Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

In silico and In vitro Assessment of Antibacterial Activity, LPS Binding Affinity, and Toxicity of the GKY25 Peptide

Author(s): Parisa Amiri, Mojdeh Hakemi-Vala*, Ahmad Nazarian, Farnoosh Barneh and Kamran Pooshang Bagheri*

Volume 29, Issue 26, 2023

Published on: 06 September, 2023

Page: [2101 - 2109] Pages: 9

DOI: 10.2174/1381612829666230905143544

Price: $65

conference banner
Abstract

Introduction: Extensively and multi-drug resistant isolates of bacteria (MDR, XDR) have caused significant health problems and are responsible for high morbidity and mortality as well. In this critical condition, the discovery, design, or development of new antibiotics is of great concern. According to this necessity, antimicrobial peptides (AMPs) suggested as promising agents. Accordingly, this study aims to evaluate the GKY25 peptide to develop its future antibacterial applications as well as confirmation of LPS neutralization.

Methods: Predictions of 3D structure and helical wheel projection analysis of the peptide were performed by ITASSER and Heliquest servers. Binding affinity and antibacterial activity were performed using molecular docking and CAMPR4, respectively, followed by experimental binding assay as well as in vitro antibacterial assay.

Results: GKY25 was predicted as an alpha-helical peptide, and its helicity showed probable projection of hydrophobic and positively-charged amino acid residues. Docking studies showed binding affinity of GKY25 peptide to gram-positive and outer and inner gram-negative bacterial membranes as -5.7, -6.8, and -4 kcal/mole, respectively. CAMPR4 analysis predicted the peptide as an AMP. Experimental binding assay showed that the peptide binds LPS immediately and their interaction was observed at 274 nm.

Conclusion: Gathering all in silico and in vitro data together, GKY25 is a good drug lead that could be examined further using clinical isolates of gram-negative bacteria in vitro.

Keywords: GKY25 peptide, antimicrobial peptide, molecular docking, antibacterial activity, LPS binding affinity, toxicity.

[1]
Longhi C, Maurizi L, Conte AL, et al. Extraintestinal pathogenic Escherichia coli: Beta-lactam antibiotic and heavy metal resistance. Antibiotics (Basel) 2022; 11(3): 328.
[http://dx.doi.org/10.3390/antibiotics11030328] [PMID: 35326791]
[2]
Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem-resistant gram-negative bacteria. Front Cell Infect Microbiol 2022; 12: 823684.
[http://dx.doi.org/10.3389/fcimb.2022.823684] [PMID: 35372099]
[3]
French G L. 2005; Clinical impact and relevance of antibiotic resistance. Adv Drug Deliv Rev 2005; 57(10): 1514-27.
[http://dx.doi.org/10.1016/j.addr.2005.04.005]
[4]
Brusselaers N, Vogelaers D, Blot S. The rising problem of antimicrobial resistance in the intensive care unit. Ann Intensive Care 2011; 1(1): 47.
[http://dx.doi.org/10.1186/2110-5820-1-47] [PMID: 22112929]
[5]
Pacor S, Giangaspero A, Bacac M, Sava G, Tossi A. Analysis of the cytotoxicity of synthetic antimicrobial peptides on mouse leucocytes: Implications for systemic use. J Antimicrob Chemother 2002; 50(3): 339-48.
[http://dx.doi.org/10.1093/jac/dkf141] [PMID: 12205058]
[6]
Welling MM, Paulusma-Annema A, Balter HS, Pauwels EKJ, Nibbering PH. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med Mol Imaging 2000; 27(3): 292-301.
[http://dx.doi.org/10.1007/s002590050036] [PMID: 10774881]
[7]
Kalle M, Papareddy P, Kasetty G, et al. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin- mediated shock and Pseudomonas aeruginosa sepsis. PLoS One 2012; 7(12): e51313.
[http://dx.doi.org/10.1371/journal.pone.0051313] [PMID: 23272096]
[8]
Hansen FC, Kalle-Brune M, van der Plas MJA, et al. The thrombin-derived host defense peptide GKY25 inhibits endotoxin-induced responses through interactions with lipopolysaccharide and macrophages/monocytes. J Immunol 2015; 194(11): 5397-406.
[http://dx.doi.org/10.4049/jimmunol.1403009] [PMID: 25911750]
[9]
Nagant C, Pitts B, Nazmi K, et al. Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments. Antimicrob Agents Chemother 2012; 56(11): 5698-708.
[http://dx.doi.org/10.1128/AAC.00918-12] [PMID: 22908164]
[10]
Jiménez MA, Barrachi-Saccilotto AC, Valdivia E, Maqueda M, Rico M. Design, NMR characterization and activity of a 21-residue peptide fragment of bacteriocin AS-48 containing its putative membrane interacting region. J Pept Sci 2005; 11(1): 29-36.
[http://dx.doi.org/10.1002/psc.589] [PMID: 15635724]
[11]
Yeung ATY, Gellatly SL, Hancock REW. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 2011; 68(13): 2161-76.
[http://dx.doi.org/10.1007/s00018-011-0710-x] [PMID: 21573784]
[12]
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin ‎Chem 2014; 6: 25-64.
[13]
Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res 2020; 21: 169-76.
[http://dx.doi.org/10.1016/j.jare.2019.10.005] [PMID: 32071785]
[14]
Mirzaei R, Alikhani MY, Arciola CR, et al. Highly synergistic effects of melittin with vancomycin and rifampin against vancomycin and rifampin resistant Staphylococcus epidermidis. Front Microbiol 2022; 13: 869650.
[http://dx.doi.org/10.3389/fmicb.2022.869650] [PMID: 35814659]
[15]
Zarghami V, Ghorbani M, Pooshang Bagheri K, Shokrgozar MA. Melittin antimicrobial peptide thin layer on bone implant chitosan-antibiotic coatings and their bactericidal properties. Mater Chem Phys 2021; 263: 124432.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124432]
[16]
Madanchi H, Akbari S, Shabani AA, et al. Alignment-based design and synthesis of new antimicrobial aurein-derived peptides with improved activity against Gram-negative bacteria and evaluation of their toxicity on human cells. Drug Dev Res 2019; 80(1): 162-70.
[http://dx.doi.org/10.1002/ddr.21503] [PMID: 30593676]
[17]
Bevalian P, Pashaei F, Akbari R, Pooshang Bagheri K. Eradication of vancomycin-resistant Staphylococcus aureus on a mouse model of third-degree burn infection by melittin: An antimicrobial peptide from bee venom. Toxicon 2021; 199: 49-59.
[18]
Renata Arciola C, Sedighi I, Yousefimashouf R, Pooshang Bagheri K, Yousef Alikhani M, Mirzaei R. Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. Biomed Pharmacother 2022; 147: 112670.
[19]
Akbari R, Hakemi Vala M, Sabatier JM, Pooshang Bagheri K. Fast killing kinetics, significant therapeutic index, and high stability of melittin-derived antimicrobial peptide. Amino Acids 2022; 54(9): 1275-85.
[http://dx.doi.org/10.1007/s00726-022-03180-2] [PMID: 35779173]
[20]
Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial peptides as anticancer agents: Functional properties and biological activities. Molecules 2020; 25(12): 2850.
[http://dx.doi.org/10.3390/molecules25122850] [PMID: 32575664]
[21]
Luo Y, Song Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci 2021; 22(21): 11401.
[http://dx.doi.org/10.3390/ijms222111401] [PMID: 34768832]
[22]
Memariani H, Shahbazzadeh D, Sabatier JM, Pooshang Bagheri K. Membrane-active peptide PV3 efficiently eradicates multidrug-resistant Pseudomonas aeruginosa in a mouse model of burn infection. Acta Pathol Microbiol Scand Suppl 2018; 126(2): 114-22.
[http://dx.doi.org/10.1111/apm.12791] [PMID: 29327480]
[23]
Shams Khozani R. Anti-biofilm effect of melittin peptide on clinical isolates of Pseudomonas aeruginosa isolated from hospital burn infections. Iranian J Infect Dis Trop Med 2020; 25(89): 26-36.
[24]
Zarghami V, Ghorbani M, Bagheri KP, Shokrgozar MA. Prevention the formation of biofilm on orthopedic implants by melittin thin layer on chitosan/bioactive glass/vancomycin coatings J Mater Sci Mater Med 2021; 32(7): 75.
[25]
Wang G, Li X, Wang Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016; 44(D1): D1087-93.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[26]
Madanchi H, Ebrahimi Kiasari R, Seyed Mousavi SJ, Johari B, Shabani AA, Sardari S. Design and synthesis of lipopolysaccharide-binding antimicrobial peptides based on truncated rabbit and human CAP18 peptides and evaluation of their action mechanism. Probiotics Antimicrob Proteins 2020; 12(4): 1582-93.
[http://dx.doi.org/10.1007/s12602-020-09648-5] [PMID: 32445120]
[27]
Pulido D, Nogués MV, Boix E, Torrent M. Lipopolysaccharide neutralization by antimicrobial peptides: A gambit in the innate host defense strategy. J Innate Immun 2012; 4(4): 327-36.
[http://dx.doi.org/10.1159/000336713] [PMID: 22441679]
[28]
Aghazadeh H, Ganjali Koli M, Ranjbar R, Pooshang Bagheri K. Interactions of GF-17 derived from LL-37 antimicrobial peptide with bacterial membranes: A molecular dynamics simulation study. J Comput Aided Mol Des 2020; 34(12): 1261-73.
[http://dx.doi.org/10.1007/s10822-020-00348-4] [PMID: 33009624]
[29]
Juba M, Porter D, Dean S, Gillmor S, Bishop B. Characterization and performance of short cationic antimicrobial peptide isomers. Biopolymers 2013; 100(4): 387-401.
[http://dx.doi.org/10.1002/bip.22244] [PMID: 23532931]
[30]
Saravanan R, Holdbrook DA, Petrlova J, et al. Structural basis for endotoxin neutralisation and anti-inflammatory activity of thrombin-derived C-terminal peptides. Nat Commun 2018; 9(1): 2762.
[http://dx.doi.org/10.1038/s41467-018-05242-0] [PMID: 30018388]
[31]
Saravanan R, Choong YK, Lim CH, Lim LM, Petrlova J, Schmidtchen A. Cell-free DNA promotes thrombin autolysis and generation of thrombin-derived C-terminal fragments. Front Immunol 2021; 12: 593020.
[http://dx.doi.org/10.3389/fimmu.2021.593020] [PMID: 33717072]
[32]
Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server.The Proteomics Protocols Handbook. New Jersey: Humana Press 2005; pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[33]
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: Protein structure and function prediction. Nat Methods 2015; 12(1): 7-8.
[http://dx.doi.org/10.1038/nmeth.3213] [PMID: 25549265]
[34]
Huang CC, Meng EC, Morris JH, Pettersen EF, Ferrin TE. Enhancing UCSF Chimera through web services. Nucleic Acids Res 2014; 42(Web Server issue): W478-84.
[http://dx.doi.org/10.1093/nar/gku377]
[35]
Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics 2008; 24(18): 2101-2.
[http://dx.doi.org/10.1093/bioinformatics/btn392] [PMID: 18662927]
[36]
Trott O, Olson A J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 2010; 31(2): 455-61.
[37]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[38]
[39]
Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J Comput Chem 2008; 29(11): 1859-65.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[40]
Lindberg B, Lindh F, Lönngren J, Lindberg AA, Svenson SB. Structural studies of the O-specific side-chain of the lipopolysaccharide from Escherichia coli O 55. Carbohydr Res 1981; 97(1): 105-12.
[http://dx.doi.org/10.1016/S0008-6215(00)80528-5] [PMID: 7030487]
[41]
Micciulla S, Gerelli Y, Schneck E. Structure and conformation of wild-type bacterial lipopolysaccharide layers at air-water interfaces. Biophys J 2019; 116(7): 1259-69.
[http://dx.doi.org/10.1016/j.bpj.2019.02.020] [PMID: 30878200]
[42]
Singer SJ, Nicolson GL. The structure and chemistry of mammalian cell membranes. Am J Pathol 1971; 65(2): 427-37.
[PMID: 5134891]
[43]
Gawde U, Chakraborty S, Waghu FH, et al. CAMPR4: A database of natural and synthetic antimicrobial peptides. Nucleic Acids Res 2023; 51(D1): D377-83.
[44]
Wei L, Ye X, Sakurai T, Mu Z, Wei L. ToxIBTL: Prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics 2022; 38(6): 1514-24.
[http://dx.doi.org/10.1093/bioinformatics/btac006] [PMID: 34999757]
[45]
CLSI. Performance standards for antimicrobial susceptibility testing, M100. (31st ed.), Wayne, PA: Clinical and Laboratory Standards Institute 2021.
[46]
Nowak MG, Skwarecki AS, Milewska MJ. Amino acid based antimicrobial agents – synthesis and properties. ChemMedChem 2021; 16(23): 3513-44.
[http://dx.doi.org/10.1002/cmdc.202100503] [PMID: 34596961]
[47]
Saint Jean KD, Henderson KD, Chrom CL, Abiuso LE, Renn LM, Caputo GA. Effects of hydrophobic amino acid substitutions on antimicrobial peptide behavior. Probiotics Antimicrob Proteins 2018; 10(3): 408-19.
[http://dx.doi.org/10.1007/s12602-017-9345-z] [PMID: 29103131]
[48]
Kopeć K, Pędziwiatr M, Gront D, et al. Comparison of α-helix and β-sheet structure adaptation to a quantum dot geometry: Toward the identification of an optimal motif for a protein nanoparticle cover. ACS Omega 2019; 4(8): 13086-99.
[http://dx.doi.org/10.1021/acsomega.9b00505] [PMID: 31460436]
[49]
Abrusán G, Marsh JA. Alpha helices are more robust to mutations than beta strands. PLOS Comput Biol 2016; 12(12): e1005242.
[http://dx.doi.org/10.1371/journal.pcbi.1005242] [PMID: 27935949]
[50]
Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Biopolymers 2000; 55(1): 4-30.
[http://dx.doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M] [PMID: 10931439]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy