Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

A SAR Study on a Class of 6-(Trifluoromethyl)-pyridine Derivatives as RORγt Inverse Agonists

Author(s): Yi-Yuan Ma, Yu-Hao Cao, Li-Jin Yang, Shi-Han Wu, Zhen-Jiang Tong, Jia-Zhen Wu, Yi-Bo Wang, Jiu-Kai Sha, Chen-Qian Zhang, Xin-Rui Zheng, Jiao Cai, Zi-Jun Chen, Qing-Xin Wang, Jing-Jing Wang, Jing-Han Zhao, Liang Chang, Ning Ding, Xue-Jiao Leng, Jin-Guo Xu, Wei-Chen Dai, Shan-Liang Sun, Yan-Cheng Yu*, Xiao-Long Wang*, Nian-Guang Li* and Xin Xue*

Volume 21, Issue 12, 2024

Published on: 26 September, 2023

Page: [2359 - 2373] Pages: 15

DOI: 10.2174/0115701808234886230921063622

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The nuclear retinoic acid-related orphan receptor γt (RORγt) is an important transcription factor in immune cells. Functionally, RORγt plays an important role in promoting the differentiation of T helper 17 cells and regulating the expression of proinflammatory factors, such as interleukin 17. Therefore, RORγt is considered a promising target for the treatment of the autoimmune disorder. Currently, 21 RORγt inverse agonists with various scaffolds have entered clinical trials.

Objective: To discover novel and potent RORγt inverse agonists, a series of novel 6-(trifluoromethyl) pyridine derivatives were designed and synthesized.

Methods: We designed and synthesized a series of potent RORγt inverse agonists W1~W16 based on VTP-43742. Molecular docking, molecular dynamics (MD) simulation, and MM/GBSA were used to study the structure-activity relationship (SAR) of the derivatives.

Results: The biological activity evaluation indicated that the target compounds showed potent RORγt inhibitory activity. The most active compound, W14, exhibited low nanomolar inhibitory activity (IC50 = 7.5 nM) in the luciferase reporter assay, which was superior to the clinical compound VTP-43742. Analysis of the binding mode of W14 demonstrated that the interaction of -CF3 with Leu324, Leu396, and His479 has an important contribution to the binding. Furthermore, W14 broke the H-bond formed by His479 and Tyr502 via a “push-pull” mechanism.

Conclusion: Compound W14 could be used as a potential RORγt inverse agonist for further modification.

Keywords: Th17 cells, RORγt, inverse agonist, SAR, MM/GBSA, molecular dynamic simulation.

Graphical Abstract
[1]
He, Y.W.; Deftos, M.L.; Ojala, E.W.; Bevan, M.J. RORgamma t, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity, 1998, 9(6), 797-806.
[http://dx.doi.org/10.1016/S1074-7613(00)80645-7] [PMID: 9881970]
[2]
Kumar, R.; Theiss, A.L.; Venuprasad, K. RORγt protein modifications and IL-17-mediated inflammation. Trends Immunol., 2021, 42(11), 1037-1050.
[http://dx.doi.org/10.1016/j.it.2021.09.005] [PMID: 34635393]
[3]
Ivanov, I.I.; McKenzie, B.S.; Zhou, L.; Tadokoro, C.E.; Lepelley, A.; Lafaille, J.J.; Cua, D.J.; Littman, D.R. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 2006, 126(6), 1121-1133.
[http://dx.doi.org/10.1016/j.cell.2006.07.035] [PMID: 16990136]
[4]
Yang, X.O.; Pappu, B.P.; Nurieva, R.; Akimzhanov, A.; Kang, H.S.; Chung, Y.; Ma, L.; Shah, B.; Panopoulos, A.D.; Schluns, K.S.; Watowich, S.S.; Tian, Q.; Jetten, A.M.; Dong, C. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR α and ROR γ. Immunity, 2008, 28(1), 29-39.
[http://dx.doi.org/10.1016/j.immuni.2007.11.016] [PMID: 18164222]
[5]
Li, X.; Anderson, M.; Collin, D.; Muegge, I.; Wan, J.; Brennan, D.; Kugler, S.; Terenzio, D.; Kennedy, C.; Lin, S.; Labadia, M.E.; Cook, B.; Hughes, R.; Farrow, N.A. Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors. J. Biol. Chem., 2017, 292(28), 11618-11630.
[http://dx.doi.org/10.1074/jbc.M117.789024] [PMID: 28546429]
[6]
Noguchi, M.; Nomura, A.; Murase, K.; Doi, S.; Yamaguchi, K.; Hirata, K.; Shiozaki, M.; Hirashima, S.; Kotoku, M.; Yamaguchi, T.; Katsuda, Y.; Steensma, R.; Li, X.; Tao, H.; Tse, B.; Fenn, M.; Babine, R.; Bradley, E.; Crowe, P.; Thacher, S.; Adachi, T.; Kamada, M. Ternary complex of human RORγ ligand-binding domain, inverse agonist and SMRT peptide shows a unique mechanism of corepressor recruitment. Genes Cells, 2017, 22(6), 535-551.
[http://dx.doi.org/10.1111/gtc.12494] [PMID: 28493531]
[7]
Renaud, J.P.; Rochel, N.; Ruff, M.; Vivat, V.; Chambon, P.; Gronemeyer, H.; Moras, D. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature, 1995, 378(6558), 681-689.
[http://dx.doi.org/10.1038/378681a0] [PMID: 7501014]
[8]
Santori, F.R.; Huang, P.; van de Pavert, S.A.; Douglass, E.F., Jr; Leaver, D.J.; Haubrich, B.A.; Keber, R.; Lorbek, G.; Konijn, T.; Rosales, B.N.; Rozman, D.; Horvat, S.; Rahier, A.; Mebius, R.E.; Rastinejad, F.; Nes, W.D.; Littman, D.R. Identification of natural RORγ ligands that regulate the development of lymphoid cells. Cell Metab., 2015, 21(2), 286-298.
[http://dx.doi.org/10.1016/j.cmet.2015.01.004] [PMID: 25651181]
[9]
Ouvry, G.; Bouix-Peter, C.; Ciesielski, F.; Chantalat, L.; Christin, O.; Comino, C.; Duvert, D.; Feret, C.; Harris, C.S.; Lamy, L.; Luzy, A.P.; Musicki, B.; Orfila, D.; Pascau, J.; Parnet, V.; Perrin, A.; Pierre, R.; Polge, G.; Raffin, C.; Rival, Y.; Taquet, N.; Thoreau, E.; Hennequin, L.F. Discovery of phenoxyindazoles and phenylthioindazoles as RORγ inverse agonists. Bioorg. Med. Chem. Lett., 2016, 26(23), 5802-5808.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.023] [PMID: 27815118]
[10]
Sun, N.; Xie, Q.; Dang, Y.; Wang, Y. Agonist lock touched and untouched retinoic acid receptor-related orphan receptor-γt (RORγt) inverse agonists: classification based on the molecular mechanisms of action. J. Med. Chem., 2021, 64(15), 10519-10536.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02178] [PMID: 34264059]
[11]
Kallen, J.; Izaac, A.; Be, C.; Arista, L.; Orain, D.; Kaupmann, K.; Guntermann, C.; Hoegenauer, K.; Hintermann, S. Structural states of RORγt: X-ray elucidation of molecular mechanisms and binding interactions for natural and synthetic compounds. ChemMedChem, 2017, 12(13), 1014-1021.
[http://dx.doi.org/10.1002/cmdc.201700278] [PMID: 28590087]
[12]
Gege, C. Retinoid-related orphan receptor gamma t (RORγt) inhibitors from Vitae Pharmaceuticals (WO2015116904) and structure proposal for their Phase I candidate VTP-43742. Expert Opin. Ther. Pat., 2016, 26(6), 737-744.
[http://dx.doi.org/10.1517/13543776.2016.1153066] [PMID: 26895086]
[13]
Carcache, D.A.; Vulpetti, A.; Kallen, J.; Mattes, H.; Orain, D.; Stringer, R.; Vangrevelinghe, E.; Wolf, R.M.; Kaupmann, K.; Ottl, J.; Dawson, J.; Cooke, N.G.; Hoegenauer, K.; Billich, A.; Wagner, J.; Guntermann, C.; Hintermann, S. Optimizing a weakly binding fragment into a potent RORγt inverse agonist with efficacy in an in Vivo inflammation model. J. Med. Chem., 2018, 61(15), 6724-6735.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00529] [PMID: 29990434]
[14]
Wang, Y.; Cai, W.; Tang, T.; Liu, Q.; Yang, T.; Yang, L.; Ma, Y.; Zhang, G.; Huang, Y.; Song, X.; Orband-Miller, L.A.; Wu, Q.; Zhou, L.; Xiang, Z.; Xiang, J.N.; Leung, S.; Shao, L.; Lin, X.; Lobera, M.; Ren, F. From RORγt agonist to two types of RORγt inverse agonists. ACS Med. Chem. Lett., 2018, 9(2), 120-124.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00476] [PMID: 29456799]
[15]
Ataf, A.A.; Adnan, S.; Zarif, G.; Nasir, R.; Amin, B.; Bhajan, L.; Ezzat, K. A review on the medicinal importance of pyridine derivatives. J. Drug Des. Med. Chem, 2015, 1(1), 1-11.
[http://dx.doi.org/10.11648/j.jddmc.20150101.11]
[16]
Kumar S, L; Tabassum, S.; K S, S.; Govindaraju, S. A mini review on the multicomponent synthesis of pyridine derivatives. ChemistrySelect, 2022, 7(47), e202203668.
[http://dx.doi.org/10.1002/slct.202203668]
[17]
Hintermann, S.; Guntermann, C.; Mattes, H.; Carcache, D.A.; Wagner, J.; Vulpetti, A.; Billich, A.; Dawson, J.; Kaupmann, K.; Kallen, J.; Stringer, R.; Orain, D. Synthesis and biological evaluation of new triazolo- and imidazolopyridine RORγt inverse agonists. ChemMedChem, 2016, 11(24), 2640-2648.
[http://dx.doi.org/10.1002/cmdc.201600500] [PMID: 27902884]
[18]
Tabassum, S.; Govindaraju, S.; Khan, R.R.; Pasha, M.A. Ultrasound mediated, green innovation for the synthesis of polysubstituted 1,4-dihydropyridines. RSC Advances, 2016, 6(35), 29802-29810.
[http://dx.doi.org/10.1039/C6RA05441B]
[19]
Tabassum, S.; Govindaraju, S.; Pasha, M.A. Sonochemistry An innovative opportunity towards a one-pot three-component synthesis of novel pyridylpiperazine derivatives catalysed by meglumine in water. New J. Chem., 2017, 41(9), 3515-3523.
[http://dx.doi.org/10.1039/C6NJ03919G]
[20]
Kumar S, L; Servesh, A.; Kumar Sriwastav, Y.; Balasubramanian, S.; Tabassum, S.; Govindaraju, S. A bird’s-eye view on deep eutectic solvent-mediated multicomponent synthesis of N-heterocycles. ChemistrySelect, 2023, 8(16), e202301054.
[http://dx.doi.org/10.1002/slct.202301054]
[21]
Kono, M.; Ochida, A.; Oda, T.; Imada, T.; Banno, Y.; Taya, N.; Masada, S.; Kawamoto, T.; Yonemori, K.; Nara, Y.; Fukase, Y.; Yukawa, T.; Tokuhara, H.; Skene, R.; Sang, B.C.; Hoffman, I.D.; Snell, G.P.; Uga, K.; Shibata, A.; Igaki, K.; Nakamura, Y.; Nakagawa, H.; Tsuchimori, N.; Yamasaki, M.; Shirai, J.; Yamamoto, S. Discovery of [cis -3-((5 R)-5-[(7-Fluoro-1,1-dimethyl-2,3-dihydro-1H-inden-5-yl)carbamoyl]-2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5 H)-ylcarbonyl)cyclobutyl]acetic Acid (TAK-828F) as a potent, selective, and orally available novel retinoic acid receptor-related orphan receptor γt inverse agonist. J. Med. Chem., 2018, 61(7), 2973-2988.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00061] [PMID: 29510038]
[22]
Scheepstra, M.; Leysen, S.; van Almen, G.C.; Miller, J.R.; Piesvaux, J.; Kutilek, V.; van Eenennaam, H.; Zhang, H.; Barr, K.; Nagpal, S.; Soisson, S.M.; Kornienko, M.; Wiley, K.; Elsen, N.; Sharma, S.; Correll, C.C.; Trotter, B.W.; van der Stelt, M.; Oubrie, A.; Ottmann, C.; Parthasarathy, G.; Brunsveld, L. Identification of an allosteric binding site for RORγt inhibition. Nat. Commun., 2015, 6(1), 8833.
[http://dx.doi.org/10.1038/ncomms9833] [PMID: 26640126]
[23]
Fujita-Sato, S.; Ito, S.; Isobe, T.; Ohyama, T.; Wakabayashi, K.; Morishita, K.; Ando, O.; Isono, F. Structural basis of digoxin that antagonizes RORgamma t receptor activity and suppresses Th17 cell differentiation and interleukin (IL)-17 production. J. Biol. Chem., 2011, 286(36), 31409-31417.
[http://dx.doi.org/10.1074/jbc.M111.254003] [PMID: 21733845]
[24]
Schnute, M.E.; Wennerstål, M.; Alley, J.; Bengtsson, M.; Blinn, J.R.; Bolten, C.W.; Braden, T.; Bonn, T.; Carlsson, B.; Caspers, N.; Chen, M.; Choi, C.; Collis, L.P.; Crouse, K.; Färnegårdh, M.; Fennell, K.F.; Fish, S.; Flick, A.C.; Goos-Nilsson, A.; Gullberg, H.; Harris, P.K.; Heasley, S.E.; Hegen, M.; Hromockyj, A.E.; Hu, X.; Husman, B.; Janosik, T.; Jones, P.; Kaila, N.; Kallin, E.; Kauppi, B.; Kiefer, J.R.; Knafels, J.; Koehler, K.; Kruger, L.; Kurumbail, R.G.; Kyne, R.E., Jr; Li, W.; Löfstedt, J.; Long, S.A.; Menard, C.A.; Mente, S.; Messing, D.; Meyers, M.J.; Napierata, L.; Nöteberg, D.; Nuhant, P.; Pelc, M.J.; Prinsen, M.J.; Rhönnstad, P.; Backström-Rydin, E.; Sandberg, J.; Sandström, M.; Shah, F.; Sjöberg, M.; Sundell, A.; Taylor, A.P.; Thorarensen, A.; Trujillo, J.I.; Trzupek, J.D.; Unwalla, R.; Vajdos, F.F.; Weinberg, R.A.; Wood, D.C.; Xing, L.; Zamaratski, E.; Zapf, C.W.; Zhao, Y.; Wilhelmsson, A.; Berstein, G. Discovery of 3-cyano-N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide: A potent, selective, and orally bioavailable retinoic acid receptor-related orphan receptor C2 inverse agonist. J. Med. Chem., 2018, 61(23), 10415-10439.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00392] [PMID: 30130103]
[25]
Chao, J.; Enyedy, I.; Van Vloten, K.; Marcotte, D.; Guertin, K.; Hutchings, R.; Powell, N.; Jones, H.; Bohnert, T.; Peng, C.C.; Silvian, L.; Hong, V.S.; Little, K.; Banerjee, D.; Peng, L.; Taveras, A.; Viney, J.L.; Fontenot, J. Discovery of biaryl carboxylamides as potent RORγ inverse agonists. Bioorg. Med. Chem. Lett., 2015, 25(15), 2991-2997.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.026] [PMID: 26048806]
[26]
Wang, T.; Banerjee, D.; Bohnert, T.; Chao, J.; Enyedy, I.; Fontenot, J.; Guertin, K.; Jones, H.; Lin, E.Y.; Marcotte, D.; Talreja, T.; Van Vloten, K. Discovery of novel pyrazole-containing benzamides as potent RORγ inverse agonists. Bioorg. Med. Chem. Lett., 2015, 25(15), 2985-2990.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.028] [PMID: 26048789]
[27]
Strutzenberg, T.S.; Garcia-Ordonez, R.D.; Novick, S.J.; Park, H.; Chang, M.R.; Doebellin, C.; He, Y.; Patouret, R.; Kamenecka, T.M.; Griffin, P.R. HDX-MS reveals structural determinants for RORγ hyperactivation by synthetic agonists. eLife, 2019, 8, e47172.
[http://dx.doi.org/10.7554/eLife.47172] [PMID: 31172947]
[28]
Zhang, Y.; Wu, X.; Xue, X.; Li, C.; Wang, J.; Wang, R.; Zhang, C.; Wang, C.; Shi, Y.; Zou, L.; Li, Q.; Huang, Z.; Hao, X.; Loomes, K.; Wu, D.; Chen, H.W.; Xu, J.; Xu, Y. Discovery and characterization of XY101, a potent, selective, and orally bioavailable RORγ inverse agonist for treatment of castration-resistant prostate cancer. J. Med. Chem., 2019, 62(9), 4716-4730.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00327] [PMID: 30964293]
[29]
Gong, H.; Weinstein, D.S.; Lu, Z.; Duan, J.J.W.; Stachura, S.; Haque, L.; Karmakar, A.; Hemagiri, H.; Raut, D.K.; Gupta, A.K.; Khan, J.; Camac, D.; Sack, J.S.; Pudzianowski, A.; Wu, D.R.; Yarde, M.; Shen, D.R.; Borowski, V.; Xie, J.H.; Sun, H.; D’Arienzo, C.; Dabros, M.; Galella, M.A.; Wang, F.; Weigelt, C.A.; Zhao, Q.; Foster, W.; Somerville, J.E.; Salter-Cid, L.M.; Barrish, J.C.; Carter, P.H.; Dhar, T.G.M. Identification of bicyclic hexafluoroisopropyl alcohol sulfonamides as retinoic acid receptor-related orphan receptor gamma (RORγ/RORc) inverse agonists. Employing structure-based drug design to improve pregnane X receptor (PXR) selectivity. Bioorg. Med. Chem. Lett., 2018, 28(2), 85-93.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.006] [PMID: 29233651]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy