Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

State-of-the-art Review on the Antiparasitic Activity of Benzimidazolebased Derivatives: Facing Malaria, Leishmaniasis, and Trypanosomiasis

Author(s): Valeria Francesconi, Marco Rizzo, Silvia Schenone, Anna Carbone* and Michele Tonelli*

Volume 31, Issue 15, 2024

Published on: 21 September, 2023

Page: [1955 - 1982] Pages: 28

DOI: 10.2174/0929867331666230915093928

open access plus

Open Access Journals Promotions 2
Abstract

Protozoan parasites represent a significant risk for public health worldwide, afflicting particularly people in more vulnerable categories and cause large morbidity and heavy economic impact. Traditional drugs are limited by their toxicity, low efficacy, route of administration, and cost, reflecting their low priority in global health management. Moreover, the drug resistance phenomenon threatens the positive therapy outcome. This scenario claims the need of addressing more adequate therapies. Among the diverse strategies implemented, the medicinal chemistry efforts have also focused their attention on the benzimidazole nucleus as a promising pharmacophore for the generation of new drug candidates. Hence, the present review provides a global insight into recent progress in benzimidazole-based derivatives drug discovery against important protozoan diseases, such as malaria, leishmaniasis and trypanosomiasis. The more relevant chemical features and structure-activity relationship studies of these molecules are discussed for the purpose of paving the way towards the development of more viable drugs for the treatment of these parasitic infections.

Keywords: Protozoan infections, antiprotozoal agents, benzimidazole-based derivatives, antimalarial compounds, antileishmanial compounds, antitrypanosomal compounds.

Next »
[1]
Pereira, M.A.; Santos-Gomes, G. Parasitic infection and immunity: A special biomedicines issue. Biomedicines, 2022, 10(10), 2547.
[http://dx.doi.org/10.3390/biomedicines10102547] [PMID: 36289809]
[2]
Why do neglected tropical diseases suffer low priority? Available from: https://www.afro.who.int/news/why-do-neglected-tropical-diseases-suffer-low-priority (Accessed May 1, 2023).
[4]
Nadeem, A.Y.; Shehzad, A.; Islam, S.U.; Al-Suhaimi, E.A.; Lee, Y.S. Mosquirix™ RTS, S/AS01 vaccine development, immunogenicity, and efficacy. Vaccines, 2022, 10(5), 713.
[http://dx.doi.org/10.3390/vaccines10050713] [PMID: 35632469]
[5]
Chandley, P.; Ranjan, R.; Kumar, S.; Rohatgi, S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front. Immunol., 2023, 13, 1091961.
[http://dx.doi.org/10.3389/fimmu.2022.1091961] [PMID: 36685595]
[6]
Capela, R.; Moreira, R.; Lopes, F. An overview of drug resistance in protozoal diseases. Int. J. Mol. Sci., 2019, 20(22), 5748.
[http://dx.doi.org/10.3390/ijms20225748] [PMID: 31731801]
[7]
World malaria report. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (Accessed Jan 7, 2023).
[8]
Zanghi, G.; Vaughan, A.M. Plasmodium vivax pre-erythrocytic stages and the latent hypnozoite. Parasitol. Int., 2021, 85, 102447.
[http://dx.doi.org/10.1016/j.parint.2021.102447] [PMID: 34474178]
[9]
Belete, T.M. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des. Devel. Ther., 2020, 14, 3875-3889.
[http://dx.doi.org/10.2147/DDDT.S265602] [PMID: 33061294]
[10]
Plewes, K.; Leopold, S.J.; Kingston, H.W.F.; Dondorp, A.M. Malaria. Infect. Dis. Clin. North Am., 2019, 33(1), 39-60.
[http://dx.doi.org/10.1016/j.idc.2018.10.002] [PMID: 30712767]
[11]
Nsanzabana, C. Resistance to artemisinin combination therapies (ACTs): Do not forget the partner drug! Trop. Med. Infect. Dis., 2019, 4(1), 26.
[http://dx.doi.org/10.3390/tropicalmed4010026] [PMID: 30717149]
[12]
Jones, R.A.; Panda, S.S.; Hall, C.D. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem., 2015, 97, 335-355.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.002] [PMID: 25683799]
[13]
Tibon, N.S.; Ng, C.H.; Cheong, S.L. Current progress in antimalarial pharmacotherapy and multi-target drug discovery. Eur. J. Med. Chem., 2020, 188, 111983.
[http://dx.doi.org/10.1016/j.ejmech.2019.111983] [PMID: 31911292]
[14]
Kamchonwongpaisan, S.; Charoensetakul, N.; Srisuwannaket, C.; Taweechai, S.; Rattanajak, R.; Vanichtanankul, J.; Vitsupakorn, D.; Arwon, U.; Thongpanchang, C.; Tarnchompoo, B.; Vilaivan, T.; Yuthavong, Y. Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities. Eur. J. Med. Chem., 2020, 195, 112263.
[http://dx.doi.org/10.1016/j.ejmech.2020.112263] [PMID: 32294614]
[15]
Blasco, B.; Leroy, D.; Fidock, D.A. Antimalarial drug resistance: Linking Plasmodium falciparum parasite biology to the clinic. Nat. Med., 2017, 23(8), 917-928.
[http://dx.doi.org/10.1038/nm.4381] [PMID: 28777791]
[16]
Antonovics, J. Transmission dynamics: Critical questions and challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1719), 20160087.
[http://dx.doi.org/10.1098/rstb.2016.0087] [PMID: 28289255]
[17]
Neglected tropical diseases - GLOBAL. Available from: https://www.who.int/health-topics/neglected-tropical-diseases (Accessed May 1, 2023).
[18]
Leishmaniasis. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (Accessed May 1, 2023).
[19]
Liu, D.; Uzonna, J.E. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Front. Cell. Infect. Microbiol., 2012, 2, 83.
[http://dx.doi.org/10.3389/fcimb.2012.00083] [PMID: 22919674]
[20]
Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A review of leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep., 2021, 8(2), 121-132.
[http://dx.doi.org/10.1007/s40475-021-00232-7] [PMID: 33747716]
[21]
Kaye, P.M.; Mohan, S.; Mantel, C.; Malhame, M.; Revill, P.; Le Rutte, E.; Parkash, V.; Layton, A.M.; Lacey, C.J.N.; Malvolti, S. Overcoming roadblocks in the development of vaccines for leishmaniasis. Expert Rev. Vaccines, 2021, 20(11), 1419-1430.
[http://dx.doi.org/10.1080/14760584.2021.1990043] [PMID: 34727814]
[22]
Morales-Yuste, M.; Martín-Sánchez, J.; Corpas-Lopez, V. Canine leishmaniasis: Update on epidemiology, diagnosis, treatment, and prevention. Vet. Sci., 2022, 9(8), 387.
[http://dx.doi.org/10.3390/vetsci9080387] [PMID: 36006301]
[23]
Rao, S.P.S.; Barrett, M.P.; Dranoff, G.; Faraday, C.J.; Gimpelewicz, C.R.; Hailu, A.; Jones, C.L.; Kelly, J.M.; Lazdins-Helds, J.K.; Mäser, P.; Mengel, J.; Mottram, J.C.; Mowbray, C.E.; Sacks, D.L.; Scott, P.; Späth, G.F.; Tarleton, R.L.; Spector, J.M.; Diagana, T.T. Drug discovery for kinetoplastid diseases: Future directions. ACS Infect. Dis., 2019, 5(2), 152-157.
[http://dx.doi.org/10.1021/acsinfecdis.8b00298] [PMID: 30543391]
[24]
Katsuno, K.; Burrows, J.N.; Duncan, K.; van Huijsduijnen, R.H.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov., 2015, 14(11), 751-758.
[http://dx.doi.org/10.1038/nrd4683] [PMID: 26435527]
[25]
Trypanosomiasis, human African (sleeping sickness). Available from: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (Accessed May 1, 2023).
[26]
Lindner, A.K.; Lejon, V.; Chappuis, F.; Seixas, J.; Kazumba, L.; Barrett, M.P.; Mwamba, E.; Erphas, O.; Akl, E.A.; Villanueva, G.; Bergman, H.; Simarro, P.; Kadima Ebeja, A.; Priotto, G.; Franco, J.R. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: Substantial changes for clinical practice. Lancet Infect. Dis., 2020, 20(2), e38-e46.
[http://dx.doi.org/10.1016/S1473-3099(19)30612-7] [PMID: 31879061]
[27]
[28]
da Costa, K.M.; Valente, R.C.; Fonseca, L.M.; Freire-de-Lima, L.; Previato, J.O.; Mendonça-Previato, L. The history of the abc proteins in human trypanosomiasis pathogens. Pathogens, 2022, 11(9), 988.
[http://dx.doi.org/10.3390/pathogens11090988] [PMID: 36145420]
[29]
Sandes, J.M.; de Figueiredo, R.C.B.Q. The endoplasmic reticulum of trypanosomatids: An unrevealed road for chemotherapy. Front. Cell. Infect., 2022, 12.
[30]
Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem., 2019, 13(1), 101.
[http://dx.doi.org/10.1186/s13065-019-0625-4] [PMID: 31410412]
[31]
Ajani, O.O.; Aderohunmu, D.V.; Ikpo, C.O.; Adedapo, A.E.; Olanrewaju, I.O. Functionalized benzimidazole scaffolds: Privileged heterocycle for drug design in therapeutic medicine. Arch. Pharm., 2016, 349(7), 475-506.
[http://dx.doi.org/10.1002/ardp.201500464] [PMID: 27213292]
[32]
Choudhary, S.; Arora, M.; Verma, H.; Kumar, M.; Silakari, O. Benzimidazole based hybrids against complex diseases: A catalogue of the SAR profile. Eur. J. Pharmacol., 2021, 899, 174027.
[http://dx.doi.org/10.1016/j.ejphar.2021.174027] [PMID: 33731294]
[33]
Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[34]
Alzhrani, Z.M.M.; Alam, M.M.; Nazreen, S. Recent advancements on benzimidazole: A versatile scaffold in medicinal chemistry. Mini Rev. Med. Chem., 2022, 22(2), 365-386.
[http://dx.doi.org/10.2174/1389557521666210331163810] [PMID: 33797365]
[35]
Akhtar, W.; Khan, M.F.; Verma, G.; Shaquiquzzaman, M.; Rizvi, M.A.; Mehdi, S.H.; Akhter, M.; Alam, M.M. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem., 2017, 126, 705-753.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.010] [PMID: 27951484]
[36]
Ebenezer, O.; Jordaan, M.A.; Carena, G.; Bono, T.; Shapi, M.; Tuszynski, J.A. An overview of the biological evaluation of selected nitrogen-containing heterocycle medicinal chemistry compounds. Int. J. Mol. Sci., 2022, 23(15), 8117.
[http://dx.doi.org/10.3390/ijms23158117] [PMID: 35897691]
[37]
Cichero, E.; Calautti, A.; Francesconi, V.; Tonelli, M.; Schenone, S.; Fossa, P. Probing in silico the benzimidazole privileged scaffold for the development of drug-like anti-rsv agents. Pharmaceuticals, 2021, 14(12), 1307.
[http://dx.doi.org/10.3390/ph14121307] [PMID: 34959708]
[38]
Barrett, M.P.; Gemmell, C.G.; Suckling, C.J. Minor groove binders as anti-infective agents. Pharmacol. Ther., 2013, 139(1), 12-23.
[http://dx.doi.org/10.1016/j.pharmthera.2013.03.002] [PMID: 23507040]
[39]
Dardonville, C.; Nue Martinez, J.J. Bis(2-aminoimida- zolines) and bisguanidines: Synthetic approaches, antiparasitic activity and DNA binding properties. Curr. Med. Chem., 2017, 24(33), 3606-3632.
[http://dx.doi.org/10.2174/0929867324666170623091522] [PMID: 28641558]
[40]
Hamilton, W.L.; Claessens, A.; Otto, T.D.; Kekre, M.; Fairhurst, R.M.; Rayner, J.C.; Kwiatkowski, D. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res., 2017, 45(4), 1889-1901.
[PMID: 27994033]
[41]
Wilson, W.D.; Tanious, F.A.; Mathis, A.; Tevis, D.; Hall, J.E.; Boykin, D.W. Antiparasitic compounds that target DNA. Biochimie, 2008, 90(7), 999-1014.
[http://dx.doi.org/10.1016/j.biochi.2008.02.017] [PMID: 18343228]
[42]
Boschi, D.; Pippione, A.C.; Sainas, S.; Lolli, M.L. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur. J. Med. Chem., 2019, 183, 111681.
[http://dx.doi.org/10.1016/j.ejmech.2019.111681] [PMID: 31557612]
[43]
Phillips, M.A.; Rathod, P.K. Plasmodium dihydroorotate dehydrogenase: A promising target for novel anti-malarial chemotherapy. Infect. Disord. Drug Targets, 2010, 10(3), 226-239.
[http://dx.doi.org/10.2174/187152610791163336] [PMID: 20334617]
[44]
Fernandes, P.; Loubens, M.; Le Borgne, R.; Marinach, C.; Ardin, B.; Briquet, S.; Vincensini, L.; Hamada, S.; Hoareau-Coudert, B.; Verbavatz, J.M.; Weiner, A.; Silvie, O. The AMA1-RON complex drives Plasmodium sporozoite invasion in the mosquito and mammalian hosts. PLoS Pathog., 2022, 18(6), e1010643.
[http://dx.doi.org/10.1371/journal.ppat.1010643] [PMID: 35731833]
[45]
Devine, S.M.; MacRaild, C.A.; Norton, R.S.; Scammells, P.J. Antimalarial drug discovery targeting apical membrane antigen 1. MedChemComm, 2017, 8(1), 13-20.
[http://dx.doi.org/10.1039/C6MD00495D] [PMID: 30108688]
[46]
Drew, D.R.; Wilson, D.W.; Elliott, S.R.; Cross, N.; Terheggen, U.; Hodder, A.N.; Siba, P.M.; Chelimo, K.; Dent, A.E.; Kazura, J.W.; Mueller, I.; Beeson, J.G. A novel approach to identifying patterns of human invasion-inhibitory antibodies guides the design of malaria vaccines incorporating polymorphic antigens. BMC Med., 2016, 14(1), 144.
[http://dx.doi.org/10.1186/s12916-016-0691-6] [PMID: 27658419]
[47]
Lee, S.K.; Low, L.M.; Andersen, J.F.; Yeoh, L.M.; Valenzuela Leon, P.C.; Drew, D.R.; Doehl, J.S.P.; Calvo, E.; Miller, L.H.; Beeson, J.G.; Gunalan, K. The direct binding of Plasmodium vivax AMA1 to erythrocytes defines a RON2-independent invasion pathway. Proc. Natl. Acad. Sci., 2023, 120(1), e2215003120.
[http://dx.doi.org/10.1073/pnas.2215003120] [PMID: 36577076]
[48]
de Villiers, K.A.; Egan, T.J. Heme detoxification in the malaria parasite: A target for antimalarial drug development. Acc. Chem. Res., 2021, 54(11), 2649-2659.
[http://dx.doi.org/10.1021/acs.accounts.1c00154] [PMID: 33982570]
[49]
Quadros, H.C.; Silva, M.C.B.; Moreira, D.R.M. The role of the iron protoporphyrins heme and hematin in the antimalarial activity of endoperoxide drugs. Pharmaceuticals, 2022, 15(1), 60.
[http://dx.doi.org/10.3390/ph15010060] [PMID: 35056117]
[50]
Dvorin, J.D.; Goldberg, D.E. Plasmodium egress across the parasite life cycle. Annu. Rev. Microbiol., 2022, 76(1), 67-90.
[http://dx.doi.org/10.1146/annurev-micro-041320-020659] [PMID: 35417197]
[51]
Tan, M.S.Y.; Blackman, M.J. Malaria parasite egress at a glance. J. Cell Sci., 2021, 134(5), jcs257345.
[http://dx.doi.org/10.1242/jcs.257345] [PMID: 33686010]
[52]
Ramaprasad, A.; Burda, P-C.; Koussis, K.; Thomas, J.; Pietsch, E.; Calvani, E.; Howell, S.; MacRae, J.; Snijders, A.; Gilberger, T-W.; Blackman, M. A malaria parasite phospholipase facilitates efficient asexual blood stage egres. bioRxiv, 2023, 532312.
[53]
Cavalcanti, D.P.; de Souza, W. The kinetoplast of trypanosomatids: From early studies of electron microscopy to recent advances in atomic force microscopy. Scanning, 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/9603051] [PMID: 30018700]
[54]
Menna-Barreto, R.F.S.; de Castro, S.L. The double-edged sword in pathogenic trypanosomatids: The pivotal role of mitochondria in oxidative stress and bioenergetics. BioMed Res. Int., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/614014] [PMID: 24800243]
[55]
Tomás, A.M.; Castro, H. Redox metabolism in mitochondria of trypanosomatids. Antioxid. Redox Signal., 2013, 19(7), 696-707.
[http://dx.doi.org/10.1089/ars.2012.4948] [PMID: 23025438]
[56]
Irigoín, F.; Cibils, L.; Comini, M.A.; Wilkinson, S.R.; Flohé, L.; Radi, R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic. Biol. Med., 2008, 45(6), 733-742.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.028] [PMID: 18588970]
[57]
Stoll, V.S.; Simpson, S.J.; Krauth-Siegel, R.L.; Walsh, C.T.; Pai, E.F. Glutathione reductase turned into trypanothione reductase: Structural analysis of an engineered change in substrate specificity. Biochemistry, 1997, 36(21), 6437-6447.
[http://dx.doi.org/10.1021/bi963074p] [PMID: 9174360]
[58]
Krieger, S.; Schwarz, W.; Ariyanayagam, M.R.; Fairlamb, A.H.; Krauth-Siegel, R.L.; Clayton, C. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol. Microbiol., 2000, 35(3), 542-552.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01721.x] [PMID: 10672177]
[59]
Borsari, C.; Quotadamo, A.; Ferrari, S.; Venturelli, A.; Cordeiro-da-Silva, A.; Santarem, N.; Costi, M.P. Chapter Two : Scaffolds and biological targets avenue to fight against drug resistance in leishmaniasis. In: Annual reports in medicinal chemistry. Neglected Diseases: Extensive Space for Modern Drug Discovery; Botta, M., Ed.; Academic Press, 2018; 51, pp. 39-95.
[60]
Quiñones, W.; Acosta, H.; Gonçalves, C.S.; Motta, M.C.M.; Gualdrón-López, M.; Michels, P.A.M. Structure, properties, and function of glycosomes in Trypanosoma cruzi. Front. Cell. Infect. Microbiol., 2020, 10, 25.
[http://dx.doi.org/10.3389/fcimb.2020.00025] [PMID: 32083023]
[61]
Veloso-Silva, L.L.W.; Dores-Silva, P.R.; Bertolino-Reis, D.E.; Moreno-Oliveira, L.F.; Libardi, S.H.; Borges, J.C. Structural studies of old yellow enzyme of Leishmania braziliensis in solution. Arch. Biochem. Biophys., 2019, 661, 87-96.
[http://dx.doi.org/10.1016/j.abb.2018.11.009] [PMID: 30447208]
[62]
Díaz-Viraqué, F.; Chiribao, M.L.; Trochine, A.; González-Herrera, F.; Castillo, C.; Liempi, A.; Kemmerling, U.; Maya, J.D.; Robello, C. Old yellow enzyme from Trypanosoma cruzi exhibits in vivo prostaglandin F2α synthase activity and has a key role in parasite infection and drug susceptibility. Front. Immunol., 2018, 9, 456.
[http://dx.doi.org/10.3389/fimmu.2018.00456] [PMID: 29563916]
[63]
Balaña-Fouce, R.; Calvo-Álvarez, E.; Álvarez-Velilla, R.; Prada, C.F.; Pérez-Pertejo, Y.; Reguera, R.M. Role of trypanosomatid’s arginase in polyamine biosynthesis and pathogenesis. Mol. Biochem. Parasitol., 2012, 181(2), 85-93.
[http://dx.doi.org/10.1016/j.molbiopara.2011.10.007] [PMID: 22033378]
[64]
Ilari, A.; Fiorillo, A.; Baiocco, P.; Poser, E.; Angiulli, G.; Colotti, G. Targeting polyamine metabolism for finding new drugs against leishmaniasis: A review. Mini Rev. Med. Chem., 2015, 15(3), 243-252.
[http://dx.doi.org/10.2174/138955751503150312141044] [PMID: 25769972]
[65]
Westrop, G.D.; Williams, R.A.M.; Wang, L.; Zhang, T.; Watson, D.G.; Silva, A.M.; Coombs, G.H. Metabolomic analyses of leishmania reveal multiple species differences and large differences in amino acid metabolism. PLoS One, 2015, 10(9), e0136891.
[http://dx.doi.org/10.1371/journal.pone.0136891] [PMID: 26368322]
[66]
Boitz, J.M.; Gilroy, C.A.; Olenyik, T.D.; Paradis, D.; Perdeh, J.; Dearman, K.; Davis, M.J.; Yates, P.A.; Li, Y.; Riscoe, M.K.; Ullman, B.; Roberts, S.C. Arginase is essential for survival of Leishmania donovani promastigotes but not intracellular amastigotes. Infect. Immun., 2016, 85(1), e00554-e16.
[PMID: 27795357]
[67]
Siqueira-Neto, J.L.; Debnath, A.; McCall, L.I.; Bernatchez, J.A.; Ndao, M.; Reed, S.L.; Rosenthal, P.J. Cysteine proteases in protozoan parasites. PLoS Negl. Trop. Dis., 2018, 12(8), e0006512.
[http://dx.doi.org/10.1371/journal.pntd.0006512] [PMID: 30138453]
[68]
Mottram, J.C.; Coombs, G.H.; Alexander, J. Cysteine peptidases as virulence factors of Leishmania. Curr. Opin. Microbiol., 2004, 7(4), 375-381.
[http://dx.doi.org/10.1016/j.mib.2004.06.010] [PMID: 15358255]
[69]
Alexander, J.; Bryson, K. T helper (h)1/Th2 and: Paradox rather than paradigm. Immunol. Lett., 2005, 99(1), 17-23.
[http://dx.doi.org/10.1016/j.imlet.2005.01.009] [PMID: 15894106]
[70]
Casgrain, P.A.; Martel, C.; McMaster, W.R.; Mottram, J.C.; Olivier, M.; Descoteaux, A. Cysteine peptidase b regulates leishmania mexicana virulence through the modulation of GP63 Expression. PLoS Pathog., 2016, 12(5), e1005658.
[http://dx.doi.org/10.1371/journal.ppat.1005658] [PMID: 27191844]
[71]
Shamshad, H.; Bakri, R.; Mirza, A.Z. Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: Successful targets against some infectious diseases. Mol. Biol. Rep., 2022, 49(7), 6659-6691.
[http://dx.doi.org/10.1007/s11033-022-07266-8] [PMID: 35253073]
[72]
Tassone, G.; Landi, G.; Linciano, P.; Francesconi, V.; Tonelli, M.; Tagliazucchi, L.; Costi, M.P.; Mangani, S.; Pozzi, C. Evidence of pyrimethamine and cycloguanil analogues as dual inhibitors of Trypanosoma brucei pteridine reductase and dihydrofolate reductase. Pharmaceuticals, 2021, 14(7), 636.
[http://dx.doi.org/10.3390/ph14070636] [PMID: 34209148]
[73]
Pöhner, I.; Quotadamo, A.; Panecka-Hofman, J.; Luciani, R.; Santucci, M.; Linciano, P.; Landi, G.; Di Pisa, F.; Dello Iacono, L.; Pozzi, C.; Mangani, S.; Gul, S.; Witt, G.; Ellinger, B.; Kuzikov, M.; Santarem, N.; Cordeiro-da-Silva, A.; Costi, M.P.; Venturelli, A.; Wade, R.C. Multitarget, selective compound design yields potent inhibitors of a kinetoplastid pteridine reductase 1. J. Med. Chem., 2022, 65(13), 9011-9033.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00232] [PMID: 35675511]
[74]
Farahat, A.A.; Ismail, M.A.; Kumar, A.; Wenzler, T.; Brun, R.; Paul, A.; Wilson, W.D.; Boykin, D.W. Indole and benzimidazole bichalcophenes: Synthesis, DNA binding and antiparasitic activity. Eur. J. Med. Chem., 2018, 143, 1590-1596.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.056] [PMID: 29126729]
[75]
Cardona-G, W.; Yepes, A.F.; Herrera-R, A. Hybrid molecules: Promising compounds for the development of new treatments against leishmaniasis and chagas disease. Curr. Med. Chem., 2018, 25(30), 3637-3679.
[http://dx.doi.org/10.2174/0929867325666180309111428] [PMID: 29521209]
[76]
Doganc, F.; Celik, I.; Eren, G.; Kaiser, M.; Brun, R.; Goker, H. Synthesis, in vitro antiprotozoal activity, molecular docking and molecular dynamics studies of some new monocationic guanidinobenzimidazoles. Eur. J. Med. Chem., 2021, 221, 113545.
[http://dx.doi.org/10.1016/j.ejmech.2021.113545] [PMID: 34091216]
[77]
Jahnke, W.; Erlanson, D.A.; de Esch, I.J.P.; Johnson, C.N.; Mortenson, P.N.; Ochi, Y.; Urushima, T. Fragment-to-lead medicinal chemistry publications in 2019. J. Med. Chem., 2020, 63(24), 15494-15507.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01608] [PMID: 33226222]
[78]
Krishnarjuna, B.; Lim, S.S.; Devine, S.M.; Debono, C.O.; Lam, R.; Chandrashekaran, I.R.; Jaipuria, G.; Yagi, H.; Atreya, H.S.; Scanlon, M.J.; MacRaild, C.A.; Scammells, P.J.; Norton, R.S. Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials. J. Mol. Recognit., 2016, 29(6), 281-291.
[http://dx.doi.org/10.1002/jmr.2529] [PMID: 26804042]
[79]
Kim, J.; Tan, Y.Z.; Wicht, K.J.; Erramilli, S.K.; Dhingra, S.K.; Okombo, J.; Vendome, J.; Hagenah, L.M.; Giacometti, S.I.; Warren, A.L.; Nosol, K.; Roepe, P.D.; Potter, C.S.; Carragher, B.; Kossiakoff, A.A.; Quick, M.; Fidock, D.A.; Mancia, F. Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature, 2019, 576(7786), 315-320.
[http://dx.doi.org/10.1038/s41586-019-1795-x] [PMID: 31776516]
[80]
Jiménez-Díaz, M.B.; Ebert, D.; Salinas, Y.; Pradhan, A.; Lehane, A.M.; Myrand-Lapierre, M.E.; O’Loughlin, K.G.; Shackleford, D.M.; Justino de Almeida, M.; Carrillo, A.K.; Clark, J.A.; Dennis, A.S.M.; Diep, J.; Deng, X.; Duffy, S.; Endsley, A.N.; Fedewa, G.; Guiguemde, W.A.; Gómez, M.G.; Holbrook, G.; Horst, J.; Kim, C.C.; Liu, J.; Lee, M.C.S.; Matheny, A.; Martínez, M.S.; Miller, G.; Rodríguez-Alejandre, A.; Sanz, L.; Sigal, M.; Spillman, N.J.; Stein, P.D.; Wang, Z.; Zhu, F.; Waterson, D.; Knapp, S.; Shelat, A.; Avery, V.M.; Fidock, D.A.; Gamo, F.J.; Charman, S.A.; Mirsalis, J.C.; Ma, H.; Ferrer, S.; Kirk, K.; Angulo-Barturen, I.; Kyle, D.E.; DeRisi, J.L.; Floyd, D.M.; Guy, R.K. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl. Acad. Sci., 2014, 111(50), E5455-E5462.
[http://dx.doi.org/10.1073/pnas.1414221111] [PMID: 25453091]
[81]
Bhoi, R.T.; Rajput, J.D.; Bendre, R.S. An efficient synthesis of rearranged new biologically active benzimidazoles derived from 2-formyl carvacrol. Res. Chem. Intermed., 2022, 48(1), 401-422.
[http://dx.doi.org/10.1007/s11164-021-04601-9]
[82]
Singh, V.; Hada, R.S.; Jain, R.; Vashistha, M.; Kumari, G.; Singh, S.; Sharma, N.; Bansal, M.; Poonam, ; Zoltner, M.; Caffrey, C.R.; Rathi, B.; Singh, S. Designing and development of phthalimides as potent anti-tubulin hybrid molecules against malaria. Eur. J. Med. Chem., 2022, 239, 114534.
[http://dx.doi.org/10.1016/j.ejmech.2022.114534] [PMID: 35749989]
[83]
Ndakala, A.J.; Gessner, R.K.; Gitari, P.W.; October, N.; White, K.L.; Hudson, A.; Fakorede, F.; Shackleford, D.M.; Kaiser, M.; Yeates, C.; Charman, S.A.; Chibale, K. Antimalarial pyrido[1,2-a]benzimidazoles. J. Med. Chem., 2011, 54(13), 4581-4589.
[http://dx.doi.org/10.1021/jm200227r] [PMID: 21644541]
[84]
Mali, S.N.; Pandey, A. Hemozoin (beta-hematin) Formation inhibitors: Promising target for the development of new antimalarials: Current update and future prospect. Comb. Chem. High Throughput Screen., 2022, 25(11), 1859-1874.
[http://dx.doi.org/10.2174/1386207325666210924104036] [PMID: 34565319]
[85]
Sousa, C.C.; Dziwornu, G.A.; Quadros, H.C.; Araujo-Neto, J.H.; Chibale, K.; Moreira, D.R.M. Antimalarial Pyrido[1,2-a]benzimidazoles exert strong parasiticidal effects by achieving high cellular uptake and suppressing heme detoxification. ACS Infect. Dis., 2022, 8(8), 1700-1710.
[http://dx.doi.org/10.1021/acsinfecdis.2c00326] [PMID: 35848708]
[86]
Nieto-Meneses, R.; Castillo, R.; Hernández-Campos, A.; Maldonado-Rangel, A.; Matius-Ruiz, J.B.; Trejo-Soto, P.J.; Nogueda-Torres, B.; Dea-Ayuela, M.A.; Bolás-Fernández, F.; Méndez-Cuesta, C.; Yépez-Mulia, L. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species. Exp. Parasitol., 2018, 184, 82-89.
[http://dx.doi.org/10.1016/j.exppara.2017.11.009] [PMID: 29191699]
[87]
De Luca, L.; Ferro, S.; Buemi, M.R.; Monforte, A.M.; Gitto, R.; Schirmeister, T.; Maes, L.; Rescifina, A.; Micale, N. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis. Chem. Biol. Drug Des., 2018, 92(3), 1585-1596.
[http://dx.doi.org/10.1111/cbdd.13326] [PMID: 29729080]
[88]
Kumar, A.; Nimsarkar, P.; Singh, S. Systems pharmacology aiding benzimidazole scaffold as potential lead compounds against leishmaniasis for functional therapeutics. Life Sci., 2022, 308, 120960.
[http://dx.doi.org/10.1016/j.lfs.2022.120960] [PMID: 36116527]
[89]
Kapil, S.; Singh, P.K.; Kashyap, A.; Silakari, O. Structure based designing of benzimidazole/benzoxazole derivatives as anti-leishmanial agents. SAR QSAR Environ. Res., 2019, 30(12), 919-933.
[http://dx.doi.org/10.1080/1062936X.2019.1684357] [PMID: 31702401]
[90]
Patel, V.M.; Patel, N.B.; Chan-Bacab, M.J.; Rivera, G. N -Mannich bases of benzimidazole as a potent antitubercular and antiprotozoal agents: Their synthesis and computational studies. Synth. Commun., 2020, 50(6), 858-878.
[http://dx.doi.org/10.1080/00397911.2020.1725057]
[91]
Sánchez-Salgado, J.C.; Bilbao-Ramos, P.; Dea-Ayuela, M.A.; Hernández-Luis, F.; Bolás-Fernández, F.; Medina-Franco, J.L.; Rojas-Aguirre, Y. Systematic search for benzimidazole compounds and derivatives with antileishmanial effects. Mol. Divers., 2018, 22(4), 779-790.
[http://dx.doi.org/10.1007/s11030-018-9830-7] [PMID: 29748853]
[92]
Hernández-Luis, F.; Hernández-Campos, A.; Castillo, R.; Navarrete-Vázquez, G.; Soria-Arteche, O.; Hernández-Hernández, M.; Yépez-Mulia, L. Synthesis and biological activity of 2-(trifluoromethyl)-1H-benzimidazole derivatives against some protozoa and Trichinella spiralis. Eur. J. Med. Chem., 2010, 45(7), 3135-3141.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.050] [PMID: 20430484]
[93]
Gómez-Ochoa, P.; Castillo, J.A.; Gascón, M.; Zarate, J.J.; Alvarez, F.; Couto, C.G. Use of domperidone in the treatment of canine visceral leishmaniasis: A clinical trial. Vet. J., 2009, 179(2), 259-263.
[http://dx.doi.org/10.1016/j.tvjl.2007.09.014] [PMID: 18023375]
[94]
Baxarias, M.; Martínez-Orellana, P.; Baneth, G.; Solano-Gallego, L. Immunotherapy in clinical canine leishmaniosis: A comparative update. Res. Vet. Sci., 2019, 125, 218-226.
[http://dx.doi.org/10.1016/j.rvsc.2019.06.009] [PMID: 31280121]
[95]
Cavalera, M.A.; Gernone, F.; Uva, A.; D’Ippolito, P.; Roura, X.; Paltrinieri, S.; Zatelli, A. Effect of domperidone (leisguard®) on antibody titers, inflammatory markers and creatinine in dogs with leishmaniosis and chronic kidney disease. Parasit. Vectors, 2021, 14(1), 525.
[http://dx.doi.org/10.1186/s13071-021-05030-8] [PMID: 34629081]
[96]
Ratcliffe, N.A.; Furtado Pacheco, J.P.; Dyson, P.; Castro, H.C.; Gonzalez, M.S.; Azambuja, P.; Mello, C.B. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit. Vectors, 2022, 15(1), 112.
[http://dx.doi.org/10.1186/s13071-021-05132-3] [PMID: 35361286]
[97]
Ferreira, R.A.A.; Junior, C.O.R.; Martinez, P.D.G.; Koovits, P.J.; Soares, B.M.; Ferreira, L.L.G.; Michelan-Duarte, S.; Chelucci, R.C.; Andricopulo, A.D.; Galuppo, M.K.; Uliana, S.R.B.; Matheeussen, A.; Caljon, G.; Maes, L.; Campbell, S.; Kratz, J.M.; Mowbray, C.E.; Dias, L.C. 2-aminobenzimidazoles for leishmaniasis: From initial hit discovery to in vivo profiling. PLoS Negl. Trop. Dis., 2021, 15(2), e0009196.
[http://dx.doi.org/10.1371/journal.pntd.0009196] [PMID: 33617566]
[98]
Peña, I.; Pilar Manzano, M.; Cantizani, J.; Kessler, A.; Alonso-Padilla, J.; Bardera, A.I.; Alvarez, E.; Colmenarejo, G.; Cotillo, I.; Roquero, I.; de Dios-Anton, F.; Barroso, V.; Rodriguez, A.; Gray, D.W.; Navarro, M.; Kumar, V.; Sherstnev, A.; Drewry, D.H.; Brown, J.R.; Fiandor, J.M.; Julio Martin, J. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: An open resource. Sci. Rep., 2015, 5(1), 8771.
[http://dx.doi.org/10.1038/srep08771] [PMID: 25740547]
[99]
Tonelli, M.; Gabriele, E.; Piazza, F.; Basilico, N.; Parapini, S.; Tasso, B.; Loddo, R.; Sparatore, F.; Sparatore, A. Benzimidazole derivatives endowed with potent antileishmanial activity. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 210-226.
[http://dx.doi.org/10.1080/14756366.2017.1410480] [PMID: 29233048]
[100]
Espinosa-Bustos, C.; Ortiz Pérez, M.; Gonzalez-Gonzalez, A.; Zarate, A.M.; Rivera, G.; Belmont-Díaz, J.A.; Saavedra, E.; Cuellar, M.A.; Vázquez, K.; Salas, C.O. New amino naphthoquinone derivatives as anti-trypanosoma cruzi agents targeting trypanothione reductase. Pharmaceutics, 2022, 14(6), 1121.
[http://dx.doi.org/10.3390/pharmaceutics14061121] [PMID: 35745694]
[101]
López-Lira, C.; Tapia, R.A.; Herrera, A.; Lapier, M.; Maya, J.D.; Soto-Delgado, J.; Oliver, A.G.; Graham Lappin, A.; Uriarte, E. New benzimidazolequinones as trypanosomicidal agents. Bioorg. Chem., 2021, 111, 104823.
[http://dx.doi.org/10.1016/j.bioorg.2021.104823] [PMID: 33798844]
[102]
Bruno, S.; Uliassi, E.; Zaffagnini, M.; Prati, F.; Bergamini, C.; Amorati, R.; Paredi, G.; Margiotta, M.; Conti, P.; Costi, M.P.; Kaiser, M.; Cavalli, A.; Fato, R.; Bolognesi, M.L. Molecular basis for covalent inhibition of glyceraldehyde-3-phosphate dehydrogenase by a 2-phenoxy-1,4-naphthoqui- none small molecule. Chem. Biol. Drug Des., 2017, 90(2), 225-235.
[http://dx.doi.org/10.1111/cbdd.12941] [PMID: 28079302]
[103]
Uchiyama, N.; Kabututu, Z.; Kubata, B.K.; Kiuchi, F.; Ito, M.; Nakajima-Shimada, J.; Aoki, T.; Ohkubo, K.; Fukuzumi, S.; Martin, S.K.; Honda, G.; Urade, Y. Antichagasic activity of komaroviquinone is due to generation of reactive oxygen species catalyzed by Trypanosoma cruzi old yellow enzyme. Antimicrob. Agents Chemother., 2005, 49(12), 5123-5126.
[http://dx.doi.org/10.1128/AAC.49.12.5123-5126.2005] [PMID: 16304182]
[104]
Téllez-Valencia, A.; Ávila-Ríos, S.; Pérez-Montfort, R.; Rodríguez-Romero, A.; Tuena de Gómez-Puyou, M.; López-Calahorra, F.; Gómez-Puyou, A. Highly specific inactivation of triosephosphate isomerase from Trypanosoma cruzi. Biochem. Biophys. Res. Commun., 2002, 295(4), 958-963.
[http://dx.doi.org/10.1016/S0006-291X(02)00796-9] [PMID: 12127988]
[105]
Téllez-Valencia, A.; Olivares-Illana, V.; Hernández-Santoyo, A.; Pérez-Montfort, R.; Costas, M.; Rodríguez-Romero, A.; López-Calahorra, F.; Tuena de Gómez-Puyou, M.; Gómez-Puyou, A. Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. J. Mol. Biol., 2004, 341(5), 1355-1365.
[http://dx.doi.org/10.1016/j.jmb.2004.06.056] [PMID: 15321726]
[106]
Flores Sandoval, C.A.; Cuevas Hernández, R.I.; Correa Basurto, J.; Beltrán Conde, H.I.; Padilla Martínez, I.I.; Farfán García, J.N.; Nogueda Torres, B.; Trujillo Ferrara, J.G. Synthesis and theoretic calculations of benzoxazoles and docking studies of their interactions with triosephosphate isomerase. Med. Chem. Res., 2013, 22(6), 2768-2777.
[http://dx.doi.org/10.1007/s00044-012-0264-y]
[107]
Velázquez-López, J.M.; Hernández-Campos, A.; Yépez-Mulia, L.; Téllez-Valencia, A.; Flores-Carrillo, P.; Nieto-Meneses, R.; Castillo, R. Synthesis and trypanocidal activity of novel benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(17), 4377-4381.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.018] [PMID: 27503677]
[108]
Vázquez-Jiménez, L.K.; Juárez-Saldivar, A.; Gómez-Escobedo, R.; Delgado-Maldonado, T.; Méndez-Álvarez, D.; Palos, I.; Bandyopadhyay, D.; Gaona-Lopez, C.; Ortiz-Pérez, E.; Nogueda-Torres, B.; Ramírez-Moreno, E.; Rivera, G. Ligand-based virtual screening and molecular docking of benzimidazoles as potential inhibitors of triosephosphate isomerase identified new trypanocidal agents. Int. J. Mol. Sci., 2022, 23(17), 10047.
[http://dx.doi.org/10.3390/ijms231710047] [PMID: 36077439]
[109]
Song, D.; Ma, S. Recent development of benzimidazole-containing antibacterial agents. ChemMedChem, 2016, 11(7), 646-659.
[http://dx.doi.org/10.1002/cmdc.201600041] [PMID: 26970352]
[110]
Beltran-Hortelano, I.; Atherton, R.L.; Rubio-Hernández, M.; Sanz-Serrano, J.; Alcolea, V.; Kelly, J.M.; Pérez-Silanes, S.; Olmo, F. Design and synthesis of mannich base-type derivatives containing imidazole and benzimidazole as lead compounds for drug discovery in chagas disease. Eur. J. Med. Chem., 2021, 223, 113646.
[http://dx.doi.org/10.1016/j.ejmech.2021.113646] [PMID: 34182359]
[111]
Beltran-Hortelano, I.; Perez-Silanes, S.; Galiano, S. Trypanothione reductase and superoxide dismutase as current drug targets for Trypanosoma cruzi: An overview of compounds with activity against chagas disease. Curr. Med. Chem., 2017, 24(11), 1066-1138.
[PMID: 28025938]
[112]
Bistrović, A.; Krstulović, L.; Harej, A.; Grbčić, P.; Sedić, M.; Koštrun, S.; Pavelić, S.K.; Bajić, M.; Raić-Malić, S. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. Eur. J. Med. Chem., 2018, 143, 1616-1634.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.061] [PMID: 29133046]
[113]
McNamara, N.; Rahmani, R.; Sykes, M.L.; Avery, V.M.; Baell, J. Hit-to-lead optimization of novel benzimidazole phenylacetamides as broad spectrum trypanosomacides. RSC Med. Chem., 2020, 11(6), 685-695.
[http://dx.doi.org/10.1039/D0MD00058B] [PMID: 33479668]
[114]
de Oliveira Rezende Júnior, C.; Martinez, P.D.G.; Ferreira, R.A.A.; Koovits, P.J.; Miranda Soares, B.; Ferreira, L.L.G.; Michelan-Duarte, S.; Chelucci, R.C.; Andricopulo, A.D.; Matheeussen, A.; Van Pelt, N.; Caljon, G.; Maes, L.; Campbell, S.; Kratz, J.M.; Mowbray, C.E.; Dias, L.C. Hit-to-lead optimization of a 2-aminobenzimidazole series as new candidates for chagas disease. Eur. J. Med. Chem., 2023, 246, 114925.
[http://dx.doi.org/10.1016/j.ejmech.2022.114925] [PMID: 36459758]
[115]
Ornellas-Garcia, U.; Cuervo, P.; Ribeiro-Gomes, F.L. Malaria and leishmaniasis: Updates on co-infection. Front. Immunol., 2023, 14, 1122411.
[http://dx.doi.org/10.3389/fimmu.2023.1122411] [PMID: 36895563]
[116]
Formenti, B.; Gregori, N.; Crosato, V.; Marchese, V.; Tomasoni, L.R.; Castelli, F. The impact of COVID-19 on communicable and non-communicable diseases in Africa: A narrative review. Infez. Med., 2022, 30(1), 30-40.
[PMID: 35350264]

© 2024 Bentham Science Publishers | Privacy Policy