. J. Allergy Clin. Immunol., 2010, 125(2)(Suppl. 2), S336-S344.
[http://dx.doi.org/10.1016/j.jaci.2009.09.032] [PMID: 20061008]
[55]
Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell, 2007, 131(5), 861-872.
[http://dx.doi.org/10.1016/j.cell.2007.11.019]
[56]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024]
[57]
Edlund, H. Pancreatic organogenesis - developmental mechanisms and implications for therapy. Nat. Rev. Genet., 2002, 3(7), 524-532.
[http://dx.doi.org/10.1038/nrg841] [PMID: 12094230]
[58]
Sakhneny, L.; Khalifa-Malka, L.; Landsman, L. Pancreas organogenesis: Approaches to elucidate the role of epithelial-mesenchymal interactions. Semin. Cell Dev. Biol., 2019, 92, 89-96.
[http://dx.doi.org/10.1016/j.semcdb.2018.08.012] [PMID: 30172049]
[59]
Schroeder, I.S. Potential of pluripotent stem cells for diabetes therapy. Curr. Diab. Rep., 2012, 12(5), 490-498.
[http://dx.doi.org/10.1007/s11892-012-0292-5] [PMID: 22753002]
[60]
Lumelsky, N.; Blondel, O.; Laeng, P.; Velasco, I.; Ravin, R.; McKay, R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 2001, 292(5520), 1389-1394.
[http://dx.doi.org/10.1126/science.1058866] [PMID: 11326082]
[61]
Ptasznik, A.; Beattie, G.M.; Mally, M.I.; Cirulli, V.; Lopez, A.; Hayek, A. Phosphatidylinositol 3-kinase is a negative regulator of cellular differentiation. J. Cell Biol., 1997, 137(5), 1127-1136.
[http://dx.doi.org/10.1083/jcb.137.5.1127] [PMID: 9166412]
[62]
D’Amour, K.A.; Bang, A.G.; Eliazer, S.; Kelly, O.G.; Agulnick, A.D.; Smart, N.G.; Moorman, M.A.; Kroon, E.; Carpenter, M.K.; Baetge, E.E. Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol., 2006, 24(11), 1392-1401.
[http://dx.doi.org/10.1038/nbt1259] [PMID: 17053790]
[63]
Pagliuca, F.W.; Millman, J.R.; Gürtler, M.; Segel, M.; Van Dervort, A.; Ryu, J.H.; Peterson, Q.P.; Greiner, D.; Melton, D.A. Generation of functional human pancreatic β cells in vitro. Cell, 2014, 159(2), 428-439.
[http://dx.doi.org/10.1016/j.cell.2014.09.040] [PMID: 25303535]
[64]
Zhang, D.; Jiang, W.; Liu, M.; Sui, X.; Yin, X.; Chen, S.; Shi, Y.; Deng, H. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res., 2009, 19(4), 429-438.
[http://dx.doi.org/10.1038/cr.2009.28] [PMID: 19255591]
[65]
Schroeder, I.S.; Rolletschek, A.; Blyszczuk, P.; Kania, G.; Wobus, A.M. Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat. Protoc., 2006, 1(2), 495-507.
[http://dx.doi.org/10.1038/nprot.2006.71] [PMID: 17406275]
[66]
Vaca, P.; Martín, F.; Vegara-Meseguer, J.M.; Rovira, J.M.; Berná, G.; Soria, B. Induction of differentiation of embryonic stem cells into insulin-secreting cells by fetal soluble factors. Stem Cells, 2006, 24(2), 258-265.
[http://dx.doi.org/10.1634/stemcells.2005-0058] [PMID: 16109755]
[67]
Servitja, J.M.; Ferrer, J. Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia, 2004, 47(4), 597-613.
[http://dx.doi.org/10.1007/s00125-004-1368-9] [PMID: 15298336]
[68]
Al-Khawaga, S.; Memon, B.; Butler, A.E.; Taheri, S.; Abou-Samra, A.B.; Abdelalim, E.M. Pathways governing development of stem cell-derived pancreatic β cells: Lessons from embryogenesis. Biol. Rev. Camb. Philos. Soc., 2018, 93(1), 364-389.
[http://dx.doi.org/10.1111/brv.12349] [PMID: 28643455]
[69]
Kossugue, P.M. Diferenciação de células-tronco embrionárias murinas (mESCs) em células produtoras de insulina (IPCs) e caracterização funcional do gene Purkinje cell protein 4 (Pcp4) neste processo (Doctoral dissertation, Universidade de São Paulo), 2013.
[70]
Candiello, J.; Grandhi, T.S.P.; Goh, S.K.; Vaidya, V.; Lemmon-Kishi, M.; Eliato, K.R.; Ros, R.; Kumta, P.N.; Rege, K.; Banerjee, I. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials, 2018, 177, 27-39.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.031] [PMID: 29883914]
[71]
McCracken, K.W.; Wells, J.M. Molecular pathways controlling pancreas induction. In: Semin. Cell Dev. Biol., 2012, 23(6), 656-662.
[http://dx.doi.org/10.1016/j.semcdb.2012.06.009]
[72]
Fukumoto, H.; Seino, S.; Imura, H.; Seino, Y.; Eddy, R.L.; Fukushima, Y.; Byers, M.G.; Shows, T.B.; Bell, G.I. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. USA, 1988, 85(15), 5434-5438.
[http://dx.doi.org/10.1073/pnas.85.15.5434] [PMID: 3399500]
[73]
Qadir, M.M.F.; Lanzoni, G.; Ricordi, C.; Domínguez-Bendala, J. Human pancreatic progenitors. In: Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas; , 2020; pp. 183-200.
[http://dx.doi.org/10.1016/B978-0-12-814831-0.00013-0]
[74]
Hebrok, M.; Kim, S.K.; Melton, D.A. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev., 1998, 12(11), 1705-1713.
[http://dx.doi.org/10.1101/gad.12.11.1705] [PMID: 9620856]
[75]
Rodríguez-Martínez, G.; Molina-Hernandez, A.; Velasco, I. Activin A promotes neuronal differentiation of cerebrocortical neural progenitor cells. PLoS One, 2012, 7(8), e43797.
[http://dx.doi.org/10.1371/journal.pone.0043797]
[76]
Staford, D.; Prince, V.E. Retinoic acid signaling is required for a critical early step in zebrafsh pancreatic development. Curr. Biol., 2002, 2(14), 1215-1220.
[http://dx.doi.org/10.1016/S0960-9822(02)00929-6]
[77]
Nostro, M.C.; Sarangi, F.; Ogawa, S.; Holtzinger, A.; Corneo, B.; Li, X.; Micallef, S.J.; Park, I.H.; Basford, C.; Wheeler, M.B.; Daley, G.Q.; Elefanty, A.G.; Stanley, E.G.; Keller, G. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development, 2011, 138(5), 861-871.
[http://dx.doi.org/10.1242/dev.055236] [PMID: 21270052]
[78]
Sherwood, R.I.; Maehr, R.; Mazzoni, E.O.; Melton, D.A. Wnt signaling specifies and patterns intestinal endoderm. Mech. Dev., 2011, 128(7-10), 387-400.
[http://dx.doi.org/10.1016/j.mod.2011.07.005] [PMID: 21854845]
[79]
Kroon, E.; Martinson, L.A.; Kadoya, K.; Bang, A.G.; Kelly, O.G.; Eliazer, S.; Young, H.; Richardson, M.; Smart, N.G.; Cunningham, J.; Agulnick, A.D.; D’Amour, K.A.; Carpenter, M.K.; Baetge, E.E. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol., 2008, 26(4), 443-452.
[http://dx.doi.org/10.1038/nbt1393] [PMID: 18288110]
[80]
Maehr, R.; Chen, S.; Snitow, M.; Ludwig, T.; Yagasaki, L.; Goland, R.; Leibel, R.L.; Melton, D.A. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl. Acad. Sci. USA, 2009, 106(37), 15768-15773.
[http://dx.doi.org/10.1073/pnas.0906894106] [PMID: 19720998]
[81]
Johannesson, M. Human embryonic stem cells: Directed diferentiation into posterior foregut endoderm and a functional assay for defnitive endoderm. Lund University Faculty of Medicine Doctoral Dissertation Series, 2009.
[82]
Ameri, J.; Ståhlberg, A.; Pedersen, J.; Johansson, J.K.; Johannesson, M.M.; Artner, I.; Semb, H. FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells, 2010, 28(1), 45-56.
[http://dx.doi.org/10.1002/stem.249] [PMID: 19890880]
[83]
Kunisada, Y.; Tsubooka-Yamazoe, N.; Shoji, M.; Hosoya, M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res., 2012, 8(2), 274-284.
[http://dx.doi.org/10.1016/j.scr.2011.10.002] [PMID: 22056147]
[84]
Ndlovu, R.; Deng, L.C.; Wu, J.; Li, X.K.; Zhang, J.S. Fibroblast growth factor 10 in pancreas development and pancreatic cancer. Front. Genet., 2018, 9, 482.
[http://dx.doi.org/10.3389/fgene.2018.00482] [PMID: 30425728]
[85]
Bhushan, A.; Itoh, N.; Kato, S.; Thiery, J.P.; Czernichow, P.; Bellusci, S.; Scharfmann, R. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development, 2001, 128(24), 5109-5117.
[86]
Memon, B.; Karam, M.; Al-Khawaga, S.; Abdelalim, E.M. Enhanced differentiation of human pluripotent stem cells into pancreatic progenitors co-expressing PDX1 and NKX6. 1. Stem Cell Res. Ther., 2018, 9(1), 1-15.
[PMID: 29291747]
[87]
Öström, M.; Loffler, K.A.; Edfalk, S.; Selander, L.; Dahl, U.; Ricordi, C.; Jeon, J.; Correa-Medina, M.; Diez, J.; Edlund, H. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into β-cells. PLoS One, 2008, 3(7), e2841.
[http://dx.doi.org/10.1371/journal.pone.0002841] [PMID: 18665267]
[88]
Uzan, B.; Figeac, F.; Portha, B.; Movassat, J. Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation. PLoS One, 2009, 4(3), e4734.
[http://dx.doi.org/10.1371/journal.pone.0004734] [PMID: 19266047]
[89]
Movassat, J.; Beattie, G.M.; Lopez, A.D.; Portha, B.; Hayek, A. Keratinocyte growth factor and beta-cell differentiation in human fetal pancreatic endocrine precursor cells. Diabetologia, 2003, 46(6), 822-829.
[http://dx.doi.org/10.1007/s00125-003-1117-5] [PMID: 12802496]
[90]
Shahjalal, H.M.; Abdal Dayem, A.; Lim, K.M.; Jeon, T.; Cho, S.G. Generation of pancreatic β cells for treatment of diabetes: Advances and challenges. Stem Cell Res. Ther., 2018, 9(1), 355.
[http://dx.doi.org/10.1186/s13287-018-1099-3] [PMID: 30594258]
[91]
Schulz, T.C.; Young, H.Y.; Agulnick, A.D.; Babin, M.J.; Baetge, E.E.; Bang, A.G.; Bhoumik, A.; Cepa, I.; Cesario, R.M.; Haakmeester, C.; Kadoya, K.; Kelly, J.R.; Kerr, J.; Martinson, L.A.; McLean, A.B.; Moorman, M.A.; Payne, J.K.; Richardson, M.; Ross, K.G.; Sherrer, E.S.; Song, X.; Wilson, A.Z.; Brandon, E.P.; Green, C.E.; Kroon, E.J.; Kelly, O.G.; D’Amour, K.A.; Robins, A.J. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One, 2012, 7(5), e37004.
[http://dx.doi.org/10.1371/journal.pone.0037004] [PMID: 22623968]
[92]
Velazquez-Garcia, S.; Valle, S.; Rosa, T.C.; Takane, K.K.; Demirci, C.; Alvarez-Perez, J.C.; Mellado-Gil, J.M.; Ernst, S.; Scott, D.K.; Vasavada, R.C.; Alonso, L.C.; Garcia-Ocaña, A. Activation of protein kinase C-ζ in pancreatic β-cells in vivo improves glucose tolerance and induces β-cell expansion via mTOR activation. Diabetes, 2011, 60(10), 2546-2559.
[http://dx.doi.org/10.2337/db10-1783] [PMID: 21911744]
[93]
Vasavada, R.C.; Wang, L.; Fujinaka, Y.; Takane, K.K.; Rosa, T.C.; Mellado-Gil, J.M.D.; Friedman, P.A.; Garcia-Ocaña, A. Protein kinase C-ζ activation markedly enhances β-cell proliferation: An essential role in growth factor mediated β-cell mitogenesis. Diabetes, 2007, 56(11), 2732-2743.
[http://dx.doi.org/10.2337/db07-0461] [PMID: 17686945]
[94]
Russ, H.A.; Parent, A.V.; Ringler, J.J.; Hennings, T.G.; Nair, G.G.; Shveygert, M.; Guo, T.; Puri, S.; Haataja, L.; Cirulli, V.; Blelloch, R.; Szot, G.L.; Arvan, P.; Hebrok, M. Controlled induction of human pancreatic progenitors produces functional beta‐like cells in vitro. EMBO J., 2015, 34(13), 1759-1772.
[http://dx.doi.org/10.15252/embj.201591058] [PMID: 25908839]
[95]
Jensen, J.; Heller, R.S.; Funder-Nielsen, T.; Pedersen, E.E.; Lindsell, C.; Weinmaster, G.; Madsen, O.D.; Serup, P. Independent development of pancreatic alpha-and beta-cells from neurogenin3-expressing precursors: A role for the notch pathway in repression of premature differentiation. Diabetes, 2000, 49(2), 163-176.
[http://dx.doi.org/10.2337/diabetes.49.2.163]
[96]
Márquez-Aguirre, A.L.; Canales-Aguirre, A.A.; Padilla-Camberos, E.; Esquivel-Solis, H.; Díaz-Martínez, N.E. Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy. Braz. J. Med. Biol. Res., 2015, 48(9), 765-776.
[http://dx.doi.org/10.1590/1414-431x20154363] [PMID: 26176316]
[97]
Mason, M.N.; Mahoney, M.J. Inhibition of gamma-secretase activity promotes differentiation of embryonic pancreatic precursor cells into functional islet-like clusters in poly (ethylene glycol) hydrogel culture. Tissue Engineering. Part A, 2010, 16(8), 2593-2603.
[98]
Rezania, A.; Bruin, J.E.; Arora, P.; Rubin, A.; Batushansky, I.; Asadi, A.; O’dwyer, S.; Quiskamp, N.; Mojibian, M.; Albrecht, T.; Yang, Y.H.C. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol., 2014, 32(11), 1121-1133.
[99]
Millman, J.R.; Xie, C.; Van Dervort, A.; Gürtler, M.; Pagliuca, F.W.; Melton, D.A. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat. Commun., 2016, 7(1), 11463.
[http://dx.doi.org/10.1038/ncomms11463] [PMID: 27163171]
[100]
Chen, Y.; Pan, F.C.; Brandes, N.; Afelik, S.; Sölter, M.; Pieler, T. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev. Biol., 2004, 271(1), 144-160.
[http://dx.doi.org/10.1016/j.ydbio.2004.03.030]
[101]
Gao, Y.; Zhang, R.; Dai, S.; Zhang, X.; Li, X.; Bai, C. Role of TGF-β/Smad pathway in the transcription of pancreas-specific genes during beta cell differentiation. Front. Cell Dev. Biol., 2019, 7, 351.
[102]
Aïello, V.; Moreno-Asso, A.; Servitja, J.M.; Martín, M. Thyroid hormones promote endocrine differentiation at expenses of exocrine tissue. Exp. Cell Res., 2014, 322(2), 236-248.
[http://dx.doi.org/10.1016/j.yexcr.2014.01.030] [PMID: 24503054]
[103]
Mfopou, J.K.; Chen, B.; Sui, L.; Sermon, K.; Bouwens, L. Recent advances and prospects in the differentiation of pancreatic cells from human embryonic stem cells. Diabetes, 2010, 59(9), 2094-2101.
[http://dx.doi.org/10.2337/db10-0439] [PMID: 20805383]
[104]
Abdelalim, E.M.; Emara, M.M. Advances and challenges in the differentiation of pluripotent stem cells into pancreatic β cells. World J. Stem Cells, 2015, 7(1), 174.
[http://dx.doi.org/10.4252/wjsc.v7.i1.174]
[105]
Wandzioch, E.; Zaret, K.S. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science, 2009, 324(5935), 1707-1710.
[http://dx.doi.org/10.1126/science.1174497]
[106]
Sui, L.; Geens, M.; Sermon, K.; Bouwens, L.; Mfopou, J.K. Role of BMP signaling in pancreatic progenitor differentiation from human embryonic stem cells. Stem Cell Rev., 2013, 9(5), 569-577.
[http://dx.doi.org/10.1007/s12015-013-9435-6] [PMID: 23468018]
[107]
Chen, C.; Xie, Z.; Shen, Y.; Xia, S.F. The roles of thyroid and thyroid hormone in pancreas: Physiology and pathology. Int. J. Endocrinol., 2018, 2018, 1-14.
[http://dx.doi.org/10.1155/2018/2861034] [PMID: 30013597]
[108]
Velazco-Cruz, L.; Song, J.; Maxwell, K.G.; Goedegebuure, M.M.; Augsornworawat, P.; Hogrebe, N.J.; Millman, J.R. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Reports, 2019, 12(2), 351-365.
[http://dx.doi.org/10.1016/j.stemcr.2018.12.012] [PMID: 30661993]
[109]
Shing, Y.; Christofori, G.; Hanahan, D.; Ono, Y.; Sasada, R.; Igarashi, K.; Folkman, J. Betacellulin: A mitogen from pancreatic β cell tumors. Science, 1993, 259(5101), 1604-1607.
[http://dx.doi.org/10.1126/science.8456283] [PMID: 8456283]
[110]
Liu, S.H.; Lee, L.T. Efficient differentiation of mouse embryonic stem cells into insulin-producing cells. Exp. Diabetes Res., 2012, 2012, 1-5.
[http://dx.doi.org/10.1155/2012/201295] [PMID: 22919367]
[111]
Woodford, C.; Yin, T.; Chang, H.H.; Regeenes, R.; Vellanki, R.N.; Mohan, H.; Wouters, B.G.; Rocheleau, J.V.; Wheeler, M.B.; Zandstra, P.W. Nicotinamide promotes differentiation of pancreatic endocrine progenitors from human pluripotent stem cells through poly (ADP-ribose) polymerase inhibition. bioRxiv, 2020, 05295.
[http://dx.doi.org/10.1101/2020.04.21.052951]
[112]
Ye, D.Z.; Tai, M.H.; Linning, K.D.; Szabo, C.; Olson, L.K. MafA expression and insulin promoter activity are induced by nicotinamide and related compounds in INS-1 pancreatic β-cells. Diabetes, 2006, 55(3), 742-750.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-0653]
[113]
Thowfeequ, S.; Ralphs, K.L.; Yu, W.Y.; Slack, J.M.W.; Tosh, D. Betacellulin inhibits amylase and glucagon production and promotes beta cell differentiation in mouse embryonic pancreas. Diabetologia, 2007, 50(8), 1688-1697.
[http://dx.doi.org/10.1007/s00125-007-0724-y] [PMID: 17563868]
[114]
Kieffer, T.J.; Francis Habener, J. The glucagon-like peptides. Endocr. Rev., 1999, 20(6), 876-913.
[http://dx.doi.org/10.1210/edrv.20.6.0385]
[115]
Buteau, J.; Roduit, R.; Susini, S.; Prentki, M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia, 1999, 42(7), 856-864.
[http://dx.doi.org/10.1007/s001250051238] [PMID: 10440129]
[116]
Brissova, M.; Shostak, A.; Shiota, M.; Wiebe, P.O.; Poffenberger, G.; Kantz, J.; Chen, Z.; Carr, C.; Jerome, W.G.; Chen, J.; Baldwin, H.S.; Nicholson, W.; Bader, D.M.; Jetton, T.; Gannon, M.; Powers, A.C. Pancreatic islet production of vascular endothelial growth factor--a is essential for islet vascularization, revascularization, and function. Diabetes, 2006, 55(11), 2974-2985.
[http://dx.doi.org/10.2337/db06-0690] [PMID: 17065333]
[117]
Prasadan, K.; Shiota, C.; Xiangwei, X.; Ricks, D.; Fusco, J.; Gittes, G. A synopsis of factors regulating beta cell development and beta cell mass. Cell. Mol. Life Sci., 2016, 73(19), 3623-3637.
[http://dx.doi.org/10.1007/s00018-016-2231-0] [PMID: 27105622]
[118]
Weber, L.M.; Hayda, K.N.; Anseth, K.S. Cell–matrix interactions improve β-cell survival and insulin secretion in three-dimensional culture. Tissue Eng. Part A, 2008, 14(12), 1959-1968.
[http://dx.doi.org/10.1089/ten.tea.2007.0238]
[119]
Leite, A.R.; Corrêa-Giannella, M.L.; Dagli, M.L.Z.; Fortes, M.A.Z.; Vegas, V.M.T.; Giannella-Neto, D. Fibronectin and laminin induce expression of islet cell markers in hepatic oval cells in culture. Cell Tissue Res., 2007, 327(3), 529-537.
[http://dx.doi.org/10.1007/s00441-006-0340-z] [PMID: 17149594]
[120]
Llacua, L.A.; Faas, M.M.; de Vos, P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia, 2018, 61(6), 1261-1272.
[http://dx.doi.org/10.1007/s00125-017-4524-8] [PMID: 29306997]
[121]
Wiley, L.A.; Burnight, E.R.; Songstad, A.E.; Drack, A.V.; Mullins, R.F.; Stone, E.M.; Tucker, B.A. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog. Retin. Eye Res., 2015, 44, 15-35.
[http://dx.doi.org/10.1016/j.preteyeres.2014.10.002] [PMID: 25448922]
[122]
Dantas, J.R.; Araújo, D.B.; Silva, K.R.; Souto, D.L.; Pereira, M.F.C.; Luiz, R.R.; Mantuano, M.S.; Claudio-da-Silva, C.; Gabbay, M.A.L.; Dib, S.A.; Couri, C.E.B.; Maiolino, A.; Rebelatto, C.L.K.; Daga, D.R.; Senegaglia, A.C.; Brofman, P.R.S.; Baptista, L.S.; Oliveira, J.E.P.; Zajdenverg, L.; Rodacki, M. Adipose tissue-derived stromal/stem cells + cholecalciferol: A pilot study in recent-onset type 1 diabetes patients. Arch. Endocrinol. Metab., 2021, 65(3), 342-351.
[http://dx.doi.org/10.20945/2359-3997000000368] [PMID: 33939911]
[123]
Joseph, U.A.; Jhingran, S.G. Technetium-99m labeled RBC imaging in gastrointestinal bleeding from gastric leiomyoma. Clin. Nucl. Med., 1988, 13(1), 23-25.
[http://dx.doi.org/10.1097/00003072-198801000-00006] [PMID: 3258215]
[124]
Hu, J.; Yu, X.; Wang, Z.; Wang, F.; Wang, L.; Gao, H.; Chen, Y.; Zhao, W.; Jia, Z.; Yan, S.; Wang, Y. Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr. J., 2013, 60(3), 347-357.
[http://dx.doi.org/10.1507/endocrj.EJ12-0343] [PMID: 23154532]
[125]
Cai, J.; Wu, Z.; Xu, X.; Liao, L.; Chen, J.; Huang, L.; Wu, W.; Luo, F.; Wu, C.; Pugliese, A.; Pileggi, A.; Ricordi, C.; Tan, J. Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: A pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care, 2016, 39(1), 149-157.
[http://dx.doi.org/10.2337/dc15-0171] [PMID: 26628416]
[126]
Huang, Q.; Huang, Y.; Liu, J. Mesenchymal stem cells: An excellent candidate for the treatment of diabetes mellitus. Int. J. Endocrinol., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/9938658] [PMID: 34135959]
[127]
Nguyen, L.T.; Hoang, D.M.; Nguyen, K.T.; Bui, D.M.; Nguyen, H.T.; Le, H.T.A.; Hoang, V.T.; Bui, H.T.H.; Dam, P.T.M.; Hoang, X.T.A.; Ngo, A.T.L.; Le, H.M.; Phung, N.Y.; Vu, D.M.; Duong, T.T.; Nguyen, T.D.; Ha, L.T.; Bui, H.T.P.; Nguyen, H.K.; Heke, M.; Bui, A.V. Type 2 diabetes mellitus duration and obesity alter the efficacy of autologously transplanted bone marrow-derived mesenchymal stem/stromal cells. Stem Cells Transl. Med., 2021, 10(9), 1266-1278.
[http://dx.doi.org/10.1002/sctm.20-0506] [PMID: 34080789]
[128]
Alicka, M.; Major, P.; Wysocki, M.; Marycz, K. Adipose-derived mesenchymal stem cells isolated from patients with type 2 diabetes show reduced “stemness” through an altered secretome profile, impaired anti-oxidative protection, and mitochondrial dynamics deterioration. J. Clin. Med., 2019, 8(6), 765.
[http://dx.doi.org/10.3390/jcm8060765] [PMID: 31151180]
[129]
Rideout, W.M., III; Eggan, K.; Jaenisch, R. Nuclear cloning and epigenetic reprogramming of the genome. Science, 2001, 293(5532), 1093-1098.
[http://dx.doi.org/10.1126/science.1063206] [PMID: 11498580]
[130]
Wobus, A.M.; Holzhausen, H.; Jäkel, P.; Schöneich, J. Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp. Cell Res., 1984, 152(1), 212-219.
[http://dx.doi.org/10.1016/0014-4827(84)90246-5] [PMID: 6714319]
[131]
Kolossov, E.; Fleischmann, B.K.; Liu, Q.; Bloch, W.; Viatchenko-Karpinski, S.; Manzke, O.; Ji, G.J.; Bohlen, H.; Addicks, K.; Hescheler, J. Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J. Cell Biol., 1998, 143(7), 2045-2056.
[http://dx.doi.org/10.1083/jcb.143.7.2045] [PMID: 9864374]
[132]
Li, M.; Pevny, L.; Lovell-Badge, R.; Smith, A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol., 1998, 8(17), 971-S2.
[http://dx.doi.org/10.1016/S0960-9822(98)70399-9] [PMID: 9742400]
[133]
Burt, R.K.; Slavin, S.; Burns, W.H.; Marmont, A.M. Induction of tolerance in autoimmune diseases by hematopoietic stem cell transplantation: Getting closer to a cure? Blood, 2002, 99(3), 768-784.
[http://dx.doi.org/10.1182/blood.V99.3.768] [PMID: 11806976]
[134]
Usdin, S. Ethical issues associated with pluripotent stem cells. In: Human Embryonic Stem Cells; , 2003; pp. 3-25.
[135]
Hawthorne, W.J.; Salvaris, E.J.; Phillips, P.; Hawkes, J.; Liuwantara, D.; Burns, H.; Barlow, H.; Stewart, A.B.; Peirce, S.B.; Hu, M.; Lew, A.M.; Robson, S.C.; Nottle, M.B.; D’Apice, A.J.F.; O’Connell, P.J.; Cowan, P.J. Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. Am. J. Transplant., 2014, 14(6), 1300-1309.
[http://dx.doi.org/10.1111/ajt.12722] [PMID: 24842781]
[136]
David, K.C.; Hidetaka, H.; Mohamed, E.; Rita, B.; Massimo, T.; Carol, P.; David, A.; Yifan, D. The potential of genetically-engineered pigs in providing an alternative source of organs and cells for transplantation. J. Biomed. Res., 2013, 27(4), 249-253.
[http://dx.doi.org/10.7555/JBR.27.20130063] [PMID: 23885264]
[137]
Tuch, B.E.; Keogh, G.W.; Williams, L.J.; Wu, W.; Foster, J.L.; Vaithilingam, V.; Philips, R. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care, 2009, 32(10), 1887-1889.
[http://dx.doi.org/10.2337/dc09-0744] [PMID: 19549731]
[138]
Vertex. Vertex announces positive day 90 data for the first patient in the phase 1/2 clinical trial dosed with VX-880, a Novel investigational stem cell-derived therapy for the treatment of type 1 diabetes. https://news.vrtx.com/press-release/vertex-announces-positive-day-90-data-firstpatient-phase-12-clinical-trial-dosed-vx?_ga=2.53361578.345811804.1646342387-705593813.1646342387

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy