Research Article

鉴定用于卵巢癌预后预测的新型 8-NK 细胞相关基因特征

卷 31, 期 12, 2024

发表于: 06 September, 2023

页: [1578 - 1594] 页: 17

弟呕挨: 10.2174/0929867331666230831101847

价格: $65

conference banner
摘要

背景:卵巢癌(OVC)是世界上最常见、最昂贵的肿瘤,总体生存率和预后较差。 本研究旨在探讨自然杀伤细胞相关基因对OVC治疗的预后价值。 方法:从 TCGA-OVC 数据集(训练数据集)和 GSE51800 数据集(验证数据集)获取 RNA-seq 和临床信息。 与 NK 细胞相关的基因是从 immPort 数据集中获得的。 此外,ConsensusClusterPlus 促进了分子亚型的筛选。 随后通过LASSO分析建立风险模型,并通过CIBERSORT、ssGSEA、ESTIMATE和TIDE算法检测免疫浸润和免疫治疗。 结果:根据与预后相关的23个NK细胞相关基因,TCGA-OVC样本分为两类,即C1和C2。 其中,C1 具有更好的生存结果以及增强的免疫浸润和肿瘤干细胞。 此外,它更适合免疫治疗,对传统化疗药物也敏感。 通过GSE51800数据集构建并验证了八基因预后模型。 此外,在低风险患者中观察到免疫细胞的高浸润水平。 低风险样本也受益于免疫疗法和化疗药物。 最后,应用列线图和 ROC 曲线来验证模型的准确性。 结论:本研究确定了一个 RiskScore 特征,可以对不同浸润水平、免疫治疗和化疗药物的患者进行分层。 我们的研究为精确评估OVC治疗和预后提供了基础。

关键词: 自然杀伤细胞,卵巢癌,预后,免疫浸润,肿瘤干细胞,基因特征。

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Lheureux, S.; Gourley, C.; Vergote, I.; Oza, A.M. Epithelial ovarian cancer. Lancet, 2019, 393(10177), 1240-1253.
[http://dx.doi.org/10.1016/S0140-6736(18)32552-2] [PMID: 30910306]
[3]
Giampaolino, P.; Foreste, V.; Della Corte, L.; Di Filippo, C.; Iorio, G.; Bifulco, G. Role of biomarkers for early detection of ovarian cancer recurrence. Gland Surg., 2020, 9(4), 1102-1111.
[http://dx.doi.org/10.21037/gs-20-544] [PMID: 32953625]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Chiossone, L.; Dumas, P.Y.; Vienne, M.; Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol., 2018, 18(11), 671-688.
[http://dx.doi.org/10.1038/s41577-018-0061-z] [PMID: 30209347]
[6]
Hoogstad-van Evert, J.S.; Maas, R.J.; van der Meer, J.; Cany, J.; van der Steen, S.; Jansen, J.H.; Miller, J.S.; Bekkers, R.; Hobo, W.; Massuger, L.; Dolstra, H. Peritoneal NK cells are responsive to IL-15 and percentages are correlated with outcome in advanced ovarian cancer patients. Oncotarget, 2018, 9(78), 34810-34820.
[http://dx.doi.org/10.18632/oncotarget.26199] [PMID: 30410679]
[7]
Lukesova, S.; Vroblova, V.; Tosner, J.; Kopecky, J.; Sedlakova, I.; Čermáková, E.; Vokurkova, D.; Kopecky, O. Comparative study of various subpopulations of cytotoxic cells in blood and ascites from patients with ovarian carcinoma. Contemp. Oncol., 2015, 4(4), 290-299.
[http://dx.doi.org/10.5114/wo.2015.54388] [PMID: 26557777]
[8]
Lai, P.; Rabinowich, H.; Crowley-Nowick, P.A.; Bell, M.C.; Mantovani, G.; Whiteside, T.L. Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin. Cancer Res., 1996, 2(1), 161-173.
[PMID: 9816103]
[9]
Pinto, M.P.; Balmaceda, C.; Bravo, M.L.; Kato, S.; Villarroel, A.; Owen, G.I.; Roa, J.C.; Cuello, M.A.; Ibañez, C. Patient inflammatory status and CD4+/CD8+ intraepithelial tumor lymphocyte infiltration are predictors of outcomes in high-grade serous ovarian cancer. Gynecol. Oncol., 2018, 151(1), 10-17.
[http://dx.doi.org/10.1016/j.ygyno.2018.07.025] [PMID: 30078505]
[10]
Mariya, T.; Hirohashi, Y.; Torigoe, T.; Asano, T.; Kuroda, T.; Yasuda, K.; Mizuuchi, M.; Sonoda, T.; Saito, T.; Sato, N. Prognostic impact of human leukocyte antigen class I expression and association of platinum resistance with immunologic profiles in epithelial ovarian cancer. Cancer Immunol. Res., 2014, 2(12), 1220-1229.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0101] [PMID: 25324403]
[11]
Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst., 2015, 1(6), 417-425.
[http://dx.doi.org/10.1016/j.cels.2015.12.004] [PMID: 26771021]
[12]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[13]
Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573.
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[14]
Engebretsen, S.; Bohlin, J. Statistical predictions with glmnet. Clin. Epigenetics, 2019, 11(1), 123.
[http://dx.doi.org/10.1186/s13148-019-0730-1] [PMID: 31443682]
[15]
Yang, P.; Chen, W.; Xu, H.; Yang, J.; Jiang, J.; Jiang, Y.; Xu, G. Correlation of CCL8 expression with immune cell infiltration of skin cutaneous melanoma: Potential as a prognostic indicator and therapeutic pathway. Cancer Cell Int., 2021, 21(1), 635.
[http://dx.doi.org/10.1186/s12935-021-02350-8] [PMID: 34844613]
[16]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[17]
Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[18]
Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 2014, 9(9), e107468.
[http://dx.doi.org/10.1371/journal.pone.0107468] [PMID: 25229481]
[19]
Oberg, H.H.; Kellner, C.; Gonnermann, D.; Sebens, S.; Bauerschlag, D.; Gramatzki, M.; Kabelitz, D.; Peipp, M.; Wesch, D. Tribody [(HER2)2xCD16] is more effective than trastuzumab in enhancing γδ t cell and natural killer cell cytotoxicity against HER2-expressing cancer cells. Front. Immunol., 2018, 9, 814.
[http://dx.doi.org/10.3389/fimmu.2018.00814] [PMID: 29725336]
[20]
Guzzo, F.; Bellone, S.; Buza, N.; Hui, P.; Carrara, L.; Varughese, J.; Cocco, E.; Betti, M.; Todeschini, P.; Gasparrini, S.; Schwartz, P. E.; Rutherford, T. J.; Angioli, R.; Pecorelli, S.; Santin, A. D. HER2/neu as a potential target for immunotherapy in gynecologic carcinosarcomas. Int. J. Gynecol. Pathol., 2012, 31(3), 211-221.
[21]
Smyth, M.J.; Hayakawa, Y.; Takeda, K.; Yagita, H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat. Rev. Cancer, 2002, 2(11), 850-861.
[http://dx.doi.org/10.1038/nrc928] [PMID: 12415255]
[22]
Kaur, K.; Nanut, M.P.; Ko, M.W.; Safaie, T.; Kos, J.; Jewett, A. Natural killer cells target and differentiate cancer stem-like cells/undifferentiated tumors: Strategies to optimize their growth and expansion for effective cancer immunotherapy. Curr. Opin. Immunol., 2018, 51, 170-180.
[http://dx.doi.org/10.1016/j.coi.2018.03.022] [PMID: 29653339]
[23]
Uppendahl, L.D.; Felices, M.; Bendzick, L.; Ryan, C.; Kodal, B.; Hinderlie, P.; Boylan, K.L.M.; Skubitz, A.P.N.; Miller, J.S.; Geller, M.A. Cytokine-induced memory-like natural killer cells have enhanced function, proliferation, and in vivo expansion against ovarian cancer cells. Gynecol. Oncol., 2019, 153(1), 149-157.
[http://dx.doi.org/10.1016/j.ygyno.2019.01.006] [PMID: 30658847]
[24]
Yahata, T.; Mizoguchi, M.; Kimura, A.; Orimo, T.; Toujima, S.; Kuninaka, Y.; Nosaka, M.; Ishida, Y.; Sasaki, I.; Fukuda-Ohta, Y.; Hemmi, H.; Iwahashi, N.; Noguchi, T.; Kaisho, T.; Kondo, T.; Ino, K. Programmed cell death ligand 1 d isruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Cancer Sci., 2019, 110(4), 1279-1292.
[http://dx.doi.org/10.1111/cas.13958] [PMID: 30702189]
[25]
Dong, W.; Wu, X.; Ma, S.; Wang, Y.; Nalin, A.P.; Zhu, Z.; Zhang, J.; Benson, D.M.; He, K.; Caligiuri, M.A.; Yu, J. The mechanism of Anti–PD-L1 antibody efficacy against PD-L1–negative tumors identifies NK cells expressing PD-L1 as a cytolytic effector. Cancer Discov., 2019, 9(10), 1422-1437.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1259] [PMID: 31340937]
[26]
Klapdor, R.; Wang, S.; Morgan, M.; Dörk, T.; Hacker, U.; Hillemanns, P.; Büning, H.; Schambach, A. Characterization of a novel third-generation anti-CD24-CAR against ovarian cancer. Int. J. Mol. Sci., 2019, 20(3), 660.
[http://dx.doi.org/10.3390/ijms20030660] [PMID: 30717444]
[27]
Hung, C.F.; Xu, X.; Li, L.; Ma, Y.; Jin, Q.; Viley, A.; Allen, C.; Natarajan, P.; Shivakumar, R.; Peshwa, M.V.; Emens, L.A. Development of anti-human mesothelin-targeted chimeric antigen receptor messenger RNA–transfected peripheral blood lymphocytes for ovarian cancer therapy. Hum. Gene Ther., 2018, 29(5), 614-625.
[http://dx.doi.org/10.1089/hum.2017.080] [PMID: 29334771]
[28]
Travers, M.; Brown, S.M.; Dunworth, M.; Holbert, C.E.; Wiehagen, K.R.; Bachman, K.E.; Foley, J.R.; Stone, M.L.; Baylin, S.B.; Casero, R.A., Jr; Zahnow, C.A. DFMO and 5-azacytidine increase M1 macrophages in the tumor microenvironment of murine ovarian cancer. Cancer Res., 2019, 79(13), 3445-3454.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-4018] [PMID: 31088836]
[29]
Siew, Y.Y.; Neo, S.Y.; Yew, H.C.; Lim, S.W.; Ng, Y.C.; Lew, S.M.; Seetoh, W.G.; Seow, S.V.; Koh, H.L. Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity. Int. Immunol., 2015, 27(12), 621-632.
[http://dx.doi.org/10.1093/intimm/dxv041] [PMID: 26138671]
[30]
Gordon, D.J.; Resio, B.; Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet., 2012, 13(3), 189-203.
[http://dx.doi.org/10.1038/nrg3123] [PMID: 22269907]
[31]
Pietragalla, A.; Arcieri, M.; Marchetti, C.; Scambia, G.; Fagotti, A. Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes. Int. J. Gynecol. Cancer, 2020, 30(11), 1803-1810.
[http://dx.doi.org/10.1136/ijgc-2020-001556] [PMID: 32895312]
[32]
Gomes, F.C.; Figueiredo, E.R.L.; Araújo, E.N.D.; Andrade, E.M.D.; Carneiro, C.D.L.; Almeida, G.M.D.; Dias, H.A.A.L.; Teixeira, L.I.B.; Almeida, M.T.; Farias, M.F.D.; Linhares, N.A.; Fonseca, N.L.D.; Pereira, Y.D.S.; Melo-Neto, J.S. Social, genetics and histopathological factors related to Titin (TTN) gene mutation and survival in women with ovarian serous cystadenocarcinoma: Bioinformatics analysis. Genes., 2023, 14(5), 1092.
[http://dx.doi.org/10.3390/genes14051092] [PMID: 37239452]
[33]
Lu, N.; Liu, J.; Xu, M.; Liang, J.; Wang, Y.; Wu, Z.; Xing, Y.; Diao, F. CSMD3 is associated with tumor mutation burden and immune infiltration in ovarian cancer patients. Int. J. Gen. Med., 2021, 14, 7647-7657.
[http://dx.doi.org/10.2147/IJGM.S335592] [PMID: 34764678]
[34]
Akbarzadeh, M.; Akbarzadeh, S.; Majidinia, M. Targeting Notch signaling pathway as an effective strategy in overcoming drug resistance in ovarian cancer. Pathol. Res. Pract., 2020, 216(11), 153158.
[http://dx.doi.org/10.1016/j.prp.2020.153158] [PMID: 32829107]
[35]
Wicks, E.E.; Semenza, G.L. Hypoxia-inducible factors: Cancer progression and clinical translation. J. Clin. Invest., 2022, 132(11), e159839.
[http://dx.doi.org/10.1172/JCI159839] [PMID: 35642641]
[36]
Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer, 2022, 21(1), 104.
[http://dx.doi.org/10.1186/s12943-022-01569-x] [PMID: 35461253]
[37]
Tauriello, D.V.F.; Sancho, E.; Batlle, E. Overcoming TGFβ-mediated immune evasion in cancer. Nat. Rev. Cancer, 2022, 22(1), 25-44.
[http://dx.doi.org/10.1038/s41568-021-00413-6] [PMID: 34671117]
[38]
Wang, K.; Guan, C.; Shang, X.; Ying, X.; Mei, S.; Zhu, H.; Xia, L.; Chai, Z. A bioinformatic analysis: The overexpression and clinical significance of FCGBP in ovarian cancer. Aging., 2021, 13(5), 7416-7429.
[http://dx.doi.org/10.18632/aging.202601] [PMID: 33686968]
[39]
Jiang, E.; He, X.; Chen, X.; Sun, G.; Wu, H.; Wei, Y.; Zhao, X. Expression of CD40 in ovarian cancer and adenovirus-mediated CD40 ligand therapy on ovarian cancer in vitro. Tumori, 2008, 94(3), 356-361.
[http://dx.doi.org/10.1177/030089160809400312] [PMID: 18705404]
[40]
Zong, S.; Xu, P.; Xu, Y.; Guo, Y. A bioinformatics analysis: ZFHX4 is associated with metastasis and poor survival in ovarian cancer. J. Ovarian Res., 2022, 15(1), 90.
[http://dx.doi.org/10.1186/s13048-022-01024-x] [PMID: 35915456]
[41]
Singh, S.K.; Mishra, M.K.; Singh, R. Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. J. Ovarian Res., 2019, 12(1), 42.
[http://dx.doi.org/10.1186/s13048-019-0517-1] [PMID: 31077234]
[42]
Wang, H.; Wang, D.; Gu, T.; Zhu, M.; Cheng, L.; Dai, W. AADAC promotes therapeutic activity of cisplatin and imatinib against ovarian cancer cells. Histol. Histopathol., 2022, 37(9), 899-907.
[PMID: 35451495]
[43]
Zhou, S.; Wang, R.; Xiao, H. Adipocytes induce the resistance of ovarian cancer to carboplatin through ANGPTL4. Oncol. Rep., 2020, 44(3), 927-938.
[http://dx.doi.org/10.3892/or.2020.7647] [PMID: 32705217]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy