Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Mechanisms Underlying the Therapeutic Effects of Banzhilian-Baihuasheshecao for Treating Pancreatic Ductal Adenocarcinoma Based on Bioinformatics Strategy

Author(s): Xianqiang Zhou and Tiansong Zhang*

Volume 21, Issue 13, 2024

Published on: 06 October, 2023

Page: [2618 - 2643] Pages: 26

DOI: 10.2174/0115701808258777230926092527

open access plus

Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related deaths. Banzhilian (BZL) and Baihuasheshecao (BHSSC) are classical Chinese herbs used in tumor therapy. However, the underlying mechanisms of BZL-BHSSC in treating PDAC have not been identified. Combining network pharmacology with single-cell RNA sequencing (scRNA-seq), this study systematically explored the potential mechanisms of BZL-BHSSC in the treatment of PDAC.

Methods: The bioactive ingredients of BZL-BHSSC were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, while the PDAC-related datasets were obtained from the Gene Expression Omnibus (GEO) database. Based on the dataset GSE62452, we adopted differential expression analysis and weighted gene co-expression network analysis (WGCNA) to screen the signature genes of PDAC. To reveal the cell types of the pharmacological targets of BZL-BHSSC against PDAC, we performed scRNA-seq analysis and principal component analysis (PCA) on the dataset GSE111672. Molecular docking and immunohistochemical staining were used to validate our initial results.

Results: We obtained 29 bioactive ingredients from BZL-BHSSC and screened 210 signature genes of PDAC. Using network pharmacology, we identified 7 key therapeutic targets CDK1, MYC, CCNB1, TOP2A, CLDN4, NUF2, and MET, revealing that baicalein, quercetin, and luteolin are core components for the efficacy of BZL-BHSSC. The main signaling pathways involved in therapy were the PI3K-AKT signaling pathway and the p53 signaling pathway. The molecular docking results verified the strong binding activity (binding energy > -7 kJ/mol) between active ingredients and targets. The scRNA-seq results informed that cells from 3 PDAC samples could aggregate into 19 clusters and 3 cell types. The target genes were almost concentrated on the immune cells. Immunoinfiltration analysis suggested that the expression of Macrophages M0 and Dendritic cells activated was significantly upregulated in the PDAC group (p<0.001), while the opposite was true for B cells naïve and T cells CD8 expression (p<0.05).

Conclusion: We concluded that BZL-BHSSC can improve the overall survival prognosis of PDAC patients by interfering with the signature genes of PDAC through direct and indirect pathways and improving immunity. Our study provides a basis for subsequent studies.

Keywords: Banzhilian (BZL), Baihuasheshecao (BHSSC), pancreatic ductal adenocarcinoma (PDAC), network pharmacology, single-cell RNA sequencing, molecular docking.

[1]
Cancer Stat Facts: Pancreatic Cancer. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html
[2]
Key Statistics for Pancreatic Cancer. Available from: https://www.cancer.org/cancer/pancreatic-cancer/about/key-statistics.html (Accessed on: January 30, 2023).
[3]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
So, T.H.; Chan, S.K.; Lee, V.H.F.; Chen, B.Z.; Kong, F.M.; Lao, L.X. Chinese Medicine in cancer treatment – how is it practised in the east and the west? Clin. Oncol., 2019, 31(8), 578-588.
[http://dx.doi.org/10.1016/j.clon.2019.05.016] [PMID: 31178347]
[6]
Liu, X.; Li, M.; Wang, X.; Dang, Z.; Yu, L.; Wang, X.; Jiang, Y.; Yang, Z. Effects of adjuvant traditional Chinese medicine therapy on long-term survival in patients with hepatocellular carcinoma. Phytomedicine, 2019, 62, 152930.
[http://dx.doi.org/10.1016/j.phymed.2019.152930] [PMID: 31128485]
[7]
Wong, W.; Chen, B.Z.; Lee, A.K.Y.; Chan, A.H.C.; Wu, J.C.Y.; Lin, Z. Chinese herbal medicine effectively prolongs the overall survival of pancreatic cancer patients: A case series. Integr. Cancer Ther., 2019, 18.
[http://dx.doi.org/10.1177/1534735419828836] [PMID: 30791742]
[8]
Peng, Z.; Chen, H.; Ban, S.; Mao, D.; Wei, A.; Long, F. Long, data mining-based analysis of the patent pattern of compound prescriptions for the treatment of liver cancer in Chinese medicine. Chin. J. Integr. Med., 2022, 32, 1132-1135.
[http://dx.doi.org/10.3969/j.issn.1005-0264.2022.012.020]
[9]
Xu, Y.; Liu, L.; Chen, H.; Hua, Y-Q. Academic ideas and experience of professor liu lu-ming for treatment of pancreatic cancer. Zhonghua Zhongyiyao Xuekan, 2012, 30, 2628-2630.
[http://dx.doi.org/10.13193/j.archtcm.2012.12.38.xuyl.015]
[10]
Liu, L. [On pathological mechanism and disease-based treatment of pancreatic cancer in traditional Chinese medicine]. Zhong Xi Yi Jie He Xue Bao, 2008, 6(12), 1297-1299.
[http://dx.doi.org/10.3736/jcim20081218]
[11]
Wu, X.; Qi, Q.; Liu, L. Evaluation of pain efficacy of modified qingyi huaji decoction in patients with pancreatic cancer. Chin. Med., 2018, 10(8), 51-53.
[http://dx.doi.org/10.3969/j.issn.1674-7860.2018.08.023]
[12]
Tsai, F.J.; Liu, X.; Chen, C.J.; Li, T.M.; Chiou, J.S.; Chuang, P.H.; Ko, C.H.; Lin, T.H.; Liao, C.C.; Huang, S.M.; Liang, W.M.; Lin, Y.J. Chinese herbal medicine therapy and the risk of overall mortality for patients with liver cancer who underwent surgical resection in Taiwan. Complement. Ther. Med., 2019, 47, 102213.
[http://dx.doi.org/10.1016/j.ctim.2019.102213] [PMID: 31780007]
[13]
Shen, J.; He, S.; Liu, L. Luming’s experience with pancreatic cancer by large dose of Herba Scutellariae Barbatae. Shanghai J. Tradit. Chin. Med., 2014, 48, 14-15.
[http://dx.doi.org/10.16305/j.1007-1334.2014.11.004]
[14]
Yue, H.; Yuan, D.; Li, L. Effects of sculellaria barbata on 5-FU-treated advanced colorectal cancer and serum miRNA-34a levels. J. Nanjing Norm. Univ., 2019, 59, 68-71.
[15]
Li, Q.; Guo, X.; Ding, T.; Qu, C. Effect of Scutellaria barbata on proliferation, apoptosis and migration of triple-negative breast cancer cell line MDA⁃MB⁃231. Anatomy Research., 2018, 40, 477-480.
[16]
Wang, T.; Liang, Y.; Hou, B.; Wu, K.; Wu, D.; Pei, G.; Wang, Z. Study on chemical components from Hedyotis diffusa Willd and their anti-tumour activity. Nat. Prod. Res. Dev., 2022, 34(8), 1281-1288+1300.
[http://dx.doi.org/10.16333/j.1001-6880.2022.8.002]
[17]
Che, H. The effect and mechanism of hedyotic diffusa willd injection on the apoptosis of A549 cells. Chin. J. Integr. Med., 2014, 6, 20-22.
[18]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[19]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[20]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res., 2012, 41(D1), D991-D995.
[http://dx.doi.org/10.1093/nar/gks1193] [PMID: 23193258]
[21]
Yang, S.; He, P.; Wang, J.; Schetter, A.; Tang, W.; Funamizu, N.; Yanaga, K.; Uwagawa, T.; Satoskar, A.R.; Gaedcke, J.; Bernhardt, M.; Ghadimi, B.M.; Gaida, M.M.; Bergmann, F.; Werner, J.; Ried, T.; Hanna, N.; Alexander, H.R.; Hussain, S.P. A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2. Cancer Res., 2016, 76(13), 3838-3850.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2841] [PMID: 27197190]
[22]
Sun, D.; Wang, J.; Han, Y.; Dong, X.; Ge, J.; Zheng, R.; Shi, X.; Wang, B.; Li, Z.; Ren, P.; Sun, L.; Yan, Y.; Zhang, P.; Zhang, F.; Li, T.; Wang, C. TISCH: A comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res., 2021, 49(D1), D1420-D1430.
[http://dx.doi.org/10.1093/nar/gkaa1020] [PMID: 33179754]
[23]
Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; Olsson, I.; Edlund, K.; Lundberg, E.; Navani, S.; Szigyarto, C.A.K.; Odeberg, J.; Djureinovic, D.; Takanen, J.O.; Hober, S.; Alm, T.; Edqvist, P.H.; Berling, H.; Tegel, H.; Mulder, J.; Rockberg, J.; Nilsson, P.; Schwenk, J.M.; Hamsten, M.; von Feilitzen, K.; Forsberg, M.; Persson, L.; Johansson, F.; Zwahlen, M.; von Heijne, G.; Nielsen, J.; Pontén, F. Tissue-based map of the human proteome. Science, 2015, 347(6220), 1260419.
[http://dx.doi.org/10.1126/science.1260419] [PMID: 25613900]
[24]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[25]
Cai, Y.; Gao, S.; Liu, L.; Song, L.; Hua, Y-Q.; Wang, P.; Chen, Z. Inhibitive effect of Scutellariabarbata D. Don extract on proliferation, invasion, metastasis and tumorigenesis of pancreatic cancer PANC-1 cells via Hippo/YAP signaling pathway. CJTCMP, 2017, 32, 2947-2951. [in Chinese].
[26]
Wang, Z.C.; Zhang, J.; Chen, X.Y. Research progress of TCM therapy for pancreatic cancer. Chin J Integr Tradit West Med Dig, 2020, 30(4), 303-307.
[http://dx.doi.org/10.3969/j.issn.1000-484X.2020.16.008]
[27]
Malvezzi, M.; Carioli, G.; Bertuccio, P.; Rosso, T.; Boffetta, P.; Levi, F.; La Vecchia, C.; Negri, E. European cancer mortality predictions for the year 2016 with focus on leukaemias. Ann. Oncol., 2016, 27(4), 725-731.
[http://dx.doi.org/10.1093/annonc/mdw022] [PMID: 26812903]
[28]
Wang, L.; Yang, G-H.; Lu, X-H.; Huang, Z-J.; Li, H. Pancreatic cancer mortality in China (1991-2000). World J. Gastroenterol., 2003, 9(8), 1819-1823.
[http://dx.doi.org/10.3748/wjg.v9.i8.1819] [PMID: 12918128]
[29]
Stolzenberg-Solomon, R.Z.; Pietinen, P.; Barrett, M.J.; Taylor, P.R.; Virtamo, J.; Albanes, D. Dietary and other methyl-group availability factors and pancreatic cancer risk in a cohort of male smokers. Am. J. Epidemiol., 2001, 153(7), 680-687.
[http://dx.doi.org/10.1093/aje/153.7.680] [PMID: 11282796]
[30]
Baghurst, P.A.; McMichael, A.J.; Slavotinek, A.H.; Baghurst, K.I.; Boyle, P.; Walker, A.M. A case-control study of diet and cancer of the pancreas. Am. J. Epidemiol., 1991, 134(2), 167-179.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a116069] [PMID: 1862800]
[31]
Goral, V. Pancreatic cancer: Pathogenesis and diagnosis. Asian Pac. J. Cancer Prev., 2015, 16(14), 5619-5624.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.5619] [PMID: 26320426]
[32]
Zhang, Y.; Luo, X.; Guo, Z. Clinical study of oldenlandia diffusa-scutellaria barbata for the maintenance treatment of malignant tumors. GMUAJ, 2022, 42, 583-586.
[33]
Wu, Y.; Zhang, K.; Kang, Z.; Zhao, X.; Wang, J.; Xu, H. Anti-tumor activity and mechanism of combination of ethanol extract from Hedyotic diffusa and ethanol extract from Scutellariae barbata on pancreatic cancer. Drug Eval. Res., 2020, 43, 1233-1238.
[34]
Na, L.I.; Wang, P.; Tie-Feng, S.; Han, L.; Ya-Nan, H.U.; Hai-Tao, D.U.; Liu, H. Research progress on chemical constituents, pharmacological action and quality control of Scutellaria barbata. Zhongguo Zhong Yao Za Zhi, 2020, 45(21), 5117-5128.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20200806.601]
[35]
Ma, D.; Chen, S.; Wang, H.; Wei, J.; Wu, H.; Gao, H.; Cheng, X.; Liu, T.; Luo, S.H.; Zhao, Y.; Song, G. Baicalein induces apoptosis of pancreatic cancer cells by regulating the expression of miR-139-3p and miR-196b-5p. Front. Oncol., 2021, 11, 653061.
[http://dx.doi.org/10.3389/fonc.2021.653061] [PMID: 33996574]
[36]
Zhou, R.T.; He, M.; Yu, Z.; Liang, Y.; Nie, Y.; Tai, S.; Teng, C.B. Baicalein inhibits pancreatic cancer cell proliferation and invasion via suppression of NEDD9 expression and its downstream Akt and ERK signaling pathways. Oncotarget, 2017, 8(34), 56351-56363.
[http://dx.doi.org/10.18632/oncotarget.16912] [PMID: 28915595]
[37]
Liu, P.; Feng, J.; Sun, M.; Yuan, W.; Xiao, R.; Xiong, J.; Huang, X.; Xiong, M.; Chen, W.; Yu, X.; Sun, Q.; Zhao, X.; Zhang, Q.; Shao, L. Synergistic effects of baicalein with gemcitabine or docetaxel on the proliferation, migration and apoptosis of pancreatic cancer cells. Int. J. Oncol., 2017, 51(6), 1878-1886.
[http://dx.doi.org/10.3892/ijo.2017.4153] [PMID: 29039524]
[38]
Angst, E.; Park, J.L.; Moro, A.; Lu, Q.Y.; Lu, X.; Li, G.; King, J.; Chen, M.; Reber, H.A.; Go, V.L.W.; Eibl, G.; Hines, O.J. The flavonoid quercetin inhibits pancreatic cancer growth in vitro and in vivo. Pancreas, 2013, 42(2), 223-229.
[http://dx.doi.org/10.1097/MPA.0b013e318264ccae] [PMID: 23000892]
[39]
Lan, C.Y.; Chen, S.Y.; Kuo, C.W.; Lu, C.C.; Yen, G.C. Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. J. Food Drug Anal., 2019, 27(4), 887-896.
[http://dx.doi.org/10.1016/j.jfda.2019.07.001] [PMID: 31590760]
[40]
Hu, Y.; Li, R.; Jin, J.; Wang, Y.; Ma, R. Quercetin improves pancreatic cancer chemo‐sensitivity by regulating oxidative‐inflammatory networks. J. Food Biochem., 2022, 46(12), e14453.
[http://dx.doi.org/10.1111/jfbc.14453] [PMID: 36181395]
[41]
Johnson, J.L.; Dia, V.P.; Wallig, M.; Gonzalez de Mejia, E. Luteolin and gemcitabine protect against pancreatic cancer in an orthotopic mouse model. Pancreas, 2015, 44(1), 144-151.
[http://dx.doi.org/10.1097/MPA.0000000000000215] [PMID: 25237909]
[42]
Zhang, H.; Pan, Y.; Cheung, M.; Cao, M.; Yu, C.; Chen, L.; Zhan, L.; He, Z.; Sun, C. LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway. Cell Death Dis., 2019, 10(3), 230.
[http://dx.doi.org/10.1038/s41419-019-1320-z] [PMID: 30850586]
[43]
Li, N.; Yang, F.; Liu, D.Y.; Guo, J.T.; Ge, N.; Sun, S.Y. Scoparone inhibits pancreatic cancer through PI3K/Akt signaling pathway. World J. Gastrointest. Oncol., 2021, 13(9), 1164-1183.
[http://dx.doi.org/10.4251/wjgo.v13.i9.1164] [PMID: 34616521]
[44]
Zhu, J.H.; De Mello, R.A.; Yan, Q.L.; Wang, J.W.; Chen, Y.; Ye, Q.H.; Wang, Z.J.; Tang, H.J.; Huang, T. MiR-139-5p/SLC7A11 inhibits the proliferation, invasion and metastasis of pancreatic carcinoma via PI3K/Akt signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(6), 165747.
[http://dx.doi.org/10.1016/j.bbadis.2020.165747]
[45]
Gu, J.; Huang, W.; Wang, X.; Zhang, J.; Tao, T.; Zheng, Y.; Liu, S.; Yang, J.; Chen, Z.S.; Cai, C.Y.; Li, J.; Wang, H.; Fan, Y. Hsa-miR-3178/RhoB/PI3K/Akt, a novel signaling pathway regulates ABC transporters to reverse gemcitabine resistance in pancreatic cancer. Mol. Cancer, 2022, 21(1), 112.
[http://dx.doi.org/10.1186/s12943-022-01587-9] [PMID: 35538494]
[46]
Bu, H.Q.; Luo, J.; Chen, H.; Zhang, J.H.; Li, H.H.; Guo, H.C.; Wang, Z.H.; Lin, S.Z. Oridonin enhances antitumor activity of gemcitabine in pancreatic cancer through MAPK-p38 signaling pathway. Int. J. Oncol., 2012, 41(3), 949-958.
[http://dx.doi.org/10.3892/ijo.2012.1519] [PMID: 22710877]
[47]
Zhang, H.; Zhang, X.; Li, X.; Meng, W.B.; Bai, Z.T.; Rui, S.Z.; Wang, Z.F.; Zhou, W.C.; Jin, X.D. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J. Cell. Physiol., 2019, 234(1), 619-631.
[http://dx.doi.org/10.1002/jcp.26816] [PMID: 30069972]
[48]
Feng, W.; Cai, D.; Zhang, B.; Lou, G.; Zou, X. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed. Pharmacother., 2015, 74, 257-264.
[http://dx.doi.org/10.1016/j.biopha.2015.08.017] [PMID: 26349994]
[49]
Wei, D.; Parsels, L.A.; Karnak, D.; Davis, M.A.; Parsels, J.D.; Marsh, A.C.; Zhao, L.; Maybaum, J.; Lawrence, T.S.; Sun, Y.; Morgan, M.A. Inhibition of protein phosphatase 2A radiosensitizes pancreatic cancers by modulating CDC25C/CDK1 and homologous recombination repair. Clin. Cancer Res., 2013, 19(16), 4422-4432.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0788] [PMID: 23780887]
[50]
Chen, Z.; Li, Z.; Li, W.; Zong, Y.; Zhu, Y.; Miao, Y.; Xu, Z. SATB1 promotes pancreatic cancer growth and invasion depending on MYC activation. Dig. Dis. Sci., 2015, 60(11), 3304-3317.
[http://dx.doi.org/10.1007/s10620-015-3759-9] [PMID: 26108419]
[51]
Zeng, Y.; Fan, R. Identification and verification of CCNB1 as a potential prognostic biomarker by comprehensive analysis. Sci. Rep., 2022, 12(1), 16153.
[http://dx.doi.org/10.1038/s41598-022-20615-8] [PMID: 36167975]
[52]
Heestand, G.M.; Schwaederle, M.; Gatalica, Z.; Arguello, D.; Kurzrock, R. Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients. Eur. J. Cancer, 2017, 83, 80-87.
[http://dx.doi.org/10.1016/j.ejca.2017.06.019] [PMID: 28728050]
[53]
Pei, Y.; Yin, X.; Liu, X. TOP2A induces malignant character of pancreatic cancer through activating β-catenin signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(1), 197-207.
[http://dx.doi.org/10.1016/j.bbadis.2017.10.019] [PMID: 29045811]
[54]
Michl, P.; Barth, C.; Buchholz, M.; Lerch, M.M.; Rolke, M.; Holzmann, K-H.; Menke, A.; Fensterer, H.; Giehl, K.; Löhr, M.; Leder, G.; Iwamura, T.; Adler, G.; Gress, T.M. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res., 2003, 63(19), 6265-6271.
[PMID: 14559813]
[55]
Kojima, T.; Kyuno, D.; Sawada, N. Targeting claudin-4 in human pancreatic cancer. Expert Opin. Ther. Targets, 2012, 16(9), 881-887.
[http://dx.doi.org/10.1517/14728222.2012.708340] [PMID: 22800288]
[56]
Hu, P.; Shangguan, J.; Zhang, L. Downregulation of NUF2 inhibits tumor growth and induces apoptosis by regulating lncRNA AF339813. Int. J. Clin. Exp. Pathol., 2015, 8(3), 2638-2648.
[PMID: 26045769]
[57]
Li, E.; Huang, X.; Zhang, G.; Liang, T. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy. J. Exp. Clin. Cancer Res., 2021, 40(1), 279.
[http://dx.doi.org/10.1186/s13046-021-02055-w] [PMID: 34479614]

© 2024 Bentham Science Publishers | Privacy Policy