Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Bdellovibrio bacteriovorus Therapy, an Emerging Alternative to Antibiotics

Author(s): Ibukun J. Abulude, Daniel E. Kadouri* and Xianwu Guo*

Volume 21, Issue 13, 2024

Published on: 19 September, 2023

Page: [2505 - 2520] Pages: 16

DOI: 10.2174/1570180820666230912161923

Price: $65

Open Access Journals Promotions 2
Abstract

The increase in multi-drug resistant (MDR) pathogens and the decline in the number of new antibiotics in the production pipeline pose a serious threat to our ability to treat infectious diseases. In this new landscape, once treatable diseases are now potentially life-threatening. This impending danger requires that urgent attention should be given to developing alternative strategies for combating MDR bacteria. A novel alternative is the use of predatory bacteria, B. bacteriovorus spp, that naturally prey on Gram-negative bacteria, including MDR Enterobacteriaceae. B. bacteriovorus has been shown to be nonpathogenic in animal models and on human cell lines, supporting its feasibility to be used to treat infections in animals and possibly humans. This document reviews various aspects of B. bacteriovorus biology, including its unique life cycle, "predatory toolbox", prey range, and recent research advances exploring B. bacteriovorus as an antimicrobial agent, stepping towards its use in human therapy. We also discuss the advantages and limitations of using B. bacteriovorus therapy and the strategies to overcome these limitations.

Keywords: Predatory bacteria, multi-drug resistance pathogen, antibiotic resistance, biotherapy, Bdellovibrio bacteriovorus, flagella.

[1]
D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; Golding, G.B.; Poinar, H.N.; Wright, G.D. Antibiotic resistance is ancient. Nature, 2011, 477(7365), 457-461.
[http://dx.doi.org/10.1038/nature10388] [PMID: 21881561]
[2]
Wright, G.D. Antibiotic resistance in the environment: A link to the clinic? Curr. Opin. Microbiol., 2010, 13(5), 589-594.
[http://dx.doi.org/10.1016/j.mib.2010.08.005] [PMID: 20850375]
[3]
Čižman, M. The use and resistance to antibiotics in the community. Int. J. Antimicrob. Agents, 2003, 21(4), 297-307.
[http://dx.doi.org/10.1016/S0924-8579(02)00394-1] [PMID: 12672574]
[4]
Teuber, M. Veterinary use and antibiotic resistance. Curr. Opin. Microbiol., 2001, 4(5), 493-499.
[http://dx.doi.org/10.1016/S1369-5274(00)00241-1] [PMID: 11587923]
[5]
Mazel, D.; Davies, J. Antibiotic resistance in microbes. Cell. Mol. Life Sci., 1999, 56(9-10), 742-754.
[http://dx.doi.org/10.1007/s000180050021] [PMID: 11212334]
[6]
Giamarellou, H. Multidrug-resistant Gram-negative bacteria: How to treat and for how long. Int. J. Antimicrob. Agents, 2010, 36(Suppl. 2), S50-S54.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.11.014] [PMID: 21129924]
[7]
Surendran-Nair, M.; Lau, P.; Liu, Y.; Venkitanarayanan, K. Efficacy of selenium in controlling acinetobacter baumannii associated wound infections. Wound Medicine, 2019, 26(1), 100165.
[http://dx.doi.org/10.1016/j.wndm.2019.100165]
[8]
Projan, S.J. Why is big pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol., 2003, 6(5), 427-430.
[http://dx.doi.org/10.1016/j.mib.2003.08.003] [PMID: 14572532]
[9]
Sulakvelidze, A.; Alavidze, Z.; Morris, J.G., Jr Bacteriophage therapy. Antimicrob. Agents Chemother., 2001, 45(3), 649-659.
[http://dx.doi.org/10.1128/AAC.45.3.649-659.2001] [PMID: 11181338]
[10]
Oliveira, H.; Sillankorva, S.; Merabishvili, M.; Kluskens, L.D.; Azeredo, J. Unexploited opportunities for phage therapy. Front. Pharmacol., 2015, 6(SEP), 180.
[http://dx.doi.org/10.3389/fphar.2015.00180] [PMID: 26441644]
[11]
Oyedara, O.O.; De Luna-Santillana, E.J.; Olguin-Rodriguez, O.; Guo, X.; Mendoza-Villa, M.A.; Menchaca-Arredondo, J.L.; Elufisan, T.O.; Garza-Hernandez, J.A.; Garcia Leon, I.; Rodriguez-Perez, M.A. Isolation of Bdellovibrio sp. from soil samples in Mexico and their potential applications in control of pathogens. MicrobiologyOpen, 2016, 5(6), 992-1002.
[http://dx.doi.org/10.1002/mbo3.382] [PMID: 27297185]
[12]
Ajao, Y.O.; Rodríguez-Luna, I.C.; Elufisan, T.O.; Sánchez-Varela, A.; Cortés-Espinosa, D.V.; Camilli, A.; Guo, X. Bdellovibrio reynosensis sp. nov., from a Mexico soil sample. Int. J. Syst. Evol. Microbiol., 2022, 72(12), 005608.
[http://dx.doi.org/10.1099/ijsem.0.005608] [PMID: 36748470]
[13]
Taylor, V.I.; Baumann, P.; Reichelt, J.L.; Allen, R.D. Isolation, enumeration, and host range of marine bdellovibrios. Arch. Microbiol., 1974, 98(1), 101-114.
[http://dx.doi.org/10.1007/BF00425273] [PMID: 4211210]
[14]
Koval, S.F.; Hynes, S.H.; Flannagan, R.S.; Pasternak, Z.; Davidov, Y.; Jurkevitch, E. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int. J. Syst. Evol. Microbiol., 2013, 63(Pt_1), 146-151.
[http://dx.doi.org/10.1099/ijs.0.039701-0] [PMID: 22368169]
[15]
Li, H.; Liu, C.; Chen, L.; Zhang, X.; Cai, J. Biological characterization of two marine Bdellovibrio-and-like organisms isolated from Daya bay of Shenzhen, China and their application in the elimination of Vibrio parahaemolyticus in oyster. Int. J. Food Microbiol., 2011, 151(1), 36-43.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.07.036] [PMID: 21899909]
[16]
Lambert, C.; Morehouse, K.A.; Chang, C.Y.; Sockett, R.E. Bdellovibrio: growth and development during the predatory cycle. Curr. Opin. Microbiol., 2006, 9(6), 639-644.
[http://dx.doi.org/10.1016/j.mib.2006.10.002] [PMID: 17056298]
[17]
Burnham, J.C.; Hashimoto, T.; Conti, S.F. Electron microscopic observations on the penetration of Bdellovibrio bacteriovorus into gram-negative bacterial hosts. J. Bacteriol., 1968, 96(4), 1366-1381.
[http://dx.doi.org/10.1128/jb.96.4.1366-1381.1968] [PMID: 4879563]
[18]
Evans, K.J.; Lambert, C.; Sockett, R.E. Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J. Bacteriol., 2007, 189(13), 4850-4859.
[http://dx.doi.org/10.1128/JB.01942-06] [PMID: 17416646]
[19]
Rotem, O.; Pasternak, Z.; Shimoni, E.; Belausov, E.; Porat, Z.; Pietrokovski, S.; Jurkevitch, E. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc. Natl. Acad. Sci., 2015, 112(44), E6028-E6037.
[http://dx.doi.org/10.1073/pnas.1515749112] [PMID: 26487679]
[20]
Fenton, A.K.; Kanna, M.; Woods, R.D.; Aizawa, S.I.; Sockett, R.E. Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J. Bacteriol., 2010, 192(24), 6329-6335.
[http://dx.doi.org/10.1128/JB.00914-10] [PMID: 20935099]
[21]
Dashiff, A.; Kadouri, D.E. A new method for isolating host-independent variants of Bdellovibrio bacteriovorus using E. coli auxotrophs. Open Microbiol. J., 2009, 3(1), 87-91.
[http://dx.doi.org/10.2174/1874285800903010087] [PMID: 19590595]
[22]
Seidler, R.J.; Starr, M.P. Isolation and characterization of host-independent Bdellovibrios. J. Bacteriol., 1969, 100(2), 769-785.
[http://dx.doi.org/10.1128/jb.100.2.769-785.1969] [PMID: 4901359]
[23]
Lambert, C.; Evans, K.J.; Till, R.; Hobley, L.; Capeness, M.; Rendulic, S.; Schuster, S.C.; Aizawa, S.I.; Sockett, R.E. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol. Microbiol., 2006, 60(2), 274-286.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05081.x] [PMID: 16573680]
[24]
Shilo, M. Morphological and physiological aspects of the interaction of Bdellovibrio with host bacteria. Curr. Top. Microbiol. Immunol., 1969, 50, 174-204.
[http://dx.doi.org/10.1007/978-3-642-46169-9_6] [PMID: 4907693]
[25]
Tang, Y.; Huang, Q.X.; Zheng, D.W.; Chen, Y.; Ma, L.; Huang, C.; Zhang, X.Z. Engineered Bdellovibrio bacteriovorus: A countermeasure for biofilm-induced periodontitis. Mater. Today, 2022, 53, 71-83.
[http://dx.doi.org/10.1016/j.mattod.2022.01.013]
[26]
Hespell, R.B.; Thomashow, M.F.; Rittenberg, S.C. Changes in cell composition and viability of Bdellovibrio bacteriovorus during starvation. Arch. Microbiol., 1974, 97(1), 313-327.
[http://dx.doi.org/10.1007/BF00403070] [PMID: 4599992]
[27]
Rendulic, S.; Jagtap, P.; Rosinus, A.; Eppinger, M.; Baar, C.; Lanz, C.; Keller, H.; Lambert, C.; Evans, K.J.; Goesmann, A.; Meyer, F.; Sockett, R.E.; Schuster, S.C. Predator Unmasked: Life cycle of bdellovibrio bacteriovorus from a genomic perspective. Science, 2004, 303(5658), 689-692.
[http://dx.doi.org/10.1126/science.1093027]
[28]
Thomashow, M.F.; Rittenberg, S.C. Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: Solubilization of Escherichia coli peptidoglycan. J. Bacteriol., 1978, 135(3), 998-1007.
[http://dx.doi.org/10.1128/jb.135.3.998-1007.1978] [PMID: 357428]
[29]
Lerner, T.R.; Lovering, A.L.; Bui, N.K.; Uchida, K.; Aizawa, S.I.; Vollmer, W.; Sockett, R.E. Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness. PLoS Pathog., 2012, 8(2), e1002524.
[http://dx.doi.org/10.1371/journal.ppat.1002524] [PMID: 22346754]
[30]
Lambert, C.; Cadby, I.T.; Till, R.; Bui, N.K.; Lerner, T.R.; Hughes, W.S.; Lee, D.J.; Alderwick, L.J.; Vollmer, W.; Sockett, R.E.; Lovering, A.L. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus. Nat. Commun., 2015, 6(1), 8884.
[http://dx.doi.org/10.1038/ncomms9884] [PMID: 26626559]
[31]
Banks, E.J.; Valdivia-Delgado, M.; Biboy, J.; Wilson, A.; Cadby, I.T.; Vollmer, W.; Lambert, C.; Lovering, A.L.; Sockett, R.E. Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria. Nat. Commun., 2022, 13(1), 1509.
[http://dx.doi.org/10.1038/s41467-022-29007-y] [PMID: 35314810]
[32]
Bukowska-Faniband, E.; Andersson, T.; Lood, R. Studies on Bd0934 and Bd3507, Two Secreted Nucleases from Bdellovibrio bacteriovorus, reveal sequential release of nucleases during the predatory cycle. J. Bacteriol., 2020, 202(18), e00150-e20.
[http://dx.doi.org/10.1128/JB.00150-20] [PMID: 32601070]
[33]
Lambert, C.; Hobley, L.; Chang, C.Y.; Fenton, A.; Capeness, M.; Sockett, L. A predatory patchwork: Membrane and surface structures of Bdellovibrio bacteriovorus. Adv. Microb. Physiol., 2008, 54, 313-361.
[http://dx.doi.org/10.1016/S0065-2911(08)00005-2] [PMID: 18929071]
[34]
Doig, P.; Sastry, P.A.; Hodges, R.S.; Lee, K.K.; Paranchych, W.; Irvin, R.T. Inhibition of pilus-mediated adhesion of Pseudomonas aeruginosa to human buccal epithelial cells by monoclonal antibodies directed against pili. Infect. Immun., 1990, 58(1), 124-130.
[http://dx.doi.org/10.1128/iai.58.1.124-130.1990] [PMID: 1967166]
[35]
Barabote, R.D.; Rendulic, S.; Schuster, S.C.; Saier, M.H. Jr Comprehensive analysis of transport proteins encoded within the genome of Bdellovibrio bacteriovorus. Genomics, 2007, 90(4), 424-446.
[http://dx.doi.org/10.1016/j.ygeno.2007.06.002] [PMID: 17706914]
[36]
Ken, Q.; Pauisers, J. T. Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes. PLoS Comput. Biol., 2005, 1(3), 0190-0201.
[http://dx.doi.org/10.1371/journal.pcbi.0010027]
[37]
Pérez, J.; Moraleda-Muñoz, A.; Marcos-Torres, F.J.; Muñoz-Dorado, J. Bacterial predation: 75 years and counting! Environ. Microbiol., 2016, 18(3), 766-779.
[http://dx.doi.org/10.1111/1462-2920.13171] [PMID: 26663201]
[38]
Heelis, P.F.; Hartman, R.F.; Rose, S.D. Energy and electron transfer processes in flavoprotein-mediated DNA repair. J. Photochem. Photobiol. Chem., 1996, 95(1), 89-98.
[http://dx.doi.org/10.1016/1010-6030(95)04229-6]
[39]
Kavakli, I.H.; Ozturk, N.; Gul, S. DNA repair by photolyases. Adv. Protein Chem. Struct. Biol., 2019, 115, 1-19.
[http://dx.doi.org/10.1016/bs.apcsb.2018.10.003] [PMID: 30798929]
[40]
Sancar, A.; Sancar, G.B. Escherichia coli DNA photolyase is a flavoprotein. J. Mol. Biol., 1984, 172(2), 223-227.
[http://dx.doi.org/10.1016/S0022-2836(84)80040-6] [PMID: 6363715]
[41]
Garcia Costas, A.M.; Poudel, S.; Miller, A.F.; Schut, G.J.; Ledbetter, R.N.; Fixen, K.R.; Seefeldt, L.C.; Adams, M.W.W.; Harwood, C.S.; Boyd, E.S.; Peters, J.W. Defining electron bifurcation in the electron-transferring flavoprotein family. J. Bacteriol., 2017, 199(21), 440-457.
[http://dx.doi.org/10.1128/JB.00440-17] [PMID: 28808132]
[42]
Rodionova, I.A.; Heidari Tajabadi, F.; Zhang, Z.; Rodionov, D.A.; Saier, M.H., Jr A riboflavin transporter in Bdellovibrio exovorous JSS. Microbial Physiology, 2019, 29(1-6), 27-34.
[http://dx.doi.org/10.1159/000501354] [PMID: 31509826]
[43]
Heidari Tajabadi, F.; Medrano-Soto, A.; Ahmadzadeh, M.; Salehi Jouzani, G.; Saier, M.H., Jr Comparative analyses of transport proteins encoded within the genomes of bdellovibrio bacteriovorus HD100 and Bdellovibrio exovorus JSS. Microbial Physiology, 2017, 27(6), 332-349.
[http://dx.doi.org/10.1159/000484563] [PMID: 29212086]
[44]
Ruby, E.G.; McCabe, J.B. An ATP transport system in the intracellular bacterium, Bdellovibrio bacteriovorus 109J. J. Bacteriol., 1986, 167(3), 1066-1070.
[http://dx.doi.org/10.1128/jb.167.3.1066-1070.1986] [PMID: 3745115]
[45]
Vahling, C.M.; Duan, Y.; Lin, H. Characterization of an ATP translocase identified in the destructive plant pathogen “Candidatus Liberibacter asiaticus”. J. Bacteriol., 2010, 192(3), 834-840.
[http://dx.doi.org/10.1128/JB.01279-09] [PMID: 19948801]
[46]
Amiri, H.; Karlberg, O.; Andersson, S.G.E. Deep origin of plastid/parasite ATP/ADP translocases. J. Mol. Evol., 2003, 56(2), 137-150.
[http://dx.doi.org/10.1007/s00239-002-2387-0] [PMID: 12574860]
[47]
Schmitz-Esser, S.; Linka, N.; Collingro, A.; Beier, C.L.; Neuhaus, H.E.; Wagner, M.; Horn, M. ATP/ADP translocases: A common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J. Bacteriol., 2004, 186(3), 683-691.
[http://dx.doi.org/10.1128/JB.186.3.683-691.2004] [PMID: 14729693]
[48]
Dashiff, A.; Junka, R.A.; Libera, M.; Kadouri, D.E. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J. Appl. Microbiol., 2011, 110(2), 431-444.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04900.x] [PMID: 21114596]
[49]
Tudor, J.J.; Conti, S.F. Characterization of bdellocysts of Bdellovibrio sp. J. Bacteriol., 1977, 131(1), 314-322.
[http://dx.doi.org/10.1128/jb.131.1.314-322.1977] [PMID: 873888]
[50]
Asokan, G.; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO global priority pathogens list: A bibliometric analysis of medline-pubmed for knowledge mobilization to infection prevention and control practices in bahrain. Oman Med. J., 2019, 34(3), 184-193.
[http://dx.doi.org/10.5001/omj.2019.37] [PMID: 31110624]
[51]
Kadouri, D.E.; To, K.; Shanks, R.M.Q.; Doi, Y. Predatory bacteria: A potential ally against multidrug-resistant Gram-negative pathogens. PLoS One, 2013, 8(5), e63397.
[http://dx.doi.org/10.1371/journal.pone.0063397] [PMID: 23650563]
[52]
Sun, Y.; Ye, J.; Hou, Y.; Chen, H.; Cao, J.; Zhou, T. Predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant clinical pathogens and their corresponding biofilms. Jpn. J. Infect. Dis., 2017, 70(5), 485-489.
[http://dx.doi.org/10.7883/yoken.JJID.2016.405] [PMID: 28367880]
[53]
Monnappa, A.K.; Dwidar, M.; Seo, J.K.; Hur, J.H.; Mitchell, R.J. Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci. Rep., 2014, 4(1), 3811.
[http://dx.doi.org/10.1038/srep03811] [PMID: 24448451]
[54]
Iebba, V.; Totino, V.; Santangelo, F.; Gagliardi, A.; Ciotoli, L.; Virga, A.; Ambrosi, C.; Pompili, M.; De Biase, R.V.; Selan, L.; Artini, M.; Pantanella, F.; Mura, F.; Passariello, C.; Nicoletti, M.; Nencioni, L.; Trancassini, M.; Quattrucci, S.; Schippa, S. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic fibrosis isolates. Front. Microbiol., 2014, 5(JUN), 280.
[http://dx.doi.org/10.3389/fmicb.2014.00280] [PMID: 24926292]
[55]
Saralegui, C.; Herencias, C.; Halperin, A.V.; de Dios-Caballero, J.; Pérez-Viso, B.; Salgado, S.; Lanza, V.F.; Cantón, R.; Baquero, F.; Prieto, M.A.; del Campo, R. Strain-specific predation of Bdellovibrio bacteriovorus on Pseudomonas aeruginosa with a higher range for cystic fibrosis than for bacteremia isolates. Sci. Rep., 2022, 12(1), 10523.
[http://dx.doi.org/10.1038/s41598-022-14378-5] [PMID: 35732651]
[56]
Atterbury, R.J.; Hobley, L.; Till, R.; Lambert, C.; Capeness, M.J.; Lerner, T.R.; Fenton, A.K.; Barrow, P.; Sockett, R.E. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl. Environ. Microbiol., 2011, 77(16), 5794-5803.
[http://dx.doi.org/10.1128/AEM.00426-11] [PMID: 21705523]
[57]
Findlay, J.S.; Flick-Smith, H.C.; Keyser, E.; Cooper, I.A.; Williamson, E.D.; Oyston, P.C.F. Predatory bacteria can protect SKH-1 mice from a lethal plague challenge. Sci. Rep., 2019, 9(1), 7225.
[http://dx.doi.org/10.1038/s41598-019-43467-1] [PMID: 31076594]
[58]
Shanks, R.M.Q.; Davra, V.R.; Romanowski, E.G.; Brothers, K.M.; Stella, N.A.; Godboley, D.; Kadouri, D.E. An eye to a kill: Using predatory bacteria to control gram-negative pathogens associated with ocular infections. PLoS One, 2013, 8(6), e66723.
[http://dx.doi.org/10.1371/journal.pone.0066723] [PMID: 23824756]
[59]
Jang, H.; Choi, S.Y.; Mun, W.; Jeong, S.H.; Mitchell, R.J. Predation of colistin- and carbapenem-resistant bacterial pathogenic populations and their antibiotic resistance genes in simulated microgravity. Microbiol. Res., 2022, 255, 126941.
[http://dx.doi.org/10.1016/j.micres.2021.126941] [PMID: 34915266]
[60]
Hespell, R.B.; Rosson, R.A.; Thomashow, M.F.; Rittenberg, S.C. Respiration of Bdellovibrio bacteriovorus strain 109J and its energy substrates for intraperiplasmic growth. J. Bacteriol., 1973, 113(3), 1280-1288.
[http://dx.doi.org/10.1128/jb.113.3.1280-1288.1973] [PMID: 4570779]
[61]
Markelova, N.Y. Interaction of bdellovibrio bacteriovorus with bacteria campylobacter jejuni and helicobacter pylori. Microbiology, 2010, 79(6), 777-779.
[http://dx.doi.org/10.1134/S0026261710060093] [PMID: 21774160]
[62]
Suresh, M.S.; Rai, D.; Raj, J.M.; Premanath, R.; M, D. Predatory efficacy of Bdellovibrio stolpii isolated from the wastewater sources against the multidrug-resistant clinical isolates. J. Water Health, 2023, 21(2), 147-159.
[http://dx.doi.org/10.2166/wh.2023.136]
[63]
Gophna, U.; Charlebois, R.L.; Doolittle, W.F. Ancient lateral gene transfer in the evolution of Bdellovibrio bacteriovorus. Trends Microbiol., 2006, 14(2), 64-69.
[http://dx.doi.org/10.1016/j.tim.2005.12.008] [PMID: 16413191]
[64]
Gupta, S.; Lemenze, A.; Donnelly, R.J.; Connell, N.D.; Kadouri, D.E. Keeping it together: Absence of genetic variation and DNA incorporation by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus during predation. Res. Microbiol., 2018, 169(4-5), 237-243.
[http://dx.doi.org/10.1016/j.resmic.2018.03.002] [PMID: 29751066]
[65]
Anderson, G.G.; O’Toole, G.A. Innate and induced resistance mechanisms of bacterial biofilms. Curr. Top. Microbiol. Immunol., 2008, 322, 85-105.
[http://dx.doi.org/10.1007/978-3-540-75418-3_5] [PMID: 18453273]
[66]
Núñez, M.E.; Martin, M.O.; Chan, P.H.; Spain, E.M. Predation, death, and survival in a biofilm: Bdellovibrio investigated by atomic force microscopy. Colloids Surf. B Biointerfaces, 2005, 42(3-4), 263-271.
[http://dx.doi.org/10.1016/j.colsurfb.2005.03.003] [PMID: 15893228]
[67]
Donlan, R.M. Biofilms on central venous catheters: Is eradication possible? Curr. Top. Microbiol. Immunol., 2008, 322, 133-161.
[http://dx.doi.org/10.1007/978-3-540-75418-3_7] [PMID: 18453275]
[68]
Kadouri, D.; O’Toole, G.A. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl. Environ. Microbiol., 2005, 71(7), 4044-4051.
[http://dx.doi.org/10.1128/AEM.71.7.4044-4051.2005] [PMID: 16000819]
[69]
Dashiff, A.; Kadouri, D.E. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol. Oral Microbiol., 2011, 26(1), 19-34.
[http://dx.doi.org/10.1111/j.2041-1014.2010.00592.x] [PMID: 21214870]
[70]
Chanyi, R.M.; Koval, S.F.; Brooke, J.S. Stenotrophomonas maltophilia biofilm reduction by Bdellovibrio exovorus. Environ. Microbiol. Rep., 2016, 8(3), 343-351.
[http://dx.doi.org/10.1111/1758-2229.12384] [PMID: 26929093]
[71]
Iebba, V.; Santangelo, F.; Totino, V.; Nicoletti, M.; Gagliardi, A.; De Biase, R.V.; Cucchiara, S.; Nencioni, L.; Conte, M.P.; Schippa, S. Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS One, 2013, 8(4), e61608.
[http://dx.doi.org/10.1371/journal.pone.0061608] [PMID: 23613881]
[72]
Mukherjee, S.; Brothers, K.M.; Shanks, R.M.Q.; Kadouri, D.E. Visualizing bdellovibrio bacteriovorus by using the tdtomato fluorescent protein. Appl. Environ. Microbiol., 2016, 82(6), 1653-1661.
[http://dx.doi.org/10.1128/AEM.03611-15] [PMID: 26712556]
[73]
Bonfiglio, G.; Neroni, B.; Radocchia, G.; Pompilio, A.; Mura, F.; Trancassini, M.; Di Bonaventura, G.; Pantanella, F.; Schippa, S. Growth control of adherent-invasive escherichia coli (AIEC) by the Predator Bacteria Bdellovibrio bacteriovorus: A new therapeutic approach for crohn’s disease patients. Microorganisms, 2019, 8(1), 17.
[http://dx.doi.org/10.3390/microorganisms8010017] [PMID: 31861852]
[74]
Gupta, S.; Tang, C.; Tran, M.; Kadouri, D.E. Effect of predatory bacteria on human cell lines. PLoS One, 2016, 11(8), e0161242.
[http://dx.doi.org/10.1371/journal.pone.0161242] [PMID: 27579919]
[75]
Monnappa, A.K.; Bari, W.; Choi, S.Y.; Mitchell, R.J. Investigating the responses of human epithelial cells to predatory bacteria. Sci. Rep., 2016, 6(1), 33485.
[http://dx.doi.org/10.1038/srep33485] [PMID: 27629536]
[76]
Raghunathan, D.; Radford, P.M.; Gell, C.; Negus, D.; Moore, C.; Till, R.; Tighe, P.J.; Wheatley, S.P.; Martinez-Pomares, L.; Sockett, R.E.; Tyson, J. Engulfment, persistence and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential. Sci. Rep., 2019, 9(1), 4293.
[http://dx.doi.org/10.1038/s41598-019-40223-3] [PMID: 30862785]
[77]
Shatzkes, K.; Chae, R.; Tang, C.; Ramirez, G.C.; Mukherjee, S.; Tsenova, L.; Connell, N.D.; Kadouri, D.E. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model. Sci. Rep., 2015, 5(1), 12899.
[http://dx.doi.org/10.1038/srep12899] [PMID: 26250699]
[78]
Shatzkes, K.; Tang, C.; Singleton, E.; Shukla, S.; Zuena, M.; Gupta, S.; Dharani, S.; Rinaggio, J.; Connell, N.D.; Kadouri, D.E. Effect of predatory bacteria on the gut bacterial microbiota in rats. Sci. Rep., 2017, 7(1), 43483.
[http://dx.doi.org/10.1038/srep43483] [PMID: 28262674]
[79]
Marine, E.; Milner, D.S.; Lambert, C.; Sockett, R.E.; Pos, K.M. A novel method to determine antibiotic sensitivity in Bdellovibrio bacteriovorus reveals a DHFR-dependent natural trimethoprim resistance. Sci. Rep., 2020, 10(1), 5315.
[http://dx.doi.org/10.1038/s41598-020-62014-x] [PMID: 32210253]
[80]
Alonso, A.; Campanario, E.; Martínez, J.L. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology, 1999, 145(10), 2857-2862.
[http://dx.doi.org/10.1099/00221287-145-10-2857] [PMID: 10537207]
[81]
Yahav, D.; Shepshelovich, D.; Tau, N. Cost analysis of new antibiotics to treat multidrug-resistant bacterial infections: Mind the gap. Infect. Dis. Ther., 2021, 10(1), 621-630.
[http://dx.doi.org/10.1007/s40121-021-00412-y] [PMID: 33594649]
[82]
Westergaard, J.M.; Kramer, T.T. Bdellovibrio and the intestinal flora of vertebrates. Appl. Environ. Microbiol., 1977, 34(5), 506-511.
[http://dx.doi.org/10.1128/aem.34.5.506-511.1977] [PMID: 337896]
[83]
Jackson, L.; Whiting, R.C. Reduction of an escherichia coli K12 population by bdellovibrio bacteriovorus under various In Vitro conditions of parasite:Host ratio, temperature, or pH. J. Food Prot., 1992, 55(11), 859-862.
[http://dx.doi.org/10.4315/0362-028X-55.11.859] [PMID: 31084062]
[84]
Crothers, S.F.; Robinson, J. Changes in the permeability of Escherichia coli during parasitization by Bdellovibrio bacteriovorus. Can. J. Microbiol., 1971, 17(5), 689-697.
[http://dx.doi.org/10.1139/m71-111] [PMID: 4932409]
[85]
Chu, W.H.; Zhu, W. Isolation of Bdellovibrio as biological therapeutic agents used for the treatment of Aeromonas hydrophila infection in fish. Zoonoses Public Health, 2010, 57(4), 258-264.
[http://dx.doi.org/10.1111/j.1863-2378.2008.01224.x] [PMID: 19486499]
[86]
McConnell, E.L.; Basit, A.W.; Murdan, S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J. Pharm. Pharmacol., 2010, 60(1), 63-70.
[http://dx.doi.org/10.1211/jpp.60.1.0008] [PMID: 18088506]
[87]
Maier, K.J.; Tullis, R.E. The effects of diet and digestive cycle on the gastrointestinal tract pH values in the goldfish, Carassius auratus L., Mozambique tilapia, Oreochromis mossambicus (Peters), and channel catfish, Ictalurus punctatus (Rafinesque). J. Fish Biol., 1984, 25(2), 151-165.
[http://dx.doi.org/10.1111/j.1095-8649.1984.tb04862.x]
[88]
Begley, M.; Gahan, C.G.M.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev., 2005, 29(4), 625-651.
[http://dx.doi.org/10.1016/j.femsre.2004.09.003] [PMID: 16102595]
[89]
Williams, L.E.; Cullen, N.; DeGiorgis, J.A.; Martinez, K.J.; Mellone, J.; Oser, M.; Wang, J.; Zhang, Y. Variation in genome content and predatory phenotypes between Bdellovibrio sp. NC01 isolated from soil and B. bacteriovorus type strain HD100. Microbiology, 2019, 165(12), 1315-1330.
[http://dx.doi.org/10.1099/mic.0.000861] [PMID: 31592759]
[90]
Shatzkes, K.; Singleton, E.; Tang, C.; Zuena, M.; Shukla, S.; Gupta, S.; Dharani, S.; Onyile, O.; Rinaggio, J.; Connell, N.D.; Kadouri, D.E. Predatory bacteria attenuate klebsiella pneumoniae burden in rat lungs. MBio, 2016, 7(6), e01847-e16.
[http://dx.doi.org/10.1128/mBio.01847-16] [PMID: 27834203]
[91]
Russo, R.; Kolesnikova, I.; Kim, T.; Gupta, S.; Pericleous, A.; Kadouri, D.; Connell, N. Susceptibility of virulent yersinia pestis bacteria to predator bacteria in the lungs of mice. Microorganisms, 2018, 7(1), 2.
[http://dx.doi.org/10.3390/microorganisms7010002] [PMID: 30577606]
[92]
Willis, A.R.; Moore, C.; Mazon-Moya, M.; Krokowski, S.; Lambert, C.; Till, R.; Mostowy, S.; Sockett, R.E. Injections of predatory bacteria work alongside host immune cells to treat shigella infection in zebrafish larvae. Curr. Biol., 2016, 26(24), 3343-3351.
[http://dx.doi.org/10.1016/j.cub.2016.09.067] [PMID: 27889262]
[93]
Masud, S.; Prajsnar, T.K.; Torraca, V.; Lamers, G.E.M.; Benning, M.; Van Der Vaart, M.; Meijer, A.H. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model. Autophagy, 2019, 15(5), 796-812.
[http://dx.doi.org/10.1080/15548627.2019.1569297] [PMID: 30676840]
[94]
Ke, Y.; Chen, Z.; Yang, R. Yersinia pestis: Mechanisms of entry into and resistance to the host cell. Front. Cell. Infect. Microbiol., 2013, 3(DEC), 106.
[http://dx.doi.org/10.3389/fcimb.2013.00106] [PMID: 24400226]
[95]
Tajabadi, F.H.; Karimian, S.M.; Mohsenipour, Z.; Mohammadi, S.; Salehi, M.; Sattarzadeh, M.; Fakhari, S.; Momeni, M.; Dahmardehei, M.; Feizabadi, M.M. Biocontrol treatment: Application of bdellovibrio bacteriovorus HD100 against burn wound infection caused by pseudomonas aeroginosa in mice. Burns, 2022.
[http://dx.doi.org/10.1016/j.burns.2022.08.020] [PMID: 36116995]
[96]
Silva, P.H.F.; Oliveira, L.F.F.; Cardoso, R.S.; Ricoldi, M.S.T.; Figueiredo, L.C.; Salvador, S.L.; Palioto, D.B.; Furlaneto, F.A.C.; Messora, M.R. The impact of predatory bacteria on experimental periodontitis. J. Periodontol., 2019, 90(9), 1053-1063.
[http://dx.doi.org/10.1002/JPER.18-0485] [PMID: 30828815]
[97]
Garlet, G.P. Destructive and protective roles of cytokines in periodontitis: A re-appraisal from host defense and tissue destruction viewpoints. J. Dent. Res., 2010, 89(12), 1349-1363.
[http://dx.doi.org/10.1177/0022034510376402] [PMID: 20739705]
[98]
Graves, D. Cytokines that promote periodontal tissue destruction. J. Periodontol., 2008, 79(8s), 1585-1591.
[http://dx.doi.org/10.1902/jop.2008.080183] [PMID: 18673014]
[99]
Silva, P.H.F.; Oliveira, L.F.F.; Cardoso, R.S.; Santana, S.I.; Casarin, R.C.; Ervolino, E.; Salvador, S.L.; Palioto, D.B.; Furlaneto, F.A.C.; Messora, M.R. Effects of bdellovibrio bacteriovorus HD100 on experimental periodontitis in rats. Mol. Oral Microbiol., 2022, 38(2), 158-170.
[http://dx.doi.org/10.1111/omi.12402] [PMID: 36495122]
[100]
Koval, S.F.; Hynes, S.H. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J. Bacteriol., 1991, 173(7), 2244-2249.
[http://dx.doi.org/10.1128/jb.173.7.2244-2249.1991] [PMID: 2007549]
[101]
Gerbino, E.; Carasi, P.; Mobili, P.; Serradell, M.A.; Gómez-Zavaglia, A. Role of S-layer proteins in bacteria. World J. Microbiol. Biotechnol., 2015, 31(12), 1877-1887.
[http://dx.doi.org/10.1007/s11274-015-1952-9] [PMID: 26410425]
[102]
Koval, S.F.; Bayer, M.E. Bacterial capsules: No barrier against Bdellovibrio. Microbiology, 1997, 143(3), 749-753.
[http://dx.doi.org/10.1099/00221287-143-3-749] [PMID: 9084160]
[103]
Schembri, M.A.; Dalsgaard, D.; Klemm, P. Capsule shields the function of short bacterial adhesins. J. Bacteriol., 2004, 186(5), 1249-1257.
[http://dx.doi.org/10.1128/JB.186.5.1249-1257.2004] [PMID: 14973035]
[104]
Shemesh, Y.; Jurkevitch, E. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ. Microbiol., 2004, 6(1), 12-18.
[http://dx.doi.org/10.1046/j.1462-2920.2003.00530.x] [PMID: 14686937]
[105]
Aharon, E.; Mookherjee, A.; Pérez-Montaño, F.; Mateus da Silva, G.; Sathyamoorthy, R.; Burdman, S.; Jurkevitch, E. Secretion systems play a critical role in resistance to predation by Bdellovibrio bacteriovorus. Res. Microbiol., 2021, 172(7-8), 103878.
[http://dx.doi.org/10.1016/j.resmic.2021.103878] [PMID: 34492337]
[106]
Romanowski, E.G.; Gupta, S.; Pericleous, A.; Kadouri, D.E.; Shanks, R.M.Q. Clearance of gram-negative bacterial pathogens from the ocular surface by predatory bacteria. Antibiotics, 2021, 10(7), 810.
[http://dx.doi.org/10.3390/antibiotics10070810] [PMID: 34356731]
[107]
Boileau, M.J.; Mani, R.; Breshears, M.A.; Gilmour, M.; Taylor, J.D.; Clinkenbeard, K.D. Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis. Am. J. Vet. Res., 2016, 77(9), 1017-1028.
[http://dx.doi.org/10.2460/ajvr.77.9.1017] [PMID: 27580114]
[108]
Cui, M.; Zheng, M.; Wiraja, C.; Chew, S.W.T.; Mishra, A.; Mayandi, V.; Lakshminarayanan, R.; Xu, C. Ocular delivery of predatory bacteria with cryomicroneedles against eye infection. Adv. Sci., 2021, 8(21), 2102327.
[http://dx.doi.org/10.1002/advs.202102327] [PMID: 34494724]
[109]
Doan, T.; Akileswaran, L.; Andersen, D.; Johnson, B.; Ko, N.; Shrestha, A.; Shestopalov, V.; Lee, C.S.; Lee, A.Y.; Van Gelder, R.N. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva. Invest. Ophthalmol. Vis. Sci., 2016, 57(13), 5116-5126.
[http://dx.doi.org/10.1167/iovs.16-19803] [PMID: 27699405]
[110]
Im, H.; Son, S.; Mitchell, R.J.; Ghim, C.M. Serum albumin and osmolality inhibit Bdellovibrio bacteriovorus predation in human serum. Sci. Rep., 2017, 7(1), 5896.
[http://dx.doi.org/10.1038/s41598-017-06272-2] [PMID: 28725056]
[111]
Schwudke, D.; Linscheid, M.; Strauch, E.; Appel, B.; Zähringer, U.; Moll, H.; Müller, M.; Brecker, L.; Gronow, S.; Lindner, B. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing α-D-Mannoses that replace phosphate residues: similarities and differences between the lipid As and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J. Biol. Chem., 2003, 278(30), 27502-27512.
[http://dx.doi.org/10.1074/jbc.M303012200] [PMID: 12743115]
[112]
Chonn, A.; Cullis, P.R.; Devine, D.V. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol., 1991, 146(12), 4234-4241.
[http://dx.doi.org/10.4049/jimmunol.146.12.4234] [PMID: 2040798]
[113]
Hobley, L.; Summers, J.K.; Till, R.; Milner, D.S.; Atterbury, R.J.; Stroud, A.; Capeness, M.J.; Gray, S.; Leidenroth, A.; Lambert, C.; Connerton, I.; Twycross, J.; Baker, M.; Tyson, J.; Kreft, J.U.; Sockett, R.E. Dual predation by bacteriophage and bdellovibrio bacteriovorus can eradicate escherichia coli prey in situations where single predation cannot. J. Bacteriol., 2020, 202(6), e00629-e19.
[http://dx.doi.org/10.1128/JB.00629-19] [PMID: 31907203]
[114]
Im, H.; Choi, S.Y.; Son, S.; Mitchell, R.J. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci. Rep., 2017, 7(1), 14415.
[http://dx.doi.org/10.1038/s41598-017-14567-7] [PMID: 29089523]
[115]
Jurkevitch, E.; Minz, D.; Ramati, B.; Barel, G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl. Environ. Microbiol., 2000, 66(6), 2365-2371.
[http://dx.doi.org/10.1128/AEM.66.6.2365-2371.2000] [PMID: 10831412]
[116]
Lambert, C.; Sockett, R.E. Nucleases in Bdellovibrio bacteriovorus contribute towards efficient self-biofilm formation and eradication of preformed prey biofilms. FEMS Microbiol. Lett., 2013, 340(2), 109-116.
[http://dx.doi.org/10.1111/1574-6968.12075] [PMID: 23297829]
[117]
Bratanis, E.; Andersson, T.; Lood, R.; Bukowska-Faniband, E. Biotechnological potential of bdellovibrio and like organisms and their secreted enzymes. Front. Microbiol., 2020, 11, 662.
[http://dx.doi.org/10.3389/fmicb.2020.00662] [PMID: 32351487]
[118]
Dwidar, M.; Yokobayashi, Y. Controlling bdellovibrio bacteriovorus gene expression and predation using synthetic riboswitches. ACS Synth. Biol., 2017, 6(11), 2035-2041.
[http://dx.doi.org/10.1021/acssynbio.7b00171] [PMID: 28812884]
[119]
Jurkevitch, E. Isolation and classification of Bdellovibrio and like organisms. Curr. Protoc. Microbiol., 2012, 26(1)(26), 1.
[http://dx.doi.org/10.1002/9780471729259.mc07b01s26] [PMID: 22875568]
[120]
Feng, S.; Tan, C.H.; Cohen, Y.; Rice, S.A. Isolation of Bdellovibrio bacteriovorus from a tropical wastewater treatment plant and predation of mixed species biofilms assembled by the native community members. Environ. Microbiol., 2016, 18(11), 3923-3931.
[http://dx.doi.org/10.1111/1462-2920.13384] [PMID: 27328268]
[121]
Cao, H.; An, J.; Zheng, W.; He, S. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J. Invertebr. Pathol., 2015, 130, 13-20.
[http://dx.doi.org/10.1016/j.jip.2015.06.002] [PMID: 26146226]
[122]
Cao, H.; He, S.; Lu, L.; Yang, X.; Chen, B. Identification of a Proteus penneri isolate as the causal agent of red body disease of the cultured white shrimp Penaeus vannamei and its control with Bdellovibrio bacteriovorus. Antonie van Leeuwenhoek, 2014, 105(2), 423-430.
[http://dx.doi.org/10.1007/s10482-013-0079-y] [PMID: 24271474]
[123]
Qi, Z.; Zhang, X.H.; Boon, N.; Bossier, P. Probiotics in aquaculture of China: Current state, problems and prospect. Aquaculture, 2009, 290(1-2), 15-21.
[http://dx.doi.org/10.1016/j.aquaculture.2009.02.012]
[124]
Huang, X.; Gu, Y.; Zhou, H.; Xu, L.; Cao, H.; Gai, C. Acinetobacter venetianus, a potential pathogen of red leg disease in freshwater-cultured whiteleg shrimp Penaeus vannamei. Aquacult. Rep., 2020, 18, 100543.
[http://dx.doi.org/10.1016/j.aqrep.2020.100543]
[125]
Liu, Y.; Zhuang, B.; Yuan, B.; Zhang, H.; Li, J.; Wang, W.; Li, R.; Du, L.; Ding, P.; Jin, Y. Predatory bacterial hydrogels for topical treatment of infected wounds. Acta Pharm. Sin. B, 2023, 13(1), 315-326.
[http://dx.doi.org/10.1016/j.apsb.2022.05.005] [PMID: 36815028]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy