Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Protective Roles and Therapeutic Effects of Gallic Acid in the Treatment of Cardiovascular Diseases: Current Trends and Future Directions

Author(s): Zahra Momeni, Sepideh Danesh, Mahsa Ahmadpour, Reza Eshraghi, Tahereh Farkhondeh, Mohammad Hossein Pourhanifeh* and Saeed Samarghandian*

Volume 31, Issue 24, 2024

Published on: 05 October, 2023

Page: [3733 - 3751] Pages: 19

DOI: 10.2174/0109298673259299230921150030

Price: $65

conference banner
Abstract

Cardiovascular diseases (CVDs) are serious life-threatening illnesses and significant problematic issues for public health having a heavy economic burden on all society worldwide. The high incidence of these diseases as well as high mortality rates make them the leading causes of death and disability. Therefore, finding novel and more effective therapeutic methods is urgently required. Gallic acid, an herbal medicine with numerous biological properties, has been utilized in the treatment of various diseases for thousands of years. It has been demonstrated that gallic acid possesses pharmacological potential in regulating several molecular and cellular processes such as apoptosis and autophagy. Moreover, gallic acid has been investigated in the treatment of CVDs both in vivo and in vitro. Herein, we aimed to review the available evidence on the therapeutic application of gallic acid for CVDs including myocardial ischemia-reperfusion injury and infarction, drug-induced cardiotoxicity, hypertension, cardiac fibrosis, and heart failure, with a focus on underlying mechanisms.

Keywords: Gallic acid, cardiovascular diseases, myocardial infarction, hypertension, apoptosis, inflammation.

[1]
Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S. Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation, 2019, 139(10), e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[2]
Lorber, D. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes., 2014, 7, 169-183.
[http://dx.doi.org/10.2147/DMSO.S61438] [PMID: 24920930]
[3]
Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; McBride, P.; Schwartz, J.S.; Shero, S.T.; Smith, S.C., Jr; Watson, K.; Wilson, P.W.F. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 2014, 63(25)(25 Pt B), 2889-2934.
[http://dx.doi.org/10.1016/j.jacc.2013.11.002] [PMID: 24239923]
[4]
Samarghandian, S., Borji, A. and Hidar Tabasi, S., Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovasc. Haematol. Disord. Drug Targets (Formerly Current Drug Targets-Cardiovasc. Hematol. Disord.), 2013, 13(3), 231-236.
[5]
Zhang, H.Y.; Wang, L.F. Theoretical elucidation on structure–Antioxidant activity relationships for indolinonic hydroxylamines. Bioorg. Med. Chem. Lett., 2002, 12(2), 225-227.
[http://dx.doi.org/10.1016/S0960-894X(01)00724-7] [PMID: 11755360]
[6]
Stanely Mainzen Prince, P.; Priscilla, H.; Devika, P.T. Gallic acid prevents lysosomal damage in isoproterenol induced cardiotoxicity in Wistar rats. Eur. J. Pharmacol., 2009, 615(1-3), 139-143.
[http://dx.doi.org/10.1016/j.ejphar.2009.05.003] [PMID: 19450577]
[7]
Abdelwahed, A.; Bouhlel, I.; Skandrani, I.; Valenti, K.; Kadri, M.; Guiraud, P.; Steiman, R.; Mariotte, A.M.; Ghedira, K.; Laporte, F.; Dijoux-Franca, M.G.; Chekir-Ghedira, L. Study of antimutagenic and antioxidant activities of Gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Chem. Biol. Interact., 2007, 165(1), 1-13.
[http://dx.doi.org/10.1016/j.cbi.2006.10.003] [PMID: 17129579]
[8]
Yen, G.C.; Duh, P.D.; Tsai, H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem., 2002, 79(3), 307-313.
[http://dx.doi.org/10.1016/S0308-8146(02)00145-0]
[9]
Pal, C.; Bindu, S.; Dey, S.; Alam, A.; Goyal, M.; Iqbal, M.S.; Maity, P.; Adhikari, S.S.; Bandyopadhyay, U. Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis. Free Radic. Biol. Med., 2010, 49(2), 258-267.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.04.013] [PMID: 20406680]
[10]
Ban, J.Y.; Nguyen, H.T.T.; Lee, H.J.; Cho, S.O.; Ju, H.S.; Kim, J.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid β protein (25--35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull., 2008, 31(1), 149-153.
[http://dx.doi.org/10.1248/bpb.31.149] [PMID: 18175960]
[11]
Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother., 2021, 133, 110985.
[http://dx.doi.org/10.1016/j.biopha.2020.110985] [PMID: 33212373]
[12]
Nabavi, S.F.; Habtemariam, S.; Jafari, M.; Sureda, A.; Nabavi, S.M. Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. Bull. Environ. Contam. Toxicol., 2012, 89(1), 73-77.
[http://dx.doi.org/10.1007/s00128-012-0645-4] [PMID: 22531840]
[13]
Chandramohan Reddy, T.; Bharat Reddy, D.; Aparna, A.; Arunasree, K.M.; Gupta, G.; Achari, C.; Reddy, G.V.; Lakshmipathi, V.; Subramanyam, A.; Reddanna, P. Anti-leukemic effects of gallic acid on human leukemia K562 cells: Downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation. Toxicol. In Vitro, 2012, 26(3), 396-405.
[http://dx.doi.org/10.1016/j.tiv.2011.12.018] [PMID: 22245431]
[14]
Chen, Y.J.; Chang, L.S. Gallic acid downregulates matrix metalloproteinase-2 (MMP-2) and MMP-9 in human leukemia cells with expressed Bcr/Abl. Mol. Nutr. Food Res., 2012, 56(9), 1398-1412.
[http://dx.doi.org/10.1002/mnfr.201200167] [PMID: 22865631]
[15]
Ho, H.H.; Chang, C.S.; Ho, W.C.; Liao, S.Y.; Lin, W.L.; Wang, C.J. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol. Appl. Pharmacol., 2013, 266(1), 76-85.
[http://dx.doi.org/10.1016/j.taap.2012.10.019] [PMID: 23153558]
[16]
Hsiang, C.Y.; Hseu, Y.C.; Chang, Y.C.; Kumar, K.J.S.; Ho, T.Y.; Yang, H.L. Toona sinensis and its major bioactive compound gallic acid inhibit LPS-induced inflammation in nuclear factor-κB transgenic mice as evaluated by in vivo bioluminescence imaging. Food Chem., 2013, 136(2), 426-434.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.009] [PMID: 23122080]
[17]
Yoon, C.H.; Chung, S.J.; Lee, S.W.; Park, Y.B.; Lee, S.K.; Park, M.C. Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Joint Bone Spine, 2013, 80(3), 274-279.
[http://dx.doi.org/10.1016/j.jbspin.2012.08.010] [PMID: 23058179]
[18]
Priscilla, D.H.; Prince, P.S.M. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem. Biol. Interact., 2009, 179(2-3), 118-124.
[http://dx.doi.org/10.1016/j.cbi.2008.12.012] [PMID: 19146839]
[19]
Umadevi, S.; Gopi, V.; Simna, S.P.; Parthasarathy, A.; Yousuf, S.M.J.; Elangovan, V. Studies on the cardioprotective role of gallic acid against AGE-induced cell proliferation and oxidative stress in H9C2 (2-1) cells. Cardiovasc. Toxicol., 2012, 12(4), 304-311.
[http://dx.doi.org/10.1007/s12012-012-9170-2] [PMID: 22588841]
[20]
Punithavathi, V.R.; Stanely Mainzen Prince, P.; Kumar, M.R.; Selvakumari, C.J. Protective effects of gallic acid on hepatic lipid peroxide metabolism, glycoprotein components and lipids in streptozotocin-induced type II diabetic wistar rats. J. Biochem. Mol. Toxicol., 2011, 25(2), 68-76.
[http://dx.doi.org/10.1002/jbt.20360] [PMID: 21472896]
[21]
Tung, Y.T.; Wu, J.H.; Huang, C.C.; Peng, H.C.; Chen, Y.L.; Yang, S.C.; Chang, S.T. Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem. Toxicol., 2009, 47(6), 1385-1392.
[http://dx.doi.org/10.1016/j.fct.2009.03.021] [PMID: 19327382]
[22]
Kratz, J.M.; Andrighetti-Fröhner, C.R.; Kolling, D.J.; Leal, P.C.; Cirne-Santos, C.C.; Yunes, R.A.; Nunes, R.J.; Trybala, E.; Bergström, T.; Frugulhetti, I.C.P.P.; Barardi, C.R.M.; Simões, C.M.O. Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate. Mem. Inst. Oswaldo Cruz, 2008, 103(5), 437-442.
[http://dx.doi.org/10.1590/S0074-02762008000500005] [PMID: 18797755]
[23]
Jung, J.; Bae, K.H.; Jeong, C.S. Anti-Helicobacter pylori and antiulcerogenic activities of the root cortex of Paeonia suffruticosa. Biol. Pharm. Bull., 2013, 36(10), 1535-1539.
[http://dx.doi.org/10.1248/bpb.b13-00225] [PMID: 24088252]
[24]
Kubo, I.; Fujita, K.; Nihei, K.; Masuoka, N. Non-antibiotic antibacterial activity of dodecyl gallate. Bioorg. Med. Chem., 2003, 11(4), 573-580.
[http://dx.doi.org/10.1016/S0968-0896(02)00436-4] [PMID: 12538022]
[25]
Kubo, I.; Xiao, P.; Fujita, K. Antifungal activity of octyl gallate: Structural criteria and mode of action. Bioorg. Med. Chem. Lett., 2001, 11(3), 347-350.
[http://dx.doi.org/10.1016/S0960-894X(00)00656-9] [PMID: 11212107]
[26]
Doan, K.V.; Ko, C.M.; Kinyua, A.W.; Yang, D.J.; Choi, Y.H.; Oh, I.Y.; Nguyen, N.M.; Ko, A.; Choi, J.W.; Jeong, Y.; Jung, M.H.; Cho, W.G.; Xu, S.; Park, K.S.; Park, W.J.; Choi, S.Y.; Kim, H.S.; Moh, S.H.; Kim, K.W. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology, 2015, 156(1), 157-168.
[http://dx.doi.org/10.1210/en.2014-1354] [PMID: 25356824]
[27]
Huang, D.W.; Chang, W.C.; Wu, J.S.B.; Shih, R.W.; Shen, S.C. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr. Res., 2016, 36(2), 150-160.
[http://dx.doi.org/10.1016/j.nutres.2015.10.001] [PMID: 26547672]
[28]
Niho, N.; Shibutani, M.; Tamura, T.; Toyoda, K.; Uneyama, C.; Takahashi, N.; Hirose, M. Subchronic toxicity study of gallic acid by oral administration in F344 rats. Food Chem. Toxicol., 2001, 39(11), 1063-1070.
[http://dx.doi.org/10.1016/S0278-6915(01)00054-0] [PMID: 11527565]
[29]
Su, T.R.; Lin, J.J.; Tsai, C.C.; Huang, T.K.; Yang, Z.Y.; Wu, M.O.; Zheng, Y.Q.; Su, C.C.; Wu, Y.J. Inhibition of melanogenesis by gallic acid: Possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int. J. Mol. Sci., 2013, 14(10), 20443-20458.
[http://dx.doi.org/10.3390/ijms141020443] [PMID: 24129178]
[30]
Shaterzadeh-Yazdi H, Noorbakhsh MF, Hayati F, Samarghandian S, Farkhondeh T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc. Haematol. Disord. Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders). 2018, 18(1), 52-60.
[http://dx.doi.org/10.1155/2018/1081287] [PMID: 29765489]
[31]
Tanaka, M.; Sato, A.; Kishimoto, Y.; Mabashi-Asazuma, H.; Kondo, K.; Iida, K. Gallic acid inhibits lipid accumulation via ampk pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients, 2020, 12(5), 1479.
[http://dx.doi.org/10.3390/nu12051479] [PMID: 32443660]
[32]
Haute, G.V.; Caberlon, E.; Squizani, E.; de Mesquita, F.C.; Pedrazza, L.; Martha, B.A.; da Silva Melo, D.A.; Cassel, E.; Czepielewski, R.S.; Bitencourt, S.; Goettert, M.I.; de Oliveira, J.R. Gallic acid reduces the effect of LPS on apoptosis and inhibits the formation of neutrophil extracellular traps. Toxicol. In Vitro, 2015, 30(1), 309-317.
[http://dx.doi.org/10.1016/j.tiv.2015.10.005] [PMID: 26475966]
[33]
Kim, M.J.; Seong, A.R.; Yoo, J.Y.; Jin, C.H.; Lee, Y.H.; Kim, Y.J.; Lee, J.; Jun, W.J.; Yoon, H.G. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol. Nutr. Food Res., 2011, 55(12), 1798-1808.
[http://dx.doi.org/10.1002/mnfr.201100262] [PMID: 22038937]
[34]
Li, Y.; Yang, Q.; Shi, Z.; Zhou, M.; Yan, L.; Li, H.; Xie, Y.; Wang, S. The anti-inflammatory effect of feiyangchangweiyan capsule and its main components on pelvic inflammatory disease in rats via the regulation of the NF- κ B and BAX/BCL-2 pathway. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/9585727] [PMID: 31312226]
[35]
Variya, B.C.; Bakrania, A.K.; Madan, P.; Patel, S.S. Acute and 28-days repeated dose sub-acute toxicity study of gallic acid in albino mice. Regul. Toxicol. Pharmacol., 2019, 101, 71-78.
[http://dx.doi.org/10.1016/j.yrtph.2018.11.010] [PMID: 30465803]
[36]
Shamsi, S.; Abdul Ghafor, A.A.H.; Norjoshukrudin, N.H.; Ng, I.M.J.; Abdullah, S.N.S.; Sarchio, S.N.E.; Md Yasin, F.; Abd Gani, S.; Mohd Desa, M.N. Stability, toxicity, and antibacterial potential of gallic acid-loaded graphene oxide (gago) against methicillin-resistant Staphylococcus aureus (MRSA) strains. Int. J. Nanomedicine, 2022, 17, 5781-5807.
[http://dx.doi.org/10.2147/IJN.S369373] [PMID: 36474524]
[37]
Kim, J.H.; Kang, N.J.; Lee, B.K.; Lee, K.W.; Lee, H.J. Gallic acid, a metabolite of the antioxidant propyl gallate, inhibits gap junctional intercellular communication via phosphorylation of connexin 43 and extracellular-signal-regulated kinase1/2 in rat liver epithelial cells. Mutat. Res., 2008, 638(1-2), 175-183.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.10.005] [PMID: 18054051]
[38]
Quiles-Carrillo, L.; Montanes, N.; Lagaron, J.; Balart, R.; Torres-Giner, S. Bioactive multilayer polylactide films with controlled release capacity of gallic acid accomplished by incorporating electrospun nanostructured coatings and interlayers. Appl. Sci., 2019, 9(3), 533.
[http://dx.doi.org/10.3390/app9030533]
[39]
Quiles-Carrillo, L.; Montava-Jordà, S.; Boronat, T.; Sammon, C.; Balart, R.; Torres-Giner, S. On the use of gallic acid as a potential natural antioxidant and ultraviolet light stabilizer in cast-extruded bio-based high-density polyethylene films. Polymers, 2019, 12(1), 31.
[http://dx.doi.org/10.3390/polym12010031] [PMID: 31878014]
[40]
Rajamanickam, K.; Yang, J.; Sakharkar, M.K. Gallic acid potentiates the antimicrobial activity of tulathromycin against two key bovine respiratory disease (BRD) causing-pathogens. Front. Pharmacol., 2019, 9, 1486.
[http://dx.doi.org/10.3389/fphar.2018.01486] [PMID: 30662404]
[41]
Lee, J.H.; Oh, M.; Seok, J.; Kim, S.; Lee, D.; Bae, G.; Bae, H.I.; Bae, S.; Hong, Y.M.; Kwon, S.O.; Lee, D.H.; Song, C.S.; Mun, J.; Chung, M.; Kim, K. Antiviral effects of black raspberry (Rubus coreanus) seed and its gallic acid against influenza virus infection. Viruses, 2016, 8(6), 157.
[http://dx.doi.org/10.3390/v8060157] [PMID: 27275830]
[42]
Harikrishnan, H.; Jantan, I.; Alagan, A.; Haque, M.A. Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: Potential role in the prevention and treatment of inflammation and cancer. Inflammopharmacology, 2020, 28(1), 1-18.
[http://dx.doi.org/10.1007/s10787-019-00671-9] [PMID: 31792765]
[43]
BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med., 2017, 17(1), 47.
[http://dx.doi.org/10.1186/s12906-017-1555-0] [PMID: 28088220]
[44]
Baptista, B.J.A.; Granato, A.; Canto, F.B.; Montalvão, F.; Tostes, L.; de Matos Guedes, H.L.; Coutinho, A.; Bellio, M.; Vale, A.M.; Nobrega, A. TLR9 signaling suppresses the canonical plasma cell differentiation program in follicular B cells. Front. Immunol., 2018, 9, 2281.
[http://dx.doi.org/10.3389/fimmu.2018.02281] [PMID: 30546358]
[45]
Parada, E.; Casas, A.I.; Palomino-Antolin, A.; Gómez-Rangel, V.; Rubio-Navarro, A.; Farré-Alins, V.; Narros-Fernandez, P.; Guerrero-Hue, M.; Moreno, J.A.; Rosa, J.M.; Roda, J.M.; Hernández-García, B.J.; Egea, J. Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models. Br. J. Pharmacol., 2019, 176(15), 2764-2779.
[http://dx.doi.org/10.1111/bph.14703] [PMID: 31074003]
[46]
Kartkaya, K.; Oğlakçı, A.; Şentürk, H.; Bayramoğlu, G.; Canbek, M.; Kanbak, G. Investigation of the possible protective role of gallic acid on paraoxanase and arylesterase activities in livers of rats with acute alcohol intoxication. Cell Biochem. Funct., 2013, 31(3), 208-213.
[http://dx.doi.org/10.1002/cbf.2874] [PMID: 22945768]
[47]
Suganya, S.; Schneider, L.; Nandagopal, B. Molecular docking studies of potential inhibition of the alcohol dehydrogenase enzyme by phyllanthin, hypophyllanthin and gallic acid. Crit. Rev. Eukaryot. Gene. Expr., 2019, 29(4), 287-294.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2019025602]
[48]
Goel, R. Medicinal plants as antidiabetics: A review. Int. Bull. Drug. Res., 2012, 1(2), 100-107.
[49]
Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian Pac. J. Trop. Dis., 2012, 2(3), 239-250.
[http://dx.doi.org/10.1016/S2222-1808(12)60054-1]
[50]
Sabu, M.C.; Smitha, K.; Kuttan, R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol., 2002, 83(1-2), 109-116.
[http://dx.doi.org/10.1016/S0378-8741(02)00217-9] [PMID: 12413715]
[51]
Goyal, R.K.; Patel, S.S. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Res., 2011, 3(4), 239-245.
[http://dx.doi.org/10.4103/0974-8490.89743] [PMID: 22224046]
[52]
Rao, T.P.; Sakaguchi, N.; Juneja, L.R.; Wada, E.; Yokozawa, T. Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J. Med. Food, 2005, 8(3), 362-368.
[http://dx.doi.org/10.1089/jmf.2005.8.362] [PMID: 16176148]
[53]
Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine, 2020, 73, 152906.
[http://dx.doi.org/10.1016/j.phymed.2019.152906] [PMID: 31064680]
[54]
Nayeem, N.; Smb, A. Gallic acid: A promising lead molecule for drug development. J. Appl. Pharm., 2016, 8(2), 1-4.
[http://dx.doi.org/10.4172/1920-4159.1000213]
[55]
Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv., 2015, 5(35), 27540-27557.
[http://dx.doi.org/10.1039/C5RA01911G]
[56]
Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles targeting STATs in cancer therapy. Cells. 2019, 8(10):1158.
[57]
Kaur, M.; Velmurugan, B.; Rajamanickam, S.; Agarwal, R.; Agarwal, C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm. Res., 2009, 26(9), 2133-2140.
[http://dx.doi.org/10.1007/s11095-009-9926-y] [PMID: 19543955]
[58]
Wang, K.; Zhu, X.; Zhang, K.; Zhu, L.; Zhou, F. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J. Biochem. Mol. Toxicol., 2014, 28(9), 387-393.
[http://dx.doi.org/10.1002/jbt.21575] [PMID: 24864015]
[59]
Lu, Y.; Jiang, F.; Jiang, H.; Wu, K.; Zheng, X.; Cai, Y.; Katakowski, M.; Chopp, M.; To, S.S.T. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharmacol., 2010, 641(2-3), 102-107.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.043] [PMID: 20553913]
[60]
Liu, Z.; Li, D.; Yu, L.; Niu, F. Gallic acid as a cancer-selective agent induces apoptosis in pancreatic cancer cells. Chemotherapy, 2012, 58(3), 185-194.
[http://dx.doi.org/10.1159/000337103] [PMID: 22739044]
[61]
Tiejing, L.; Xin, Z.; Xinhuai, Z. Powerful protective effects of gallic acid and tea polyphenols on human hepatocytes injury induced by hydrogen peroxide or carbon tetrachloride in vitro. J. Med. Plants Res., 2010, 4(3), 247-254.
[62]
Verma, S.; Singh, A.; Mishra, A. Gallic acid: Molecular rival of cancer. Environ. Toxicol. Pharmacol., 2013, 35(3), 473-485.
[http://dx.doi.org/10.1016/j.etap.2013.02.011] [PMID: 23501608]
[63]
Kee, H.J.; Cho, S.N.; Kim, G.R.; Choi, S.Y.; Ryu, Y.; Kim, I.K.; Hong, Y.J.; Park, H.W.; Ahn, Y.; Cho, J.G.; Park, J.C.; Jeong, M.H. Gallic acid inhibits vascular calcification through the blockade of BMP2–Smad1/5/8 signaling pathway. Vascul. Pharmacol., 2014, 63(2), 71-78.
[http://dx.doi.org/10.1016/j.vph.2014.08.005] [PMID: 25446167]
[64]
Yan, X.; Zhang, Y.L.; Zhang, L.; Zou, L.X.; Chen, C.; Liu, Y.; Xia, Y.L.; Li, H.H. Gallic acid suppresses cardiac hypertrophic remodeling and heart failure. Mol. Nutr. Food Res., 2019, 63(5), 1800807.
[http://dx.doi.org/10.1002/mnfr.201800807] [PMID: 30521107]
[65]
Ferk, F.; Kundi, M.; Brath, H.; Szekeres, T.; Al-Serori, H.; Mišík, M.; Saiko, P.; Marculescu, R.; Wagner, K.H.; Knasmueller, S. Gallic acid improves health-associated biochemical parameters and prevents oxidative damage of DNA in Type 2 diabetes patients: Results of a placebo-controlled pilot study. Mol. Nutr. Food Res., 2018, 62(4), 1700482.
[http://dx.doi.org/10.1002/mnfr.201700482] [PMID: 29193677]
[66]
Sandoo, A.; Veldhuijzen van Zanten, J.J.C.S.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J., 2010, 4(1), 302-312.
[http://dx.doi.org/10.2174/1874192401004010302] [PMID: 21339899]
[67]
Bakheet, M.S. Antioxidants (vitamin E and gallic acid) as valuable protective factors against myocardial infarction. Basic. Res. J. Med. Clin. Sci., 2014, 11, 109-122.
[68]
Akbari, G. Molecular mechanisms underlying gallic acid effects against cardiovascular diseases: An update review. Avicenna J. Phytomed., 2020, 10(1), 11-23.
[PMID: 31921604]
[69]
He, X.; Chen, M.G.; Ma, Q. Activation of Nrf2 in defense against cadmium-induced oxidative stress. Chem. Res. Toxicol., 2008, 21(7), 1375-1383.
[http://dx.doi.org/10.1021/tx800019a] [PMID: 18512965]
[70]
Gryglewski, R.J.; Palmer, R.M.J.; Moncada, S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature, 1986, 320(6061), 454-456.
[http://dx.doi.org/10.1038/320454a0] [PMID: 3007998]
[71]
Schrader, L.I.; Kinzenbaw, D.A.; Johnson, A.W.; Faraci, F.M.; Didion, S.P. IL-6 deficiency protects against angiotensin II induced endothelial dysfunction and hypertrophy. Arterioscler. Thromb. Vasc. Biol., 2007, 27(12), 2576-2581.
[http://dx.doi.org/10.1161/ATVBAHA.107.153080] [PMID: 17962626]
[72]
Garcia, V.; Sessa, W.C. Endothelial NOS: Perspective and recent developments. Br. J. Pharmacol., 2019, 176(2), 189-196.
[http://dx.doi.org/10.1111/bph.14522] [PMID: 30341769]
[73]
Kam, A.; Li, K.M.; Razmovski-Naumovski, V.; Nammi, S.; Chan, K.; Li, G.Q. Gallic acid protects against endothelial injury by restoring the depletion of DNA methyltransferase 1 and inhibiting proteasome activities. Int. J. Cardiol., 2014, 171(2), 231-242.
[http://dx.doi.org/10.1016/j.ijcard.2013.12.020] [PMID: 24388544]
[74]
Yan, X.; Zhang, Q.Y.; Zhang, Y.L.; Han, X.; Guo, S.B.; Li, H.H. Gallic acid attenuates angiotensin ii-induced hypertension and vascular dysfunction by inhibiting the degradation of endothelial nitric oxide synthase. Front. Pharmacol., 2020, 11, 1121.
[http://dx.doi.org/10.3389/fphar.2020.01121] [PMID: 32848742]
[75]
Jin, L.; Piao, Z.H.; Sun, S.; Liu, B.; Kim, G.R.; Seok, Y.M.; Lin, M.Q.; Ryu, Y.; Choi, S.Y.; Kee, H.J.; Jeong, M.H. Gallic acid reduces blood pressure and attenuates oxidative stress and cardiac hypertrophy in spontaneously hypertensive rats. Sci. Rep., 2017, 7(1), 15607.
[http://dx.doi.org/10.1038/s41598-017-15925-1] [PMID: 29142252]
[76]
Goossens, E.A.C.; de Vries, M.R.; Jukema, J.W.; Quax, P.H.A.; Nossent, A.Y. Myostatin inhibits vascular smooth muscle cell proliferation and local 14q32 microrna expression, but not systemic inflammation or restenosis. Int. J. Mol. Sci., 2020, 21(10), 3508.
[http://dx.doi.org/10.3390/ijms21103508] [PMID: 32429150]
[77]
Kleemann, R.; Zadelaar, S.; Kooistra, T. Cytokines and atherosclerosis: A comprehensive review of studies in mice. Cardiovasc. Res., 2008, 79(3), 360-376.
[http://dx.doi.org/10.1093/cvr/cvn120] [PMID: 18487233]
[78]
Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347), 317-325.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[79]
Ramji, D.P.; Davies, T.S. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev., 2015, 26(6), 673-685.
[http://dx.doi.org/10.1016/j.cytogfr.2015.04.003] [PMID: 26005197]
[80]
García-Miguel, M.; Riquelme, J.A.; Norambuena-Soto, I.; Morales, P.E.; Sanhueza-Olivares, F.; Nuñez-Soto, C.; Mondaca-Ruff, D.; Cancino-Arenas, N.; San Martín, A.; Chiong, M. Autophagy mediates tumor necrosis factor-α-induced phenotype switching in vascular smooth muscle A7r5 cell line. PLoS One, 2018, 13(5), e0197210.
[http://dx.doi.org/10.1371/journal.pone.0197210] [PMID: 29750813]
[81]
Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4), 642-655.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[82]
Sayed, A.S.M.; Xia, K.; Salma, U.; Yang, T.; Peng, J. Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart Lung Circ., 2014, 23(6), 503-510.
[http://dx.doi.org/10.1016/j.hlc.2014.01.001] [PMID: 24726001]
[83]
Sarkar, J.; Gou, D.; Turaka, P.; Viktorova, E.; Ramchandran, R.; Raj, J.U. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am. J. Physiol. Lung Cell. Mol. Physiol., 2010, 299(6), L861-L871.
[http://dx.doi.org/10.1152/ajplung.00201.2010] [PMID: 20693317]
[84]
Vacante, F.; Denby, L.; Sluimer, J.C.; Baker, A.H. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vascul. Pharmacol., 2019, 112, 24-30.
[http://dx.doi.org/10.1016/j.vph.2018.11.006] [PMID: 30502421]
[85]
Zhang, M.; Li, F.; Wang, X.; Gong, J.; Xian, Y.; Wang, G.; Zheng, Z.; Shang, C.; Wang, B.; He, Y.; Wang, W.; Lin, R. MiR-145 alleviates Hcy-induced VSMC proliferation, migration, and phenotypic switch through repression of the PI3K/Akt/mTOR pathway. Histochem. Cell Biol., 2020, 153(5), 357-366.
[http://dx.doi.org/10.1007/s00418-020-01847-z] [PMID: 32124010]
[86]
Wang, W.; Chen, L.; Shang, C.; Jin, Z.; Yao, F.; Bai, L.; Wang, R.; Zhao, S.; Liu, E. miR-145 inhibits the proliferation and migration of vascular smooth muscle cells by regulating autophagy. J. Cell. Mol. Med., 2020, 24(12), 6658-6669.
[http://dx.doi.org/10.1111/jcmm.15316] [PMID: 32337837]
[87]
Shafique, E.; Choy, W.C.; Liu, Y.; Feng, J.; Cordeiro, B.; Lyra, A.; Arafah, M.; Yassin-Kassab, A.; Zanetti, A.V.D.; Clements, R.T.; Bianchi, C.; Benjamin, L.E.; Sellke, F.W.; Abid, M.R. Oxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK. Aging, 2013, 5(7), 515-530.
[http://dx.doi.org/10.18632/aging.100569] [PMID: 24018842]
[88]
Ou, T.T.; Lin, M.C.; Wu, C.H.; Lin, W.L.; Wang, C.J. Gallic acid attenuates oleic acid-induced proliferation of vascular smooth muscle cell through regulation of AMPK-eNOS-FAS signaling. Curr. Med. Chem., 2013, 20(31), 3944-3953.
[http://dx.doi.org/10.2174/09298673113209990175] [PMID: 23848534]
[89]
Chung, D.J.; Wu, Y.L.; Yang, M.Y.; Chan, K.C.; Lee, H.J.; Wang, C.J. Nelumbo nucifera leaf polyphenol extract and gallic acid inhibit TNF-α-induced vascular smooth muscle cell proliferation and migration involving the regulation of miR-21, miR-143 and miR-145. Food Funct., 2020, 11(10), 8602-8611.
[http://dx.doi.org/10.1039/D0FO02135K] [PMID: 33084700]
[90]
Sun, Q.; Xin, F.; Wen, X.; Lu, C.; Chen, R.; Ruan, G. Protective effects of different kinds of filtered water on hypertensive mouse by suppressing oxidative stress and inflammation. Oxid. Med. Cell. Longev., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/2917387] [PMID: 30622665]
[91]
Ondimu, D.O.; Kikuvi, G.M.; Otieno, W.N. Risk factors for hypertension among young adults (18-35) years attending in Tenwek Mission Hospital, Bomet County, Kenya in 2018. Pan Afr. Med. J., 2019, 33, 210.
[http://dx.doi.org/10.11604/pamj.2019.33.210.18407] [PMID: 31692887]
[92]
Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. BioMed Res. Int., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/406960] [PMID: 25136585]
[93]
Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; Kazmi, K.; Lanas, F.; Wei, L.; Lopez-Jaramillo, P.; Fanghong, L.; Ismail, N.H.; Puoane, T.; Rosengren, A.; Szuba, A.; Temizhan, A.; Wielgosz, A.; Yusuf, R.; Yusufali, A.; McKee, M.; Liu, L.; Mony, P.; Yusuf, S. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA, 2013, 310(9), 959-968.
[http://dx.doi.org/10.1001/jama.2013.184182] [PMID: 24002282]
[94]
Xu, R.; Yang, K.; Ding, J.; Chen, G. Effect of green tea supplementation on blood pressure. Medicine, 2020, 99(6), e19047.
[http://dx.doi.org/10.1097/MD.0000000000019047] [PMID: 32028419]
[95]
Dikalova, A.E.; Pandey, A.; Xiao, L.; Arslanbaeva, L.; Sidorova, T.; Lopez, M.G.; Billings, F.T., IV; Verdin, E.; Auwerx, J.; Harrison, D.G.; Dikalov, S.I. Mitochondrial deacetylase sirt3 reduces vascular dysfunction and hypertension while sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ. Res., 2020, 126(4), 439-452.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315767] [PMID: 31852393]
[96]
Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet, 2005, 365(9455), 217-223.
[http://dx.doi.org/10.1016/S0140-6736(05)17741-1] [PMID: 15652604]
[97]
Lu, Y.; Sun, X.; Peng, L.; Jiang, W.; Li, W.; Yuan, H.; Cai, J. Angiotensin II-Induced vascular remodeling and hypertension involves cathepsin L/V- MEK/ERK mediated mechanism. Int. J. Cardiol., 2020, 298, 98-106.
[http://dx.doi.org/10.1016/j.ijcard.2019.09.070] [PMID: 31668507]
[98]
Iulita, M.F.; Vallerand, D.; Beauvillier, M.; Haupert, N.; A Ulysse, C.; Gagné, A.; Vernoux, N.; Duchemin, S.; Boily, M.; Tremblay, M.È.; Girouard, H. Differential effect of angiotensin II and blood pressure on hippocampal inflammation in mice. J. Neuroinflammation, 2018, 15(1), 62.
[http://dx.doi.org/10.1186/s12974-018-1090-z] [PMID: 29490666]
[99]
Czesnikiewicz-Guzik, M.; Osmenda, G.; Siedlinski, M.; Nosalski, R.; Pelka, P.; Nowakowski, D.; Wilk, G.; Mikolajczyk, T.P.; Schramm-Luc, A.; Furtak, A.; Matusik, P.; Koziol, J.; Drozdz, M.; Munoz-Aguilera, E.; Tomaszewski, M.; Evangelou, E.; Caulfield, M.; Grodzicki, T.; D’Aiuto, F.; Guzik, T.J. Causal association between periodontitis and hypertension: Evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur. Heart J., 2019, 40(42), 3459-3470.
[http://dx.doi.org/10.1093/eurheartj/ehz646] [PMID: 31504461]
[100]
Agita, A.; Alsagaff, M.T. Inflammation, immunity, and hypertension. Acta Med. Indones., 2017, 49(2), 158-165.
[PMID: 28790231]
[101]
Tanaka, M.; Kishimoto, Y.; Sasaki, M.; Sato, A.; Kamiya, T.; Kondo, K.; Iida, K. Terminalia bellirica (Gaertn.) roxb. extract and gallic acid attenuate lps-induced inflammation and oxidative stress via MAPK/NF- κ B and Akt/AMPK/Nrf2 Pathways. Oxid. Med. Cell. Longev., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/9364364] [PMID: 30533177]
[102]
Lin, Y.; Luo, T.; Weng, A.; Huang, X.; Yao, Y.; Fu, Z.; Li, Y.; Liu, A.; Li, X.; Chen, D.; Pan, H. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front. Immunol., 2020, 11, 580593.
[http://dx.doi.org/10.3389/fimmu.2020.580593] [PMID: 33365024]
[103]
Jin, L.; Piao, Z.H.; Liu, C.P.; Sun, S.; Liu, B.; Kim, G.R.; Choi, S.Y.; Ryu, Y.; Kee, H.J.; Jeong, M.H. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats. J. Cell. Mol. Med., 2018, 22(3), 1517-1526.
[http://dx.doi.org/10.1111/jcmm.13419] [PMID: 29266709]
[104]
Cao, B.; Wang, H.; Zhang, C.; Xia, M.; Yang, X. Remote ischemic postconditioning (RIPC) of the upper arm results in protection from cardiac ischemia-reperfusion injury following primary percutaneous coronary intervention (PCI) for acute ST-Segment Elevation myocardial infarction (STEMI). Med. Sci. Monit., 2018, 24, 1017-1026.
[http://dx.doi.org/10.12659/MSM.908247] [PMID: 29456238]
[105]
Lai, T.C.; Lee, T.L.; Chang, Y.C.; Chen, Y.C.; Lin, S.R.; Lin, S.W.; Pu, C.M.; Tsai, J.S.; Chen, Y.L. MicroRNA-221/222 mediates adsc-exosome-induced cardioprotection against ischemia/reperfusion by targeting PUMA and ETS-1. Front. Cell Dev. Biol., 2020, 8, 569150.
[http://dx.doi.org/10.3389/fcell.2020.569150] [PMID: 33344446]
[106]
Zhou, H.; Zhang, Y.; Hu, S.; Shi, C.; Zhu, P.; Ma, Q.; Jin, Q.; Cao, F.; Tian, F.; Chen, Y. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J. Pineal Res., 2017, 63(1), e12413.
[http://dx.doi.org/10.1111/jpi.12413] [PMID: 28398674]
[107]
Zhang, B.; Zhai, M.; Li, B.; Liu, Z.; Li, K.; Jiang, L.; Zhang, M.; Yi, W.; Yang, J.; Yi, D.; Liang, H.; Jin, Z.; Duan, W.; Yu, S. Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1-16.
[http://dx.doi.org/10.1155/2018/3159801] [PMID: 29675132]
[108]
Kura, B.; Szeiffova Bacova, B.; Kalocayova, B.; Sykora, M.; Slezak, J. Oxidative stress-responsive MicroRNAs in heart injury. Int. J. Mol. Sci., 2020, 21(1), 358.
[http://dx.doi.org/10.3390/ijms21010358] [PMID: 31948131]
[109]
Wei, G.; Wu, Y.; Gao, Q.; Shen, C.; Chen, Z.; Wang, K.; Yu, J.; Li, X.; Sun, X. Gallic acid attenuates postoperative intra-abdominal adhesion by inhibiting inflammatory reaction in a rat model. Med. Sci. Monit., 2018, 24, 827-838.
[http://dx.doi.org/10.12659/MSM.908550] [PMID: 29429982]
[110]
Dianat, M.; Sadeghi, N.; Badavi, M.; Panahi, M.; Taheri Moghadam, M. Protective effects of co-administration of gallic Acid and cyclosporine on rat myocardial morphology against ischemia/reperfusion. Jundishapur J. Nat. Pharm. Prod., 2014, 9(4), e17186.
[http://dx.doi.org/10.17795/jjnpp-17186] [PMID: 25625048]
[111]
Samarghandian, S.; Asadi-Samani, M.; Farkhondeh, T.; Bahmani, M. Assessment the effect of saffron ethanolic extract (Crocus sativus L.) on oxidative damages in aged male rat liver. Der. Pharm. Lett. 2016; 8(3):283-90.
[112]
Takahashi, M. Role of NLRP3 inflammasome in cardiac inflammation and remodeling after myocardial infarction. Biol. Pharm. Bull., 2019, 42(4), 518-523.
[http://dx.doi.org/10.1248/bpb.b18-00369] [PMID: 30930410]
[113]
Yu, B.; Akushevich, I.; Yashkin, A.P.; Kravchenko, J. Epidemiology of geographic disparities of myocardial infarction among older adults in the united states: Analysis of 2000–2017 medicare data. Front. Cardiovasc. Med., 2021, 8, 707102.
[http://dx.doi.org/10.3389/fcvm.2021.707102] [PMID: 34568451]
[114]
Farkhondeh T, Samarghandian S, Azimin-Nezhad M, Samini F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med., 2015, 8(2), 2465.
[http://dx.doi.org/10.1016/j.gheart.2018.08.004] [PMID: 30154043]
[115]
Thackeray, J.T.; Hupe, H.C.; Wang, Y.; Bankstahl, J.P.; Berding, G.; Ross, T.L.; Bauersachs, J.; Wollert, K.C.; Bengel, F.M. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J. Am. Coll. Cardiol., 2018, 71(3), 263-275.
[http://dx.doi.org/10.1016/j.jacc.2017.11.024] [PMID: 29348018]
[116]
Basit, H.; Huecker, M.R. Myocardial Infarction Serum Markers; StatPearls Publishing: Treasure Island (FL), 2022.
[117]
Khan, H.A.; Ekhzaimy, A.; Khan, I.; Sakharkar, M.K. Potential of lipoproteins as biomarkers in acute myocardial infarction. Anatol. J. Cardiol., 2017, 18(1), 68-74.
[http://dx.doi.org/10.14744/AnatolJCardiol.2017.7403] [PMID: 28680021]
[118]
Saleh, M.; Ambrose, J.A. Understanding myocardial infarction. F1000 Res., 2018, 7, 1378.
[http://dx.doi.org/10.12688/f1000research.15096.1] [PMID: 30228871]
[119]
Johansson, S.; Rosengren, A.; Young, K.; Jennings, E. Mortality and morbidity trends after the first year in survivors of acute myocardial infarction: A systematic review. BMC Cardiovasc. Disord., 2017, 17(1), 53.
[http://dx.doi.org/10.1186/s12872-017-0482-9] [PMID: 28173750]
[120]
Zhang, Q.; Yu, N.; Yu, B.T. MicroRNA-298 regulates apoptosis of cardiomyocytes after myocardial infarction. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(2), 532-539.
[PMID: 29424914]
[121]
Wang, X.; Guo, Z.; Ding, Z.; Mehta, J.L. Inflammation, autophagy, and apoptosis after myocardial infarction. J. Am. Heart Assoc., 2018, 7(9), e008024.
[http://dx.doi.org/10.1161/JAHA.117.008024] [PMID: 29680826]
[122]
Dehghani, M.A.; Shakiba Maram, N.; Moghimipour, E.; Khorsandi, L.; Atefi khah, M.; Mahdavinia, M. Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(12), 165911.
[http://dx.doi.org/10.1016/j.bbadis.2020.165911] [PMID: 32768679]
[123]
Li, W.; Yue, X.; Li, F. Gallic acid caused cultured mice TM4 Sertoli cells apoptosis and necrosis. Asian-Australas. J. Anim. Sci., 2019, 32(5), 629-636.
[http://dx.doi.org/10.5713/ajas.18.0317] [PMID: 30381745]
[124]
Hochman, J.S.; Bulkley, B.H. Expansion of acute myocardial infarction: An experimental study. Circulation, 1982, 65(7), 1446-1450.
[http://dx.doi.org/10.1161/01.CIR.65.7.1446] [PMID: 7074800]
[125]
Cohn, J.N.; Ferrari, R.; Sharpe, N. Cardiac remodeling— concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol., 2000, 35(3), 569-582.
[http://dx.doi.org/10.1016/S0735-1097(99)00630-0] [PMID: 10716457]
[126]
Zivarpour, P.; Reiner, Ž.; Hallajzadeh, J.; Mirsafaei, L. Resveratrol and cardiac fibrosis prevention and treatment. Curr. Pharm. Biotechnol., 2022, 23(2), 190-200.
[http://dx.doi.org/10.2174/1389201022666210212125003] [PMID: 33583368]
[127]
Yang, D.; Liu, H.Q.; Liu, F.Y.; Tang, N.; Guo, Z.; Ma, S.Q.; An, P.; Wang, M.Y.; Wu, H.M.; Yang, Z.; Fan, D.; Tang, Q.Z. The roles of noncardiomyocytes in cardiac remodeling. Int. J. Biol. Sci., 2020, 16(13), 2414-2429.
[http://dx.doi.org/10.7150/ijbs.47180] [PMID: 32760209]
[128]
Azevedo, P.S.; Polegato, B.F.; Minicucci, M.F.; Paiva, S.A.R.; Zornoff, L.A.M. Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq. Bras. Cardiol., 2016, 106(1), 62-69.
[http://dx.doi.org/10.5935/abc.20160005] [PMID: 26647721]
[129]
Schirone, L. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid. Med. Cell. Longev., 2017, 2017, 3920195.
[http://dx.doi.org/10.1155/2017/3920195]
[130]
Anand, I.S.; Florea, V.G.; Solomon, S.D.; Konstam, M.A.; Udelson, J.E. Noninvasive assessment of left ventricular remodeling: Concepts, techniques, and implications for clinical trials. J. Card. Fail., 2002, 8(6)(Suppl.), S452-S464.
[http://dx.doi.org/10.1054/jcaf.2002.129286] [PMID: 12555158]
[131]
Poncelas, M.; Inserte, J.; Aluja, D.; Hernando, V.; Vilardosa, U.; Garcia-Dorado, D. Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodelling. Cardiovasc. Res., 2017, 113(8), 950-961.
[http://dx.doi.org/10.1093/cvr/cvx073] [PMID: 28460013]
[132]
Tarone, G.; Balligand, J.L.; Bauersachs, J.; Clerk, A.; De Windt, L.; Heymans, S.; Hilfiker-Kleiner, D.; Hirsch, E.; Iaccarino, G.; Knöll, R.; Leite-Moreira, A.F.; Lourenço, A.P.; Mayr, M.; Thum, T.; Tocchetti, C.G. Targeting myocardial remodelling to develop novel therapies for heart failure. Eur. J. Heart Fail., 2014, 16(5), 494-508.
[http://dx.doi.org/10.1002/ejhf.62] [PMID: 24639064]
[133]
Rose, B.A.; Force, T.; Wang, Y. Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking tale. Physiol. Rev., 2010, 90(4), 1507-1546.
[http://dx.doi.org/10.1152/physrev.00054.2009] [PMID: 20959622]
[134]
Ryu, Y.; Jin, L.; Kee, H.J.; Piao, Z.H.; Cho, J.Y.; Kim, G.R.; Choi, S.Y.; Lin, M.Q.; Jeong, M.H. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Sci. Rep., 2016, 6(1), 34790.
[http://dx.doi.org/10.1038/srep34790] [PMID: 27703224]
[135]
Liang, Q.; De Windt, L.J.; Witt, S.A.; Kimball, T.R.; Markham, B.E.; Molkentin, J.D. The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J. Biol. Chem., 2001, 276(32), 30245-30253.
[http://dx.doi.org/10.1074/jbc.M102174200] [PMID: 11356841]
[136]
Shackebaei, D.; Hesari, M.; Ramezani-Aliakbari, S.; Hoseinkhani, Z.; Ramezani-Aliakbari, F. Gallic acid protects against isoproterenol-induced cardiotoxicity in rats. Hum. Exp. Toxicol., 2022, 41
[http://dx.doi.org/10.1177/09603271211064532] [PMID: 35193428]
[137]
Segura, A.M.; Frazier, O.H.; Buja, L.M. Fibrosis and heart failure. Heart Fail. Rev., 2014, 19(2), 173-185.
[http://dx.doi.org/10.1007/s10741-012-9365-4] [PMID: 23124941]
[138]
Kong, P.; Christia, P.; Frangogiannis, N.G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci., 2014, 71(4), 549-574.
[http://dx.doi.org/10.1007/s00018-013-1349-6] [PMID: 23649149]
[139]
Arola, O.J.; Saraste, A.; Pulkki, K.; Kallajoki, M.; Parvinen, M.; Voipio-Pulkki, L.M. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res., 2000, 60(7), 1789-1792.
[PMID: 10766158]
[140]
Pohlers, D.; Brenmoehl, J.; Löffler, I.; Müller, C.K.; Leipner, C.; Schultze-Mosgau, S.; Stallmach, A.; Kinne, R.W.; Wolf, G. TGF-β and fibrosis in different organs : Molecular pathway imprints. Biochim. Biophys. Acta Mol. Basis Dis., 2009, 1792(8), 746-756.
[http://dx.doi.org/10.1016/j.bbadis.2009.06.004]
[141]
Jin, L.; Lin, M.Q.; Piao, Z.H.; Cho, J.Y.; Kim, G.R.; Choi, S.Y.; Ryu, Y.; Sun, S.; Kee, H.J.; Jeong, M.H. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with N G-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2. J. Hypertens., 2017, 35(7), 1502-1512.
[http://dx.doi.org/10.1097/HJH.0000000000001327] [PMID: 28234674]
[142]
Moore-Morris, T.; Guimarães-Camboa, N.; Banerjee, I.; Zambon, A.C.; Kisseleva, T.; Velayoudon, A.; Stallcup, W.B.; Gu, Y.; Dalton, N.D.; Cedenilla, M.; Gomez-Amaro, R.; Zhou, B.; Brenner, D.A.; Peterson, K.L.; Chen, J.; Evans, S.M. Resident fibroblast lineages mediate pressure overload–induced cardiac fibrosis. J. Clin. Invest., 2014, 124(7), 2921-2934.
[http://dx.doi.org/10.1172/JCI74783] [PMID: 24937432]
[143]
Jin, L.; Sun, S.; Ryu, Y.; Piao, Z.H.; Liu, B.; Choi, S.Y.; Kim, G.R.; Kim, H.S.; Kee, H.J.; Jeong, M.H. Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure. Sci. Rep., 2018, 8(1), 9302.
[http://dx.doi.org/10.1038/s41598-018-27599-4] [PMID: 29915390]
[144]
Meinardi, M.T.; Gietema, J.A.; van Veldhuisen, D.J.; van der Graaf, W.T.A.; de Vries, E.G.E.; Sleijfer, D.T. Long-term chemotherapy-related cardiovascular morbidity. Cancer Treat. Rev., 2000, 26(6), 429-447.
[http://dx.doi.org/10.1053/ctrv.2000.0175] [PMID: 11139373]
[145]
Mohan, I.K.; Kumar, K.V.; Naidu, M.U.R.; Khan, M.; Sundaram, C. Protective effect of CardiPro against doxorubicin-induced cardiotoxicity in mice. Phytomedicine, 2006, 13(4), 222-229.
[http://dx.doi.org/10.1016/j.phymed.2004.09.003] [PMID: 16492523]
[146]
Octavia, Y.; Tocchetti, C.G.; Gabrielson, K.L.; Janssens, S.; Crijns, H.J.; Moens, A.L. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol., 2012, 52(6), 1213-1225.
[http://dx.doi.org/10.1016/j.yjmcc.2012.03.006] [PMID: 22465037]
[147]
Swamy, A.H.M.V.; Kulkarni, J.M. Cardioprotective effect of gallic acid against doxorubicin-induced myocardial toxicity in albino rats. Ind. J. Heal. Sci. Biomed. Res., 2015, 8(1), 28.
[http://dx.doi.org/10.4103/2349-5006.158219]
[148]
Han, S.; Bao, L.; Li, W.; Liu, K.; Tang, Y.; Han, X.; Liu, Z.; Wang, H.; Zhang, F.; Mi, S.; Du, H. Gallic acid inhibits mesaconitine-activated TRPV1-channel-induced cardiotoxicity. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/5731372] [PMID: 35463061]
[149]
Salimi, A.; Atashbar, S.; Shabani, M. Gallic acid inhibits celecoxib-induced mitochondrial permeability transition and reduces its toxicity in isolated cardiomyocytes and mitochondria. Hum. Exp. Toxicol., 2021, 40(12_suppl)(Suppl.), S530-S539.
[http://dx.doi.org/10.1177/09603271211053299] [PMID: 34715756]
[150]
Ekinci Akdemir, F.N.; Yildirim, S.; Kandemir, F.M.; Tanyeli, A.; Küçükler, S.; Bahaeddin Dortbudak, M. Protective effects of gallic acid on doxorubicin-induced cardiotoxicity; An experimantal study. Arch. Physiol. Biochem., 2021, 127(3), 258-265.
[http://dx.doi.org/10.1080/13813455.2019.1630652] [PMID: 31240966]
[151]
Jin, L.; Piao, Z.H.; Sun, S.; Liu, B.; Ryu, Y.; Choi, S.Y.; Kim, G.R.; Kim, H.S.; Kee, H.J.; Jeong, M.H. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure. Vascul. Pharmacol., 2017, 99, 74-82.
[http://dx.doi.org/10.1016/j.vph.2017.10.007] [PMID: 29097327]
[152]
Han, D.; Zhang, Q.Y.; Zhang, Y.L.; Han, X.; Guo, S.B.; Teng, F.; Yan, X.; Li, H.H. Gallic acid ameliorates angiotensin II-induced atrial fibrillation by inhibiting immunoproteasome-mediated PTEN degradation in mice. Front. Cell Dev. Biol., 2020, 8, 594683.
[http://dx.doi.org/10.3389/fcell.2020.594683] [PMID: 33251220]
[153]
Clark, M.; Centner, A.M.; Ukhanov, V.; Nagpal, R.; Salazar, G. Gallic acid ameliorates atherosclerosis and vascular senescence and remodels the microbiome in a sex-dependent manner in ApoE−/− mice. J. Nutr. Biochem., 2022, 110, 109132.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109132] [PMID: 36028099]
[154]
Ramezani-Aliakbari, F.; Badavi, M.; Dianat, M.; Mard, S.A.; Ahangarpour, A. Effects of gallic acid on hemodynamic parameters and infarct size after ischemia-reperfusion in isolated rat hearts with alloxan-induced diabetes. Biomed. Pharmacother., 2017, 96, 612-618.
[http://dx.doi.org/10.1016/j.biopha.2017.10.014] [PMID: 29035826]
[155]
Ramezani-Aliakbari, F.; Badavi, M.; Dianat, M.; Mard, S.A.; Ahangarpour, A. Protective effects of gallic acid on cardiac electrophysiology and arrhythmias during reperfusion in diabetes. Iran. J. Basic Med. Sci., 2019, 22(5), 515-520.
[PMID: 31217931]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy