Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

The Angiotensin Type 1 Receptor: A Drug Target to Reduce the Risk of Organ Transplant Rejection

Author(s): Alireza Moslem, Mohsen Aliakbarian, Rozita Khodashahi, Mahmoud Tavakkoli, Gordon A. Ferns, Hoda Rahimi, Kiarash Ashrafzade and Mohammad-Hassan Arjmand*

Volume 21, Issue 13, 2024

Published on: 25 September, 2023

Page: [2537 - 2544] Pages: 8

DOI: 10.2174/1570180820666230915103737

Price: $65

Abstract

Allograft rejection is one of the main problems that must be overcome. Evidence suggests a role of the local renin-angiotensin system (RAS) in the progress of chronic allograft injury. Angiotensin II, generated by the renin-angiotensin system, is well-known as a major regulator molecule to control the blood pressure and fluid system. Evidence suggests that this bioactive molecule and its receptor increase the risk of tissue injuries and organ transplant rejection through different molecular mechanisms such as activation of innate and cellular immunity, upregulation of inflammatory pathways, and accumulation of extracellular matrix by expression pro-fibrotic molecules like transforming growth factor β (TGF-β) to increase the risk of fibrosis. Based on these findings, AT1R antagonists might have therapeutic potential to prevent the risk of tissue injuries and allograft rejection by regulating immune response, inflammation pathway, and fibrogenesis to improve organ functions.

Keywords: Organ transplant rejection, angiotensin II, angiotensin type 1-receptor, inflammation, fibrosis, pro-fibrotic molecules.

Graphical Abstract
[1]
Lechler, R.I.; Sykes, M.; Thomson, A.W.; Turka, L.A. Organ transplantation—how much of the promise has been realized? Nat. Med., 2005, 11(6), 605-613.
[http://dx.doi.org/10.1038/nm1251] [PMID: 15937473]
[2]
Ahmed, E.B.; Alegre, M.L.; Chong, A.S. Role of bacterial infections in allograft rejection. Expert Rev. Clin. Immunol., 2008, 4(2), 281-293.
[http://dx.doi.org/10.1586/1744666X.4.2.281] [PMID: 20477057]
[3]
Claeys, E.; Vermeire, K. Immunosuppressive drugs in organ transplantation to prevent allograft rejection: Mode of action and side effects. J Immunol Sci., 2019, 3(4), 14-21.
[4]
Spahn, J.H.; Li, W.; Kreisel, D. Innate immune cells in transplantation. Curr. Opin. Organ Transplant., 2014, 19(1), 14-19.
[http://dx.doi.org/10.1097/MOT.0000000000000041] [PMID: 24316757]
[5]
Torres, I.B.; Moreso, F.; Sarró, E.; Meseguer, A.; Serón, D. The interplay between inflammation and fibrosis in kidney transplantation. Biomed Res. Int., 2014, 2014, 750602.
[http://dx.doi.org/10.1155/2014/750602]
[6]
Viero, R.M.; da Silva, M.G.; dos Santos, D.C.; de Carvalho, M.F.C.; de Andrade, L.G.M. The role of renin–angiotensin system in the chronic allograft nephropathy: an immunohistochemical study. Ren. Fail., 2015, 37(5), 827-834.
[http://dx.doi.org/10.3109/0886022X.2015.1024563] [PMID: 25782922]
[7]
Hall, J.E.; Guyton, A.C.; Mizelle, H.L. Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. Acta Physiol. Scand. Suppl., 1990, 591, 48-62.
[PMID: 2220409]
[8]
Kurdi, M.; Mello, W.C.D.; Booz, G.W. Working outside the system: An update on the unconventional behavior of the renin–angiotensin system components. Int. J. Biochem. Cell Biol., 2005, 37(7), 1357-1367.
[http://dx.doi.org/10.1016/j.biocel.2005.01.012] [PMID: 15833268]
[9]
Kamo, T.; Akazawa, H.; Komuro, I. Pleiotropic effects of angiotensin II receptor signaling in cardiovascular homeostasis and aging. Int. Heart J., 2015, 56(3), 249-254.
[http://dx.doi.org/10.1536/ihj.14-429] [PMID: 25912907]
[10]
Reinsmoen, N.L. Role of angiotensin II type 1 receptor-activating antibodies in solid organ transplantation. Hum. Immunol., 2013, 74(11), 1474-1477.
[http://dx.doi.org/10.1016/j.humimm.2013.06.034] [PMID: 23831255]
[11]
Dikalova, A.; Clempus, R.; Lassègue, B.; Cheng, G.; McCoy, J.; Dikalov, S.; Martin, A.S.; Lyle, A.; Weber, D.S.; Weiss, D.; Taylor, W.R.; Schmidt, H.H.H.W.; Owens, G.K.; Lambeth, J.D.; Griendling, K.K. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation, 2005, 112(17), 2668-2676.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.538934] [PMID: 16230485]
[12]
Shabanian, S.; Khazaie, M.; Ferns, G.A.; Arjmand, M.H. Local renin-angiotensin system molecular mechanisms in intrauterine adhesions formation following gynecological operations, new strategy for novel treatment. J. Obstet. Gynaecol., 2022, 42(6), 1613-1618.
[http://dx.doi.org/10.1080/01443615.2022.2036972] [PMID: 35260037]
[13]
Tavakkoli, M.; Aali, S.; Khaledifar, B.; Ferns, G.A.; Khazaei, M.; Fekri, K.; Arjmand, M.H. The potential association between the risk of post-surgical adhesion and the activated local angiotensin II type 1 receptors: Need for novel treatment strategies. Gastrointest. Tumors, 2021, 8(3), 107-114.
[http://dx.doi.org/10.1159/000514614] [PMID: 34307308]
[14]
Geara, A.S.; Azzi, J.; Jurewicz, M.; Abdi, R. The renin-angiotensin system: an old, newly discovered player in immunoregulation. Transplant. Rev., 2009, 23(3), 151-158.
[http://dx.doi.org/10.1016/j.trre.2009.04.002] [PMID: 19539879]
[15]
Heinze, G.; Mitterbauer, C.; Regele, H.; Kramar, R.; Winkelmayer, W.C.; Curhan, G.C.; Oberbauer, R. Angiotensin-converting enzyme inhibitor or angiotensin II type 1 receptor antagonist therapy is associated with prolonged patient and graft survival after renal transplantation. J. Am. Soc. Nephrol., 2006, 17(3), 889-899.
[http://dx.doi.org/10.1681/ASN.2005090955] [PMID: 16481415]
[16]
Loganathan, L.; Gopinath, K.; Sankaranarayanan, V.M.; Kukreti, R.; Rajendran, K.; Lee, J-K. Computational and pharmacogenomic insights on hypertension treatment: Rational drug design and optimization strategies. Curr. Drug Targets., 2020, 21(1), 18-33.
[17]
Weir, M.R.; Bush, C.; Anderson, D.R.; Zhang, J.; Keefe, D. Antihypertensive efficacy, safety, and tolerability of the oral direct renin inhibitor aliskiren in patients with hypertension: A pooled analysis. J. Am. Soc. Hypertens., 2007, 1(4), 264-277.
[18]
Malik, S.; Suchal, K.; Gamad, N.; Dinda, A.K.; Arya, D.S. Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. Eur. J. Pharmacol., 2015, 748, 54-60.
[19]
Jacobs, J.D.; Wagner, T.; Gulotta, G.; Liao, C.; Li, Y.C. Bissonnette, M Impact of angiotensin II signaling blockade on clinical outcomes in patients with inflammatory bowel disease. Dig. Dis. Sci., 2019, 64, 1938-1944.
[http://dx.doi.org/10.1007/s10620-019-5474-4]
[20]
Paxton, W.G.; Runge, M.; Horaist, C.; Cohen, C.; Alexander, R.W. Immunohistochemical localization of rat angiotensin II AT1 receptor. Am. J. Physiol., 1993, 264(6), F989-F5.
[21]
Gu, L.; Zhu, Y.; Lee, M.; Nguyen, A.; Ryujin, N.T.; Huang, J. Angiotensin II receptor inhibition ameliorates liver fibrosis and enhances hepatocellular carcinoma infiltration by effector T cells. Proc. Natl. Acad. Sci., 2023, 120(19), e2300706120.
[http://dx.doi.org/10.1073/pnas.2300706120]
[22]
Mastoor, Z.; Diz-Chaves, Y.; González-Matías, L.C.; Mallo, F. Renin–angiotensin system in liver metabolism: Gender differences and role of incretins. Metabolites, 2022, 12(5), 411.
[http://dx.doi.org/10.3390/metabo12050411] [PMID: 35629915]
[23]
Rajapaksha, I. Liver fibrosis, liver cancer, and advances in therapeutic approaches. Livers, 2022, 2(4), 372-386.
[http://dx.doi.org/10.3390/livers2040028]
[24]
Leung, P. The peptide hormone angiotensin II: Its new functions in tissues and organs. Curr. Protein Pept. Sci., 2004, 5(4), 267-273.
[http://dx.doi.org/10.2174/1389203043379693] [PMID: 15320733]
[25]
Bataller, R.; Sancho-bru, P.; Ginès, P.; Lora, J.M.; Al-garawi, A.; Solé, M.; Colmenero, J.; Nicolás, J.M.; Jiménez, W.; Weich, N.; Gutiérrez-ramos, J.; Arroyo, V.; Rodés, J. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology, 2003, 125(1), 117-125.
[http://dx.doi.org/10.1016/S0016-5085(03)00695-4] [PMID: 12851877]
[26]
Lubel, J.S.; Herath, C.B.; Burrell, L.M.; Angus, P.W. Liver disease and the renin-angiotensin system: Recent discoveries and clinical implications. J. Gastroenterol. Hepatol., 2008, 23(9), 1327-1338.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05461.x] [PMID: 18557800]
[27]
Lin, H.; Geurts, F.; Hassler, L.; Batlle, D.; Mirabito Colafella, K.M.; Denton, K.M.; Zhuo, J.L.; Li, X.C.; Ramkumar, N.; Koizumi, M.; Matsusaka, T.; Nishiyama, A.; Hoogduijn, M.J.; Hoorn, E.J.; Danser, A.H.J. Kidney angiotensin in cardiovascular disease: Formation and drug targeting. Pharmacol. Rev., 2022, 74(3), 462-505.
[http://dx.doi.org/10.1124/pharmrev.120.000236] [PMID: 35710133]
[28]
Suzuki, Y.; Ruiz-Ortega, M.; Gomez-Guerrero, C.; Tomino, Y.; Egido, J. Angiotensin II, the immune system and renal diseases: Another road for RAS? Nephrol. Dial. Transplant., 2003, 18(8), 1423-1426.
[http://dx.doi.org/10.1093/ndt/gfg223] [PMID: 12897073]
[29]
Suzuki, Y.; Ruiz-Ortega, M.; Lorenzo, O.; Ruperez, M.; Esteban, V.; Egido, J. Inflammation and angiotensin II. Int. J. Biochem. Cell Biol., 2003, 35(6), 881-900.
[http://dx.doi.org/10.1016/S1357-2725(02)00271-6] [PMID: 12676174]
[30]
Ruiz-Ortega, M.; Ruperez, M.; Lorenzo, O.; Esteban, V.; Blanco, J.; Mezzano, S.; Egido, J. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int., 2002, 62(82), S12-S22.
[http://dx.doi.org/10.1046/j.1523-1755.62.s82.4.x] [PMID: 12410849]
[31]
Suzuki, Y.; Gómez-Guerrero, C.; Shirato, I.; López-Franco, O.; Hernández-Vargas, P.; Sanjuán, G.; Ruiz-Ortega, M.; Sugaya, T.; Okumura, K.; Tomino, Y.; Ra, C.; Egido, J. Susceptibility to T cell-mediated injury in immune complex disease is linked to local activation of renin-angiotensin system: The role of NF-AT pathway. J. Immunol., 2002, 169(8), 4136-4146.
[http://dx.doi.org/10.4049/jimmunol.169.8.4136] [PMID: 12370342]
[32]
Karimi, F; Maleki, M; Nematbakhsh, M View of the reninangiotensin system in acute kidney injury induced by renal ischemia-reperfusion injury. J Renin Angiotensin Aldosterone Syst., 2022, 2022
[http://dx.doi.org/10.1155/2022/9800838]
[33]
Nahmod, K.A.; Vermeulen, M.E.; Radien, S.; Salamone, G.; Gamberale, R.; Fernández-Calotti, P.; Alvarez, A.; Nahmod, V.; Giordano, M.; Geffner, J.R. Control of dendritic cell differentiation by angiotensin II. FASEB J., 2003, 17(3), 1-19.
[http://dx.doi.org/10.1096/fj.02-0755fje] [PMID: 12514109]
[34]
Rodríguez-Iturbe, B.; Pons, H.; Herrera-Acosta, J.; Johnson, R.J. Role of immunocompetent cells in nonimmune renal diseases. Kidney Int., 2001, 59(5), 1626-1640.
[http://dx.doi.org/10.1046/j.1523-1755.2001.0590051626.x] [PMID: 11318933]
[35]
Mezzano, S.A.; Ruiz-Ortega, M.; Egido, J. Angiotensin II and renal fibrosis. Hypertension, 2001, 38(3), 635-638.
[http://dx.doi.org/10.1161/hy09t1.094234] [PMID: 11566946]
[36]
Nazari, S.E.; Naimi, H.; Sayyed-Hosseinian, S.H.; Vahedi, E.; Daghiani, M.; Asgharzadeh, F.; Askarnia-Faal, M.M.; Avan, A.; Khazaei, M.; Hassanian, S.M. Effect of angiotensin II pathway inhibitors on post-surgical adhesion band formation: A potential repurposing of old drugs. Injury, 2022, 53(11), 3642-3649.
[http://dx.doi.org/10.1016/j.injury.2022.08.046] [PMID: 36045032]
[37]
Capolongo, G.; Capasso, G.; Viggiano, D. A shared nephroprotective mechanism for renin-angiotensin-system inhibitors, sodium-glucose co-transporter 2 inhibitors, and vasopressin receptor antagonists: Immunology meets hemodynamics. Int. J. Mol. Sci., 2022, 23(7), 3915.
[http://dx.doi.org/10.3390/ijms23073915] [PMID: 35409276]
[38]
Weinstock, J.V.; Kassab, J. Chemotactic response of splenic mononuclear cells to angiotensin II in murine schistosomiasis. J. Immunol., 1986, 137(6), 2020-2024.
[http://dx.doi.org/10.4049/jimmunol.137.6.2020] [PMID: 3091696]
[39]
Suzuki, Y.; Lopez-Franco, O.; Gomez-Garre, D.; Tejera, N.; Gomez-Guerrero, C.; Sugaya, T.; Bernal, R.; Blanco, J.; Ortega, L.; Egido, J. Renal tubulointerstitial damage caused by persistent proteinuria is attenuated in AT1-deficient mice: Role of endothelin-1. Am. J. Pathol., 2001, 159(5), 1895-1904.
[http://dx.doi.org/10.1016/S0002-9440(10)63036-2] [PMID: 11696450]
[40]
Johnson, R.J.; Herrera-Acosta, J.; Schreiner, G.F.; Rodríguez-Iturbe, B. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N. Engl. J. Med., 2002, 346(12), 913-923.
[http://dx.doi.org/10.1056/NEJMra011078] [PMID: 11907292]
[41]
Hisada, Y.; Sugaya, T.; Tanaka, S.; Suzuki, Y.; Ra, C.; Kimura, K.; Fukamizu, A. An essential role of angiotensin II receptor type 1a in recipient kidney, not in transplanted peripheral blood leukocytes, in progressive immune-mediated renal injury. Lab. Invest., 2001, 81(9), 1243-1251.
[http://dx.doi.org/10.1038/labinvest.3780338] [PMID: 11555672]
[42]
Emdin, M.; Fatini, C.; Mirizzi, G.; Poletti, R.; Borrelli, C.; Prontera, C.; Latini, R.; Passino, C.; Clerico, A.; Vergaro, G. Biomarkers of activation of renin-angiotensin-aldosterone system in heart failure: how useful, how feasible? Clin. Chim. Acta, 2015, 443, 85-93.
[http://dx.doi.org/10.1016/j.cca.2014.10.031] [PMID: 25445411]
[43]
Okunuki, Y.; Usui, Y.; Nagai, N.; Kezuka, T.; Ishida, S.; Takeuchi, M.; Goto, H. Suppression of experimental autoimmune uveitis by angiotensin II type 1 receptor blocker telmisartan. Invest. Ophthalmol. Vis. Sci., 2009, 50(5), 2255-2261.
[http://dx.doi.org/10.1167/iovs.08-2649] [PMID: 19136706]
[44]
Crowley, S.D.; Vasievich, M.P.; Ruiz, P.; Gould, S.K.; Parsons, K.K.; Pazmino, A.K.; Facemire, C.; Chen, B.J.; Kim, H.S.; Tran, T.T.; Pisetsky, D.S.; Barisoni, L.; Prieto-Carrasquero, M.C.; Jeansson, M.; Foster, M.H.; Coffman, T.M. Glomerular type 1 angiotensin receptors augment kidney injury and inflammation in murine autoimmune nephritis. J. Clin. Invest., 2009, 119(4), 943-953.
[http://dx.doi.org/10.1172/JCI34862] [PMID: 19287096]
[45]
Warner, F.J.; Lubel, J.S.; McCaughan, G.W.; Angus, P.W. Liver fibrosis: A balance of ACEs? Clin. Sci., 2007, 113(3), 109-118.
[http://dx.doi.org/10.1042/CS20070026] [PMID: 17600527]
[46]
Dechend, R.; Dragun, D.; Herse, F.; Riemekasten, G.; Schulze-Forster, K.; Müller, D.N. Activating autoantibodies against the AT1-receptor in vascular disease. Transplantationsmedizin., 2012, 24(1), 20-26.
[47]
Neishabouri, A.; Soltani Khaboushan, A.; Daghigh, F.; Kajbafzadeh, A.M.; Majidi Zolbin, M. Decellularization in tissue engineering and regenerative medicine: Evaluation, modification, and application methods. Front. Bioeng. Biotechnol., 2022, 10, 805299.
[http://dx.doi.org/10.3389/fbioe.2022.805299] [PMID: 35547166]
[48]
Yamamoto, S.; Yamamoto, S.; Akai, T.; Sasahara, M.; Kuroda, S. Differentiation of fibroblasts into myofibroblasts in the arachnoid membrane of moyamoya disease. Stroke, 2022, 53(11), 3465-3473.
[http://dx.doi.org/10.1161/STROKEAHA.122.039961] [PMID: 36039752]
[49]
Rieder, F.; Fiocchi, C. Intestinal fibrosis in inflammatory bowel disease: Progress in basic and clinical science. Curr. Opin. Gastroenterol., 2008, 24(4), 462-468.
[http://dx.doi.org/10.1097/MOG.0b013e3282ff8b36] [PMID: 18622160]
[50]
Radwanska, A.; Cottage, C.T.; Piras, A.; Overed-Sayer, C.; Sihlbom, C.; Budida, R.; Wrench, C.; Connor, J.; Monkley, S.; Hazon, P.; Schluter, H.; Thomas, M.J.; Hogaboam, C.M.; Murray, L.A. Increased expression and accumulation of GDF15 in IPF extracellular matrix contribute to fibrosis. JCI Insight, 2022, 7(16), e153058.
[http://dx.doi.org/10.1172/jci.insight.153058] [PMID: 35993367]
[51]
Zhang, Y.; Feng, W.; Peng, X.; Zhu, L.; Wang, Z.; Shen, H.; Chen, C.; Xiao, L.; Li, S.; Zhao, Y.; Lin, M.; Huang, Y.; Long, H.; Liang, J. Parthenolide alleviates peritoneal fibrosis by inhibiting inflammation via the NF-κB/TGF-β/Smad signaling axis. Lab. Invest., 2022, 102(12), 1346-1354.
[http://dx.doi.org/10.1038/s41374-022-00834-3]
[52]
Wang, R.; Guo, T.; Li, J. Mechanisms of peritoneal mesothelial cells in peritoneal adhesion. Biomolecules, 2022, 12(10), 1498.
[http://dx.doi.org/10.3390/biom12101498] [PMID: 36291710]
[53]
Zuñiga-Aguilar, E.; Ramírez-Fernández, O. Fibrosis and hepatic regeneration mechanism. Transl. Gastroenterol. Hepatol., 2022, 7, 9.
[http://dx.doi.org/10.21037/tgh.2020.02.21] [PMID: 35243118]
[54]
Cobb, M.S.; Tao, S.; Shortt, K.; Girgis, M.; Hauptman, J.; Schriewer, J.; Chin, Z.; Dorfman, E.; Campbell, K.; Heruth, D.P.; Shohet, R.V.; Dawn, B.; Konorev, E.A. Smad3 promotes adverse cardiovascular remodeling and dysfunction in doxorubicin-treated hearts. Am. J. Physiol. Heart Circ. Physiol., 2022, 323(6), H1091-H1107.
[http://dx.doi.org/10.1152/ajpheart.00312.2022] [PMID: 36269647]
[55]
Yoshida, K.; Matsuzaki, K.; Mori, S.; Tahashi, Y.; Yamagata, H.; Furukawa, F.; Seki, T.; Nishizawa, M.; Fujisawa, J.; Okazaki, K. Transforming growth factor-β and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am. J. Pathol., 2005, 166(4), 1029-1039.
[http://dx.doi.org/10.1016/S0002-9440(10)62324-3] [PMID: 15793284]
[56]
Murphy, A.M.; Wong, A.L.; Bezuhly, M. Modulation of angiotensin II signaling in the prevention of fibrosis. Fibrogenesis Tissue Repair, 2015, 8(1), 7.
[http://dx.doi.org/10.1186/s13069-015-0023-z] [PMID: 25949522]
[57]
Nangaku, M.; Fujita, T. Activation of the renin-angiotensin system and chronic hypoxia of the kidney. Hypertens. Res., 2008, 31(2), 175-184.
[http://dx.doi.org/10.1291/hypres.31.175] [PMID: 18360035]
[58]
Higgins, D.F.; Kimura, K.; Bernhardt, W.M.; Shrimanker, N.; Akai, Y.; Hohenstein, B.; Saito, Y.; Johnson, R.S.; Kretzler, M.; Cohen, C.D.; Eckardt, K.U.; Iwano, M.; Haase, V.H. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest., 2007, 117(12), 3810-3820.
[http://dx.doi.org/10.1172/JCI30487] [PMID: 18037992]
[59]
Afroze, S.H.; Munshi, M.K.; Martínez, A.K.; Uddin, M.; Gergely, M.; Szynkarski, C.; Guerrier, M.; Nizamutdinov, D.; Dostal, D.; Glaser, S. Activation of the renin-angiotensin system stimulates biliary hyperplasia during cholestasis induced by extrahepatic bile duct ligation. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 308(8), G691-G701.
[http://dx.doi.org/10.1152/ajpgi.00116.2014] [PMID: 25678505]
[60]
Czechowska, G.; Celinski, K.; Korolczuk, A.; Wojcicka, G.; Dudka, J.; Bojarska, A.; Madro, A.; Brzozowski, T. The effect of the angiotensin II receptor, type 1 receptor antagonists, losartan and telmisartan, on thioacetamide-induced liver fibrosis in rats. J. Physiol. Pharmacol., 2016, 67(4), 575-586.
[PMID: 27779478]
[61]
Dragun, D.; Müller, D.N.; Bräsen, J.H.; Fritsche, L.; Nieminen-Kelhä, M.; Dechend, R.; Kintscher, U.; Rudolph, B.; Hoebeke, J.; Eckert, D.; Mazak, I.; Plehm, R.; Schönemann, C.; Unger, T.; Budde, K.; Neumayer, H.H.; Luft, F.C.; Wallukat, G. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N. Engl. J. Med., 2005, 352(6), 558-569.
[http://dx.doi.org/10.1056/NEJMoa035717] [PMID: 15703421]
[62]
Benigni, A.; Morigi, M.; Remuzzi, G. Kidney regeneration. Lancet, 2010, 375(9722), 1310-1317.
[http://dx.doi.org/10.1016/S0140-6736(10)60237-1] [PMID: 20382327]
[63]
Perry, M.E.; Chee, M.M.; Ferrell, W.R.; Lockhart, J.C.; Sturrock, R.D. Angiotensin receptor blockers reduce erythrocyte sedimentation rate levels in patients with rheumatoid arthritis. Ann. Rheum. Dis., 2008, 67(11), 1646-1647.
[http://dx.doi.org/10.1136/ard.2007.082917] [PMID: 18854516]
[64]
Shokrian Zeini, M.; Haddadi, N.S.; Shayan, M.; Shokrian Zeini, M.; Kazemi, K.; Solaimanian, S.; Abdollahifar, M.A.; Hedayatyanfard, K.; Dehpour, A.R. Losartan ointment attenuates imiquimod-induced psoriasis-like inflammation. Int. Immunopharmacol., 2021, 100, 108160.
[http://dx.doi.org/10.1016/j.intimp.2021.108160] [PMID: 34583123]
[65]
Maeda, A.; Okazaki, T.; Inoue, M.; Kitazono, T.; Yamasaki, M.; Lemonnier, F.A.; Ozaki, S. Immunosuppressive effect of angiotensin receptor blocker on stimulation of mice CTLs by angiotensin II. Int. Immunopharmacol., 2009, 9(10), 1183-1188.
[http://dx.doi.org/10.1016/j.intimp.2009.06.006] [PMID: 19540938]
[66]
Platten, M.; Youssef, S.; Hur, E.M.; Ho, P.P.; Han, M.H.; Lanz, T.V.; Phillips, L.K.; Goldstein, M.J.; Bhat, R.; Raine, C.S.; Sobel, R.A.; Steinman, L. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc. Natl. Acad. Sci., 2009, 106(35), 14948-14953.
[http://dx.doi.org/10.1073/pnas.0903958106] [PMID: 19706421]
[67]
Arjmand, M-H.; Zahedi-Avval, F.; Barneh, F.; Mousavi, S.H.; Asgharzadeh, F.; Hashemzehi, M. Intraperitoneal administration of telmisartan prevents postsurgical adhesion band formation. J. Surg. Res., 2020, 248, 171-181.
[68]
Guerra, G.C.; Araújo, A.A.; Lira, G.A.; Melo, M.N.; Souto, K.K.; Fernandes, D. Telmisartan decreases inflammation by modulating TNF-α, IL-10, and RANK/RANKL in a rat model of ulcerative colitis. Pharmacol. Rep., 2015, 67, 520-526.
[69]
An, J.; Nakajima, T.; Kuba, K.; Kimura, AJHR Losartan inhibits LPS-induced inflammatory signaling through a PPARγ-dependent mechanism in human THP-1 macrophages. Hypertens. Res., 2010, 33(8), 831-835.
[http://dx.doi.org/10.1038/hr.2010.79]
[70]
Opelz, G. Treatment of kidney transplant recipients with ACEi/ARB and risk of respiratory tract cancer: A collaborative transplant study report. Am. J. Transplant., 2011, 11(11), 2483-2489.
[71]
Goldstein, M.R.; Mascitelli, L. Angiotensin-receptor blockade, cancer, and concerns. Lancet Oncol., 2010, 11(9), 817-818.
[72]
Thilly, N.; Bayat, S.; Alla, F.; Kessler, M.; Briançon, S. Determinants and patterns of renin–angiotensin system inhibitors’ prescription in the first year following kidney transplantation. Clin. Transplant., 2008, 22(4), 439-446.
[73]
Renoprotective effect of early inhibition of the renin-angiotensin system in renal transplant recipients. In: Montanaro, D.; Gropuzzo, M.; Tulissi, P.; Vallone, C.; Boscutti, G.; Mioni, R., Eds.; Transplantation Proceedings; Elsevier, 2005.

© 2024 Bentham Science Publishers | Privacy Policy