Review Article

蛋白质-肽复合物结构预测的当前计算方法

卷 31, 期 26, 2024

发表于: 06 October, 2023

页: [4058 - 4078] 页: 21

弟呕挨: 10.2174/0109298673263447230920151524

价格: $65

conference banner
摘要

肽介导的蛋白-蛋白相互作用(PPIs)在多种生物过程中发挥着重要作用。肽类药物以其高特异性和低毒性的优势,越来越受到人们的关注。在肽类药物的开发中,最重要的步骤之一是确定肽类药物与靶蛋白之间相互作用的细节。除了实验方法外,最近开发的计算方法为研究蛋白质-肽相互作用提供了一种经济有效的方法。本文对近年来发展起来的蛋白-肽对接方法进行了综述,将其分为三类:基于模板的对接、无模板的对接和杂交对接。然后,我们提出了可用的基准集和评估指标来评估蛋白质-肽对接性能。此外,我们讨论了分子动力学模拟的使用,以及深度学习方法在蛋白质-肽复合物预测中的应用。

关键词: 蛋白肽对接,基准集,评估指标,分子动力学模拟,深度学习,对接性能。

[1]
Wells, J.A.; McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature, 2007, 450(7172), 1001-1009.
[http://dx.doi.org/10.1038/nature06526] [PMID: 18075579]
[2]
Stelzl, U.; Worm, U.; Lalowski, M.; Haenig, C.; Brembeck, F.H.; Goehler, H.; Stroedicke, M.; Zenkner, M.; Schoenherr, A.; Koeppen, S.; Timm, J.; Mintzlaff, S.; Abraham, C.; Bock, N.; Kietzmann, S.; Goedde, A.; Toksöz, E.; Droege, A.; Krobitsch, S.; Korn, B.; Birchmeier, W.; Lehrach, H.; Wanker, E.E. A human protein-protein interaction network: A resource for annotating the proteome. Cell, 2005, 122(6), 957-968.
[http://dx.doi.org/10.1016/j.cell.2005.08.029] [PMID: 16169070]
[3]
Rual, J.F.; Venkatesan, K.; Hao, T.; Hirozane-Kishikawa, T.; Dricot, A.; Li, N.; Berriz, G.F.; Gibbons, F.D.; Dreze, M.; Ayivi-Guedehoussou, N.; Klitgord, N.; Simon, C.; Boxem, M.; Milstein, S.; Rosenberg, J.; Goldberg, D.S.; Zhang, L.V.; Wong, S.L.; Franklin, G.; Li, S.; Albala, J.S.; Lim, J.; Fraughton, C.; Llamosas, E.; Cevik, S.; Bex, C.; Lamesch, P.; Sikorski, R.S.; Vandenhaute, J.; Zoghbi, H.Y.; Smolyar, A.; Bosak, S.; Sequerra, R.; Doucette-Stamm, L.; Cusick, M.E.; Hill, D.E.; Roth, F.P.; Vidal, M. Towards a proteome-scale map of the human protein–protein interaction network. Nature, 2005, 437(7062), 1173-1178.
[http://dx.doi.org/10.1038/nature04209] [PMID: 16189514]
[4]
Arkin, M.R.; Whitty, A. The road less traveled: Modulating signal transduction enzymes by inhibiting their protein–protein interactions. Curr. Opin. Chem. Biol., 2009, 13(3), 284-290.
[http://dx.doi.org/10.1016/j.cbpa.2009.05.125] [PMID: 19553156]
[5]
Nero, T.L.; Morton, C.J.; Holien, J.K.; Wielens, J.; Parker, M.W. Oncogenic protein interfaces: Small molecules, big challenges. Nat. Rev. Cancer, 2014, 14(4), 248-262.
[http://dx.doi.org/10.1038/nrc3690] [PMID: 24622521]
[6]
Ideker, T.; Sharan, R. Protein networks in disease. Genome Res., 2008, 18(4), 644-652.
[http://dx.doi.org/10.1101/gr.071852.107] [PMID: 18381899]
[7]
Petsalaki, E.; Russell, R.B. Peptide-mediated interactions in biological systems: New discoveries and applications. Curr. Opin. Biotechnol., 2008, 19(4), 344-350.
[http://dx.doi.org/10.1016/j.copbio.2008.06.004] [PMID: 18602004]
[8]
Hershberger, S.; Lee, S.G.; Chmielewski, J. Scaffolds for blocking protein-protein interactions. Curr. Top. Med. Chem., 2007, 7(10), 928-942.
[http://dx.doi.org/10.2174/156802607780906726] [PMID: 17508924]
[9]
Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem., 2013, 20(15), 1985-1996.
[http://dx.doi.org/10.2174/0929867311320150005] [PMID: 23317161]
[10]
Eichler, J. Peptides as protein binding site mimetics. Curr. Opin. Chem. Biol., 2008, 12(6), 707-713.
[http://dx.doi.org/10.1016/j.cbpa.2008.09.023] [PMID: 18935974]
[11]
London, N.; Raveh, B.; Movshovitz-Attias, D.; Schueler-Furman, O. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins, 2010, 78(15), 3140-3149.
[http://dx.doi.org/10.1002/prot.22785] [PMID: 20607702]
[12]
Bruzzoni-Giovanelli, H.; Alezra, V.; Wolff, N.; Dong, C.Z.; Tuffery, P.; Rebollo, A. Interfering peptides targeting protein–protein interactions: The next generation of drugs? Drug Discov. Today, 2018, 23(2), 272-285.
[http://dx.doi.org/10.1016/j.drudis.2017.10.016] [PMID: 29097277]
[13]
Dagliyan, O.; Proctor, E.A.; D’Auria, K.M.; Ding, F.; Dokholyan, N.V. Structural and dynamic determinants of protein-peptide recognition. Structure, 2011, 19(12), 1837-1845.
[http://dx.doi.org/10.1016/j.str.2011.09.014] [PMID: 22153506]
[14]
Wójcik, P.; Berlicki, Ł. Peptide-based inhibitors of protein–protein interactions. Bioorg. Med. Chem. Lett., 2016, 26(3), 707-713.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.084] [PMID: 26764190]
[15]
Nevola, L.; Giralt, E. Modulating protein–protein interactions: The potential of peptides. Chem. Commun., 2015, 51(16), 3302-3315.
[http://dx.doi.org/10.1039/C4CC08565E] [PMID: 25578807]
[16]
Cunningham, A.D.; Qvit, N.; Mochly-Rosen, D. Peptides and peptidomimetics as regulators of protein–protein interactions. Curr. Opin. Struct. Biol., 2017, 44, 59-66.
[http://dx.doi.org/10.1016/j.sbi.2016.12.009] [PMID: 28063303]
[17]
Wang, X.; Ni, D.; Liu, Y.; Lu, S. Rational design of peptide-based inhibitors disrupting protein-protein interactions. Front Chem., 2021, 9, 682675.
[http://dx.doi.org/10.3389/fchem.2021.682675] [PMID: 34017824]
[18]
Corbi-Verge, C.; Kim, P.M. Motif mediated protein-protein interactions as drug targets. Cell Commun. Signal., 2016, 14(1), 8.
[http://dx.doi.org/10.1186/s12964-016-0131-4] [PMID: 26936767]
[19]
Sun, H.; Stuckey, J.A.; Nikolovska-Coleska, Z.; Qin, D.; Meagher, J.L.; Qiu, S.; Lu, J.; Yang, C.Y.; Saito, N.G.; Wang, S. Structure-based design, synthesis, evaluation, and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). J. Med. Chem., 2008, 51(22), 7169-7180.
[http://dx.doi.org/10.1021/jm8006849] [PMID: 18954041]
[20]
Stewart-Ornstein, J.; Iwamoto, Y.; Miller, M.A.; Prytyskach, M.A.; Ferretti, S.; Holzer, P.; Kallen, J.; Furet, P.; Jambhekar, A.; Forrester, W.C.; Weissleder, R.; Lahav, G. p53 dynamics vary between tissues and are linked with radiation sensitivity. Nat. Commun., 2021, 12(1), 898.
[http://dx.doi.org/10.1038/s41467-021-21145-z] [PMID: 33563973]
[21]
Furet, P.; Bordas, V.; Le Douget, M.; Salem, B.; Mesrouze, Y.; Imbach-Weese, P.; Sellner, H.; Voegtle, M.; Soldermann, N.; Chapeau, E.; Wartmann, M.; Scheufler, C.; Fernandez, C.; Kallen, J.; Guagnano, V.; Chène, P.; Schmelzle, T. The first class of small molecules potently disrupting the YAP-TEAD interaction by direct competition. ChemMedChem, 2022, 17(19), e202200303.
[http://dx.doi.org/10.1002/cmdc.202200303] [PMID: 35950546]
[22]
Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein–peptide docking: Opportunities and challenges. Drug Discov. Today, 2018, 23(8), 1530-1537.
[http://dx.doi.org/10.1016/j.drudis.2018.05.006] [PMID: 29733895]
[23]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[24]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[25]
Jain, A.N. Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided Mol. Des., 2007, 21(5), 281-306.
[http://dx.doi.org/10.1007/s10822-007-9114-2] [PMID: 17387436]
[26]
Su, M.; Yang, Q.; Du, Y.; Feng, G.; Liu, Z.; Li, Y.; Wang, R. Comparative assessment of scoring functions: The CASF-2016 update. J. Chem. Inf. Model., 2019, 59(2), 895-913.
[http://dx.doi.org/10.1021/acs.jcim.8b00545] [PMID: 30481020]
[27]
Hauser, A.S.; Windshügel, B. LEADS-PEP: A benchmark data set for assessment of peptide docking performance. J. Chem. Inf. Model., 2016, 56(1), 188-200.
[http://dx.doi.org/10.1021/acs.jcim.5b00234] [PMID: 26651532]
[28]
Alam, N.; Goldstein, O.; Xia, B.; Porter, K.A.; Kozakov, D.; Schueler-Furman, O. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLOS Comput. Biol., 2017, 13(12), e1005905.
[http://dx.doi.org/10.1371/journal.pcbi.1005905] [PMID: 29281622]
[29]
Xu, X.; Zou, X. Predicting protein–peptide complex structures by accounting for peptide flexibility and the physicochemical environment. J. Chem. Inf. Model., 2022, 62(1), 27-39.
[http://dx.doi.org/10.1021/acs.jcim.1c00836] [PMID: 34931833]
[30]
Trellet, M.; Melquiond, A.S.J.; Bonvin, A.M.J.J. A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One, 2013, 8(3), e58769.
[http://dx.doi.org/10.1371/journal.pone.0058769] [PMID: 23516555]
[31]
Geng, C.; Narasimhan, S.; Rodrigues, J.P.; Bonvin, A.M. Information-driven, ensemble flexible peptide docking using HADDOCK. Methods. Mol. Biol., 2017, 109-138.
[32]
Trellet, M.; Melquiond, A.S.; Bonvin, A.M. Information- driven modeling of protein-peptide complexes. In: Methods. Mol. Biol; , 2015; pp. 221-239.
[33]
de Vries, S.J.; Rey, J.; Schindler, C.E.M.; Zacharias, M.; Tuffery, P. The pepATTRACT web server for blind, large-scale peptide–protein docking. Nucleic Acids Res., 2017, 45(W1), W361-W364.
[http://dx.doi.org/10.1093/nar/gkx335] [PMID: 28460116]
[34]
Khramushin, A.; Ben-Aharon, Z.; Tsaban, T.; Varga, J.K.; Avraham, O.; Schueler-Furman, O. Matching protein surface structural patches for high-resolution blind peptide docking. Proc. Natl. Acad. Sci., 2022, 119(18), e2121153119.
[http://dx.doi.org/10.1073/pnas.2121153119] [PMID: 35482919]
[35]
Chen, J.N.; Jiang, F.; Wu, Y.D. Accurate prediction for protein–peptide binding based on high-temperature molecular dynamics simulations. J. Chem. Theory Comput., 2022, 18(10), 6386-6395.
[http://dx.doi.org/10.1021/acs.jctc.2c00743] [PMID: 36149394]
[36]
Tsaban, T.; Varga, J.K.; Avraham, O.; Ben-Aharon, Z.; Khramushin, A.; Schueler-Furman, O. Harnessing protein folding neural networks for peptide–protein docking. Nat. Commun., 2022, 13(1), 176.
[http://dx.doi.org/10.1038/s41467-021-27838-9] [PMID: 35013344]
[37]
Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J. Protein complex prediction with AlphaFold-Multimer. BioRxiv, 2021, 2021.2010.
[38]
Shanker, S.; Sanner, M.F. Predicting protein–peptide interactions: Benchmarking deep learning techniques and a comparison with focused docking. J. Chem. Inf. Model., 2023, 63(10), 3158-3170.
[http://dx.doi.org/10.1021/acs.jcim.3c00602] [PMID: 37167566]
[39]
Santos, K.B.; Guedes, I.A.; Karl, A.L.M.; Dardenne, L.E. Highly flexible ligand docking: Benchmarking of the DockThor program on the LEADS-PEP protein–peptide data set. J. Chem. Inf. Model., 2020, 60(2), 667-683.
[http://dx.doi.org/10.1021/acs.jcim.9b00905] [PMID: 31922754]
[40]
Vanhee, P.; van der Sloot, A.M.; Verschueren, E.; Serrano, L.; Rousseau, F.; Schymkowitz, J. Computational design of peptide ligands. Trends Biotechnol., 2011, 29(5), 231-239.
[http://dx.doi.org/10.1016/j.tibtech.2011.01.004] [PMID: 21316780]
[41]
Stein, A.; Pache, R.A.; Bernadó, P.; Pons, M.; Aloy, P. Dynamic interactions of proteins in complex networks: A more structured view. FEBS J., 2009, 276(19), 5390-5405.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07251.x] [PMID: 19712106]
[42]
Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: A protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res., 2015, 43(W1), W431-W435.
[http://dx.doi.org/10.1093/nar/gkv495] [PMID: 25969449]
[43]
Johansson-Åkhe, I.; Mirabello, C.; Wallner, B. InterPep2: Global peptide–protein docking using interaction surface templates. Bioinformatics, 2020, 36(8), 2458-2465.
[http://dx.doi.org/10.1093/bioinformatics/btaa005] [PMID: 31917413]
[44]
London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta flexpepdock web server-high resolution modeling of peptide–protein interactions. Nucleic Acids Res., 2011, 39(Web Server issue)(2), W249-W253.
[http://dx.doi.org/10.1093/nar/gkr431] [PMID: 21622962]
[45]
Raveh, B.; London, N.; Zimmerman, L.; Schueler-Furman, O. Rosetta FlexPepDock ab-initio: Simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One, 2011, 6(4), e18934.
[http://dx.doi.org/10.1371/journal.pone.0018934] [PMID: 21572516]
[46]
Donsky, E.; Wolfson, H.J. PepCrawler: A fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics, 2011, 27(20), 2836-2842.
[http://dx.doi.org/10.1093/bioinformatics/btr498] [PMID: 21880702]
[47]
Zhang, Y.; Sanner, M.F. AutoDock CrankPep: Combining folding and docking to predict protein–peptide complexes. Bioinformatics, 2019, 35(24), 5121-5127.
[http://dx.doi.org/10.1093/bioinformatics/btz459] [PMID: 31161213]
[48]
Yan, C.; Xu, X.; Zou, X. Fully blind docking at the atomic level for protein-peptide complex structure prediction. Structure, 2016, 24(10), 1842-1853.
[http://dx.doi.org/10.1016/j.str.2016.07.021] [PMID: 27642160]
[49]
Xu, X.; Yan, C.; Zou, X. MDockPeP: An ab-initio protein–peptide docking server. J. Comput. Chem., 2018, 39(28), 2409-2413.
[http://dx.doi.org/10.1002/jcc.25555] [PMID: 30368849]
[50]
Zhou, P.; Li, B.; Yan, Y.; Jin, B.; Wang, L.; Huang, S.Y. Hierarchical flexible peptide docking by conformer generation and ensemble docking of peptides. J. Chem. Inf. Model., 2018, 58(6), 1292-1302.
[http://dx.doi.org/10.1021/acs.jcim.8b00142] [PMID: 29738247]
[51]
Zhou, P.; Jin, B.; Li, H.; Huang, S.Y. HPEPDOCK: A web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Res., 2018, 46(W1), W443-W450.
[http://dx.doi.org/10.1093/nar/gky357] [PMID: 29746661]
[52]
Yan, Y.; Zhang, D.; Huang, S.Y. Efficient conformational ensemble generation of protein-bound peptides. J. Cheminform., 2017, 9(1), 59.
[http://dx.doi.org/10.1186/s13321-017-0246-7] [PMID: 29168051]
[53]
Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res., 2015, 43(W1), W419-W424.
[http://dx.doi.org/10.1093/nar/gkv456] [PMID: 25943545]
[54]
Blaszczyk, M.; Kurcinski, M.; Kouza, M.; Wieteska, L.; Debinski, A.; Kolinski, A.; Kmiecik, S. Modeling of protein–peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods, 2016, 93, 72-83.
[http://dx.doi.org/10.1016/j.ymeth.2015.07.004] [PMID: 26165956]
[55]
Das, A.A.; Sharma, O.P.; Kumar, M.S.; Krishna, R.; Mathur, P.P. PepBind: A comprehensive database and computational tool for analysis of protein-peptide interactions. Genomics Proteomics Bioinformatics, 2013, 11(4), 241-246.
[http://dx.doi.org/10.1016/j.gpb.2013.03.002] [PMID: 23896518]
[56]
Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins, 2004, 57(4), 702-710.
[http://dx.doi.org/10.1002/prot.20264] [PMID: 15476259]
[57]
Trabuco, L.G.; Lise, S.; Petsalaki, E.; Russell, R.B. PepSite: Prediction of peptide-binding sites from protein surfaces. Nucleic Acids Res., 2012, 40(W1), W423-W427.
[http://dx.doi.org/10.1093/nar/gks398] [PMID: 22600738]
[58]
Yan, C.; Zou, X. Predicting peptide binding sites on protein surfaces by clustering chemical interactions. J. Comput. Chem., 2015, 36(1), 49-61.
[http://dx.doi.org/10.1002/jcc.23771] [PMID: 25363279]
[59]
Gainza, P.; Sverrisson, F.; Monti, F.; Rodolà, E.; Boscaini, D.; Bronstein, M.M.; Correia, B.E. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods, 2020, 17(2), 184-192.
[http://dx.doi.org/10.1038/s41592-019-0666-6] [PMID: 31819266]
[60]
Rooklin, D.; Wang, C.; Katigbak, J.; Arora, P.S.; Zhang, Y. AlphaSpace: Fragment-centric topographical mapping to target protein–protein interaction interfaces. J. Chem. Inf. Model., 2015, 55(8), 1585-1599.
[http://dx.doi.org/10.1021/acs.jcim.5b00103] [PMID: 26225450]
[61]
Gront, D.; Kulp, D.W.; Vernon, R.M.; Strauss, C.E.M.; Baker, D. Generalized fragment picking in Rosetta: Design, protocols and applications. PLoS One, 2011, 6(8), e23294.
[http://dx.doi.org/10.1371/journal.pone.0023294] [PMID: 21887241]
[62]
Andrusier, N.; Nussinov, R.; Wolfson, H.J. FireDock: Fast interaction refinement in molecular docking. Proteins, 2007, 69(1), 139-159.
[http://dx.doi.org/10.1002/prot.21495] [PMID: 17598144]
[63]
Pierce, B.G.; Wiehe, K.; Hwang, H.; Kim, B.H.; Vreven, T.; Weng, Z. ZDOCK server: Interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics, 2014, 30(12), 1771-1773.
[http://dx.doi.org/10.1093/bioinformatics/btu097] [PMID: 24532726]
[64]
Garzon, J.I.; Lopéz-Blanco, J.R.; Pons, C.; Kovacs, J.; Abagyan, R.; Fernandez-Recio, J.; Chacon, P. FRODOCK: A new approach for fast rotational protein–protein docking. Bioinformatics, 2009, 25(19), 2544-2551.
[http://dx.doi.org/10.1093/bioinformatics/btp447] [PMID: 19620099]
[65]
Weng, G.; Wang, E.; Wang, Z.; Liu, H.; Zhu, F.; Li, D.; Hou, T. HawkDock: A web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Res., 2019, 47(W1), W322-W330.
[http://dx.doi.org/10.1093/nar/gkz397] [PMID: 31106357]
[66]
Weng, G.; Gao, J.; Wang, Z.; Wang, E.; Hu, X.; Yao, X.; Cao, D.; Hou, T. Comprehensive evaluation of fourteen docking programs on protein–peptide complexes. J. Chem. Theory Comput., 2020, 16(6), 3959-3969.
[http://dx.doi.org/10.1021/acs.jctc.9b01208] [PMID: 32324992]
[67]
McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics, 2000, 16(4), 404-405.
[http://dx.doi.org/10.1093/bioinformatics/16.4.404] [PMID: 10869041]
[68]
Kozakov, D.; Brenke, R.; Comeau, S.R.; Vajda, S. PIPER: An FFT-based protein docking program with pairwise potentials. Proteins, 2006, 65(2), 392-406.
[http://dx.doi.org/10.1002/prot.21117] [PMID: 16933295]
[69]
Schindler, C.E.M.; de Vries, S.J.; Zacharias, M. iATTRACT: Simultaneous global and local interface optimization for protein-protein docking refinement. Proteins, 2015, 83(2), 248-258.
[http://dx.doi.org/10.1002/prot.24728] [PMID: 25402278]
[70]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[71]
Webb, B.; Sali, A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics., 2016, 54(1), 5.6. 1-5.6.
[72]
Huang, S.Y.; Zou, X. An iterative knowledge-based scoring function for protein-protein recognition. Proteins, 2008, 72(2), 557-579.
[http://dx.doi.org/10.1002/prot.21949] [PMID: 18247354]
[73]
Chaudhury, S.; Lyskov, S.; Gray, J.J. PyRosetta: A script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics, 2010, 26(5), 689-691.
[http://dx.doi.org/10.1093/bioinformatics/btq007] [PMID: 20061306]
[74]
Zhou, J.; Grigoryan, G. Rapid search for tertiary fragments reveals protein sequence-structure relationships. Protein Sci., 2015, 24(4), 508-524.
[http://dx.doi.org/10.1002/pro.2610] [PMID: 25420575]
[75]
Kuhlman, B.; Dantas, G.; Ireton, G.C.; Varani, G.; Stoddard, B.L.; Baker, D. Design of a novel globular protein fold with atomic-level accuracy. Science, 2003, 302(5649), 1364-1368.
[http://dx.doi.org/10.1126/science.1089427] [PMID: 14631033]
[76]
London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding strategies. Structure, 2010, 18(2), 188-199.
[http://dx.doi.org/10.1016/j.str.2009.11.012] [PMID: 20159464]
[77]
Xu, X.; Zou, X. PepPro: A nonredundant structure data set for benchmarking peptide–protein computational docking. J. Comput. Chem., 2020, 41(4), 362-369.
[http://dx.doi.org/10.1002/jcc.26114] [PMID: 31793016]
[78]
Wen, Z.; He, J.; Tao, H.; Huang, S.Y. PepBDB: A comprehensive structural database of biological peptide–protein interactions. Bioinformatics, 2019, 35(1), 175-177.
[http://dx.doi.org/10.1093/bioinformatics/bty579] [PMID: 29982280]
[79]
Martins, P.M.; Santos, L.H.; Mariano, D.; Queiroz, F.C.; Bastos, L.L.; Gomes, I.S.; Fischer, P.H.C.; Rocha, R.E.O.; Silveira, S.A.; de Lima, L.H.F.; de Magalhães, M.T.Q.; Oliveira, M.G.A.; de Melo-Minardi, R.C. Propedia: A database for protein–peptide identification based on a hybrid clustering algorithm. BMC Bioinformatics, 2021, 22(1), 1-20.
[http://dx.doi.org/10.1186/s12859-020-03881-z] [PMID: 33388027]
[80]
Orengo, C.A.; Michie, A.D.; Jones, S.; Jones, D.T.; Swindells, M.B.; Thornton, J.M. CATH: A hierarchic classification of protein domain structures. Structure, 1997, 5(8), 1093-1109.
[http://dx.doi.org/10.1016/S0969-2126(97)00260-8] [PMID: 9309224]
[81]
Liu, Z.; Su, M.; Han, L.; Liu, J.; Yang, Q.; Li, Y.; Wang, R. Forging the basis for developing protein–ligand interaction scoring functions. Acc. Chem. Res., 2017, 50(2), 302-309.
[http://dx.doi.org/10.1021/acs.accounts.6b00491] [PMID: 28182403]
[82]
Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The single global macromolecular structure archive. Prot. Crystall. Meth. Prot., 2017, 627-641.
[83]
Lei, Y.; Li, S.; Liu, Z.; Wan, F.; Tian, T.; Li, S.; Zhao, D.; Zeng, J. A deep-learning framework for multi-level peptide–protein interaction prediction. Nat. Commun., 2021, 12(1), 5465.
[http://dx.doi.org/10.1038/s41467-021-25772-4] [PMID: 34526500]
[84]
Fukunaga, I.; Sawada, R.; Shibata, T.; Kaitoh, K.; Sakai, Y.; Yamanishi, Y. Prediction of the health effects of food peptides and elucidation of the mode-of-action using multi-task graph convolutional neural network. Mol. Inform., 2020, 39(1-2), 1900134.
[http://dx.doi.org/10.1002/minf.201900134] [PMID: 31778042]
[85]
Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; de Hoon, M.J.L. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 2009, 25(11), 1422-1423.
[http://dx.doi.org/10.1093/bioinformatics/btp163] [PMID: 19304878]
[86]
Méndez, R.; Leplae, R.; De Maria, L.; Wodak, S.J. Assessment of blind predictions of protein-protein interactions: Current status of docking methods. Proteins, 2003, 52(1), 51-67.
[http://dx.doi.org/10.1002/prot.10393] [PMID: 12784368]
[87]
Basu, S.; Wallner, B.; Dock, Q. A quality measure for protein-protein docking models. PLoS One, 2016, 11(8), e0161879.
[http://dx.doi.org/10.1371/journal.pone.0161879] [PMID: 27560519]
[88]
Lensink, M.F.; Nadzirin, N.; Velankar, S.; Wodak, S.J. Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition. Proteins: Struct. Funct. Bioinform., 2020, 88(8), 916-938.
[89]
Lensink, M.F.; Wodak, S.J. Docking, scoring, and affinity prediction in CAPRI. Proteins, 2013, 81(12), 2082-2095.
[http://dx.doi.org/10.1002/prot.24428] [PMID: 24115211]
[90]
Janin, J.; Henrick, K.; Moult, J.; Eyck, L.T.; Sternberg, M.J.E.; Vajda, S.; Vakser, I.; Wodak, S.J. CAPRI: A critical assessment of predicted interactions. Proteins, 2003, 52(1), 2-9.
[http://dx.doi.org/10.1002/prot.10381] [PMID: 12784359]
[91]
Janin, J. Assessing predictions of protein-protein interaction: The CAPRI experiment. Protein Sci., 2005, 14(2), 278-283.
[http://dx.doi.org/10.1110/ps.041081905] [PMID: 15659362]
[92]
Piana, S.; Klepeis, J.L.; Shaw, D.E. Assessing the accuracy of physical models used in protein-folding simulations: Quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol., 2014, 24, 98-105.
[http://dx.doi.org/10.1016/j.sbi.2013.12.006] [PMID: 24463371]
[93]
Li, W.; Wang, W.; Takada, S. Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains. Proc. Natl. Acad. Sci., 2014, 111(29), 10550-10555.
[http://dx.doi.org/10.1073/pnas.1402768111] [PMID: 25002491]
[94]
Chen, H.F.; Luo, R. Binding induced folding in p53-MDM2 complex. J. Am. Chem. Soc., 2007, 129(10), 2930-2937.
[http://dx.doi.org/10.1021/ja0678774] [PMID: 17302414]
[95]
Yang, C.; Zhang, S.; Bai, Z.; Hou, S.; Wu, D.; Huang, J.; Zhou, P. A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol. Biosyst., 2016, 12(4), 1201-1213.
[http://dx.doi.org/10.1039/C5MB00800J] [PMID: 26854254]
[96]
Ahmad, M.; Gu, W.; Helms, V. Mechanism of fast peptide recognition by SH3 domains. Angew. Chem. Int. Ed., 2008, 47(40), 7626-7630.
[http://dx.doi.org/10.1002/anie.200801856] [PMID: 18752238]
[97]
Zou, R.; Zhou, Y.; Wang, Y.; Kuang, G.; Ågren, H.; Wu, J.; Tu, Y. Free energy profile and kinetics of coupled folding and binding of the intrinsically disordered protein p53 with MDM2. J. Chem. Inf. Model., 2020, 60(3), 1551-1558.
[http://dx.doi.org/10.1021/acs.jcim.9b00920] [PMID: 32053358]
[98]
Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.E.; Kolinski, A. Coarse-grained protein models and their applications. Chem. Rev., 2016, 116(14), 7898-7936.
[http://dx.doi.org/10.1021/acs.chemrev.6b00163] [PMID: 27333362]
[99]
Stone, J.E.; Phillips, J.C.; Freddolino, P.L.; Hardy, D.J.; Trabuco, L.G.; Schulten, K. Accelerating molecular modeling applications with graphics processors. J. Comput. Chem., 2007, 28(16), 2618-2640.
[http://dx.doi.org/10.1002/jcc.20829] [PMID: 17894371]
[100]
Anderson, J.A.; Lorenz, C.D.; Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys., 2008, 227(10), 5342-5359.
[http://dx.doi.org/10.1016/j.jcp.2008.01.047]
[101]
Jones, D.; Allen, J.E.; Yang, Y.; Drew Bennett, W.F.; Gokhale, M.; Moshiri, N.; Rosing, T.S. Accelerators for classical molecular dynamics simulations of biomolecules. J. Chem. Theory Comput., 2022, 18(7), 4047-4069.
[http://dx.doi.org/10.1021/acs.jctc.1c01214] [PMID: 35710099]
[102]
Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; de Groot, B.L.; Grubmüller, H. Best bang for your buck: GPU nodes for gromacs biomolecular simulations. Wiley Online Library, 2015.
[103]
Kohnke, B.; Kutzner, C.; Grubmüller, H. A GPU-accelerated fast multipole method for GROMACS: Performance and accuracy. J. Chem. Theory Comput., 2020, 16(11), 6938-6949.
[http://dx.doi.org/10.1021/acs.jctc.0c00744] [PMID: 33084336]
[104]
Kutzner, C.; Kniep, C.; Cherian, A.; Nordstrom, L.; Grubmüller, H.; de Groot, B.L.; Gapsys, V. GROMACS in the cloud: A global supercomputer to speed up alchemical drug design. J. Chem. Inf. Model., 2022, 62(7), 1691-1711.
[http://dx.doi.org/10.1021/acs.jcim.2c00044] [PMID: 35353508]
[105]
Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3(2), 198-210.
[http://dx.doi.org/10.1002/wcms.1121]
[106]
Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput., 2013, 9(9), 3878-3888.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[107]
Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput., 2012, 8(5), 1542-1555.
[http://dx.doi.org/10.1021/ct200909j] [PMID: 22582031]
[108]
Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; McGreevy, R.; Melo, M.C.R.; Radak, B.K.; Skeel, R.D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kalé, L.V.; Schulten, K.; Chipot, C.; Tajkhorshid, E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys., 2020, 153(4), 044130.
[http://dx.doi.org/10.1063/5.0014475] [PMID: 32752662]
[109]
Eastman, P.; Pande, V.; Open, M.M. A hardware-independent framework for molecular simulations. Comput. Sci. Eng., 2010, 12(4), 34-39.
[http://dx.doi.org/10.1109/MCSE.2010.27] [PMID: 26146490]
[110]
Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.P.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.D.; Wiewiora, R.P.; Brooks, B.R.; Pande, V.S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol., 2017, 13(7), e1005659.
[http://dx.doi.org/10.1371/journal.pcbi.1005659] [PMID: 28746339]
[111]
Bernardi, R.C.; Melo, M.C.R.; Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(5), 872-877.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.019] [PMID: 25450171]
[112]
Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci., 2002, 99(20), 12562-12566.
[http://dx.doi.org/10.1073/pnas.202427399] [PMID: 12271136]
[113]
Barducci, A.; Bonomi, M.; Parrinello, M. Metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(5), 826-843.
[http://dx.doi.org/10.1002/wcms.31]
[114]
Clayton, J.; Baweja, L.; Wereszczynski, J. In Computational Peptide Science: Methods and protocols; Springer, 2022, pp. 151-167.
[http://dx.doi.org/10.1007/978-1-0716-1855-4_8]
[115]
Buchete, N.V.; Hummer, G. Peptide folding kinetics from replica exchange molecular dynamics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2008, 77(3), 030902.
[http://dx.doi.org/10.1103/PhysRevE.77.030902] [PMID: 18517321]
[116]
Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett., 1999, 314(1-2), 141-151.
[http://dx.doi.org/10.1016/S0009-2614(99)01123-9]
[117]
Torrie, G.M.; Valleau, J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys., 1977, 23(2), 187-199.
[http://dx.doi.org/10.1016/0021-9991(77)90121-8]
[118]
Maragliano, L.; Vanden-Eijnden, E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem. Phys. Lett., 2006, 426(1-3), 168-175.
[http://dx.doi.org/10.1016/j.cplett.2006.05.062]
[119]
Miao, Y.; Feher, V.A.; McCammon, J.A. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. J. Chem. Theory Comput., 2015, 11(8), 3584-3595.
[http://dx.doi.org/10.1021/acs.jctc.5b00436] [PMID: 26300708]
[120]
Miao, Y. McCammon, J.A. Annual reports in computational chemistry; Elsevier, 2017, 13, pp. 231-278.
[121]
Wang, J.; Miao, Y. Peptide gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding. J. Chem. Phys., 2020, 153(15), 154109.
[http://dx.doi.org/10.1063/5.0021399] [PMID: 33092378]
[122]
Kang, W.; Jiang, F.; Wu, Y.D. Universal implementation of a residue-specific force field based on CMAP potentials and free energy decomposition. J. Chem. Theory Comput., 2018, 14(8), 4474-4486.
[http://dx.doi.org/10.1021/acs.jctc.8b00285] [PMID: 29906395]
[123]
Tang, C.; Iwahara, J.; Clore, G.M. Visualization of transient encounter complexes in protein–protein association. Nature, 2006, 444(7117), 383-386.
[http://dx.doi.org/10.1038/nature05201] [PMID: 17051159]
[124]
Rajamani, D.; Thiel, S.; Vajda, S.; Camacho, C.J. Anchor residues in protein–protein interactions. Proc. Natl. Acad. Sci., 2004, 101(31), 11287-11292.
[http://dx.doi.org/10.1073/pnas.0401942101] [PMID: 15269345]
[125]
Kim, Y.C.; Tang, C.; Clore, G.M.; Hummer, G. Replica exchange simulations of transient encounter complexes in protein–protein association. Proc. Natl. Acad. Sci., 2008, 105(35), 12855-12860.
[http://dx.doi.org/10.1073/pnas.0802460105] [PMID: 18728193]
[126]
Pan, A.C.; Jacobson, D.; Yatsenko, K.; Sritharan, D.; Weinreich, T.M.; Shaw, D.E. Atomic-level characterization of protein–protein association. Proc. Natl. Acad. Sci., 2019, 116(10), 4244-4249.
[http://dx.doi.org/10.1073/pnas.1815431116] [PMID: 30760596]
[127]
Beuming, T.; Farid, R.; Sherman, W. High-energy water sites determine peptide binding affinity and specificity of PDZ domains. Protein Sci., 2009, 18(8), 1609-1619.
[http://dx.doi.org/10.1002/pro.177] [PMID: 19569188]
[128]
Ylilauri, M.; Pentikäinen, O.T. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J. Chem. Inf. Model., 2013, 53(10), 2626-2633.
[http://dx.doi.org/10.1021/ci4002475] [PMID: 23988151]
[129]
Kötter, A.; Mootz, H.D.; Heuer, A. Standard binding free energy of a SIM–SUMO complex. J. Chem. Theory Comput., 2019, 15(11), 6403-6410.
[http://dx.doi.org/10.1021/acs.jctc.9b00428] [PMID: 31525924]
[130]
ElSawy, K.M.; Lane, D.P.; Verma, C.S.; Caves, L.S.D. Recognition dynamics of p53 and MDM2: Implications for peptide design. J. Phys. Chem. B, 2016, 120(2), 320-328.
[http://dx.doi.org/10.1021/acs.jpcb.5b11162] [PMID: 26701330]
[131]
Ayaz, P.; Lyczek, A.; Paung, Y.; Mingione, V.R.; Iacob, R.E.; de Waal, P.W.; Engen, J.R.; Seeliger, M.A.; Shan, Y.; Shaw, D.E. Structural mechanism of a drug-binding process involving a large conformational change of the protein target. Nat. Commun., 2023, 14(1), 1885.
[http://dx.doi.org/10.1038/s41467-023-36956-5] [PMID: 37019905]
[132]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[133]
Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; Millán, C.; Park, H.; Adams, C.; Glassman, C.R.; DeGiovanni, A.; Pereira, J.H.; Rodrigues, A.V.; van Dijk, A.A.; Ebrecht, A.C.; Opperman, D.J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M.K.; Dalwadi, U.; Yip, C.K.; Burke, J.E.; Garcia, K.C.; Grishin, N.V.; Adams, P.D.; Read, R.J.; Baker, D. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557), 871-876.
[http://dx.doi.org/10.1126/science.abj8754] [PMID: 34282049]
[134]
Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; dos Santos Costa, A.; Fazel-Zarandi, M.; Sercu, T.; Candido, S. Language models of protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv, 2022.
[135]
Baek, M.; Baker, D. Deep learning and protein structure modeling. Nat. Methods, 2022, 19(1), 13-14.
[http://dx.doi.org/10.1038/s41592-021-01360-8] [PMID: 35017724]
[136]
Zhou, X.; Zheng, W.; Li, Y.; Pearce, R.; Zhang, C.; Bell, E.W.; Zhang, G.; Zhang, Y. I-TASSER-MTD: A deep- learning-based platform for multi-domain protein structure and function prediction. Nat. Protoc., 2022, 17(10), 2326-2353.
[http://dx.doi.org/10.1038/s41596-022-00728-0] [PMID: 35931779]
[137]
Wang, J.; Lisanza, S.; Juergens, D.; Tischer, D.; Watson, J.L.; Castro, K.M.; Ragotte, R.; Saragovi, A.; Milles, L.F.; Baek, M.; Anishchenko, I.; Yang, W.; Hicks, D.R.; Expòsit, M.; Schlichthaerle, T.; Chun, J.H.; Dauparas, J.; Bennett, N.; Wicky, B.I.M.; Muenks, A.; DiMaio, F.; Correia, B.; Ovchinnikov, S.; Baker, D. Scaffolding protein functional sites using deep learning. Science, 2022, 377(6604), 387-394.
[http://dx.doi.org/10.1126/science.abn2100] [PMID: 35862514]
[138]
Zeng, X.; Zhu, S.; Lu, W.; Liu, Z.; Huang, J.; Zhou, Y.; Fang, J.; Huang, Y.; Guo, H.; Li, L.; Trapp, B.D.; Nussinov, R.; Eng, C.; Loscalzo, J.; Cheng, F. Target identification among known drugs by deep learning from heterogeneous networks. Chem. Sci., 2020, 11(7), 1775-1797.
[http://dx.doi.org/10.1039/C9SC04336E] [PMID: 34123272]
[139]
Sapoval, N.; Aghazadeh, A.; Nute, M.G.; Antunes, D.A.; Balaji, A.; Baraniuk, R.; Barberan, C.J.; Dannenfelser, R.; Dun, C.; Edrisi, M.; Elworth, R.A.L.; Kille, B.; Kyrillidis, A.; Nakhleh, L.; Wolfe, C.R.; Yan, Z.; Yao, V.; Treangen, T.J. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun., 2022, 13(1), 1728.
[http://dx.doi.org/10.1038/s41467-022-29268-7] [PMID: 35365602]
[140]
Unsal, S.; Atas, H.; Albayrak, M.; Turhan, K.; Acar, A.C.; Doğan, T. Learning functional properties of proteins with language models. Nat. Mach. Intell., 2022, 4(3), 227-245.
[http://dx.doi.org/10.1038/s42256-022-00457-9]
[141]
Brandes, N.; Ofer, D.; Peleg, Y.; Rappoport, N.; Linial, M. ProteinBERT: A universal deep-learning model of protein sequence and function. Bioinformatics, 2022, 38(8), 2102-2110.
[http://dx.doi.org/10.1093/bioinformatics/btac020] [PMID: 35020807]
[142]
Kryshtafovych, A.; Schwede, T.; Topf, M.; Fidelis, K.; Moult, J. Critical assessment of methods of protein structure prediction (CASP)-Round XIV. Proteins, 2021, 89(12), 1607-1617.
[http://dx.doi.org/10.1002/prot.26237] [PMID: 34533838]
[143]
Bennett, N.R.; Coventry, B.; Goreshnik, I.; Huang, B.; Allen, A.; Vafeados, D.; Peng, Y.P.; Dauparas, J.; Baek, M.; Stewart, L.; DiMaio, F.; De Munck, S.; Savvides, S.N.; Baker, D. Improving de novo protein binder design with deep learning. Nat. Commun., 2023, 14(1), 2625.
[http://dx.doi.org/10.1038/s41467-023-38328-5] [PMID: 37149653]
[144]
Torres, S.V.; Leung, P.J.; Lutz, I.D.; Venkatesh, P.; Watson, J.L.; Hink, F.; Huynh, H-H.; Yeh, A.H-W.; Juergens, D.; Bennett, N.R. De novo design of high-affinity protein binders to bioactive helical peptides. Biorxiv, 2022, 519862.
[145]
Johansson-Åkhe, I.; Wallner, B. Improving peptide-protein docking with AlphaFold-Multimer using forced sampling. Front. Bioinform., 2022, 2, 959160.
[http://dx.doi.org/10.3389/fbinf.2022.959160] [PMID: 36304330]
[146]
Gainza, P.; Wehrle, S.; Van Hall-Beauvais, A.; Marchand, A.; Scheck, A.; Harteveld, Z.; Buckley, S.; Ni, D.; Tan, S.; Sverrisson, F.; Goverde, C.; Turelli, P.; Raclot, C.; Teslenko, A.; Pacesa, M.; Rosset, S.; Georgeon, S.; Marsden, J.; Petruzzella, A.; Liu, K.; Xu, Z.; Chai, Y.; Han, P.; Gao, G.F.; Oricchio, E.; Fierz, B.; Trono, D.; Stahlberg, H.; Bronstein, M.; Correia, B.E. De novo design of protein interactions with learned surface fingerprints. Nature, 2023, 617(7959), 176-184.
[http://dx.doi.org/10.1038/s41586-023-05993-x] [PMID: 37100904]
[147]
Jiang, Y.; Wang, R.; Feng, J.; Jin, J.; Liang, S.; Li, Z.; Yu, Y.; Ma, A.; Su, R.; Zou, Q.; Ma, Q.; Wei, L. Explainable deep hypergraph learning modeling the peptide secondary structure prediction. Adv. Sci., 2023, 10(11), 2206151.
[http://dx.doi.org/10.1002/advs.202206151] [PMID: 36794291]
[148]
Cao, X.; He, W.; Chen, Z.; Li, Y.; Wang, K.; Zhang, H.; Wei, L.; Cui, L.; Su, R.; Wei, L. PSSP-MVIRT: Peptide secondary structure prediction based on a multi-view deep learning architecture. Brief. Bioinform., 2021, 22(6), bbab203.
[http://dx.doi.org/10.1093/bib/bbab203] [PMID: 34117740]
[149]
Yu, H.; Zhou, P.; Deng, M.; Shang, Z. Indirect readout in protein-peptide recognition: A different story from classical biomolecular recognition. J. Chem. Inf. Model., 2014, 54(7), 2022-2032.
[http://dx.doi.org/10.1021/ci5000246] [PMID: 24999015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy