Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Advancement in Polymer-based Carrier for DNA Vaccine

Author(s): Priyanshi Goyal and Rishabha Malviya*

Volume 29, Issue 26, 2023

Published on: 06 September, 2023

Page: [2062 - 2077] Pages: 16

DOI: 10.2174/1381612829666230830105758

Price: $65

Abstract

A novel strategy that has the potential to solve the drawbacks of the present conventional vaccines is the development of DNA vaccines. DNA vaccines offer a versatile and adaptable platform for treating a wide variety of diseases, as immunization targets may be easily adjusted by altering the gene sequences encoded in the plasmid DNA delivered. Due to their ability to elicit both humoral and cellular immune responses, their stability, and the ease with which they may be produced, plasmid DNA vaccines are quickly becoming the vaccine of choice, they are frequently safer than conventional vaccinations. Despite the highly encouraging outcomes of ongoing clinical trials, these vaccines' immunogenicity is compromised by a few factors. The use of various vaccine delivery techniques, the use of various polymer-based carriers, and the use of adjuvants are some of the several approaches that might be examined to better the immunogenicity of DNA vaccines made from plasmids. These advancements taken together might allow plasmid DNA vaccines to be successfully used in clinical settings.

Keywords: Vaccine, polymer, adjuvants, plasmid DNA vaccine, virus like particles, COVID-19.

[1]
Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol 2011; 12(6): 509-17.
[http://dx.doi.org/10.1038/ni.2039] [PMID: 21739679]
[2]
Tahamtan A, Charostad J, Hoseini SSJ, Barati M. An overview of history, evolution, and manufacturing of various generations of vaccines. J Arch in Military Med 2017; In Press: e12315.
[http://dx.doi.org/10.5812/jamm.12315]
[3]
Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: What you need to know. Ann Med 2018; 50(2): 110-20.
[http://dx.doi.org/10.1080/07853890.2017.1407035] [PMID: 29172780]
[4]
Scheiblhofer S, Thalhamer J, Weiss R. DNA and mRNA vaccination against allergies. Pediatr Allergy Immunol 2018; 29(7): 679-88.
[http://dx.doi.org/10.1111/pai.12964] [PMID: 30063806]
[5]
Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 2019; 38(1): 146.
[http://dx.doi.org/10.1186/s13046-019-1154-7] [PMID: 30953535]
[6]
Zhang N, Nandakumar KS. Recent advances in the development of vaccines for chronic inflammatory autoimmune diseases. Vaccine 2018; 36(23): 3208-20.
[http://dx.doi.org/10.1016/j.vaccine.2018.04.062] [PMID: 29706295]
[7]
Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018; 80: 31-47.
[http://dx.doi.org/10.1016/j.actbio.2018.08.033] [PMID: 30172933]
[8]
Hasson SSAA, Al-Busaidi JKZ, Sallam TA. The past, current and future trends in DNA vaccine immunisations. Asian Pac J Trop Biomed 2015; 5(5): 344-53.
[http://dx.doi.org/10.1016/S2221-1691(15)30366-X]
[9]
Pereira VB, Zurita-Turk M, Saraiva TDL, et al. DNA vaccines approach: From concepts to applications. World J Vaccines 2014; 4(2): 50-71.
[http://dx.doi.org/10.4236/wjv.2014.42008]
[10]
Bai H, Lester GMS, Petishnok LC, Dean DA. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci Rep 2017; 37(6): BSR20160616.
[http://dx.doi.org/10.1042/BSR20160616] [PMID: 29054961]
[11]
Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines 2016; 15(3): 313-29.
[http://dx.doi.org/10.1586/14760584.2016.1124762] [PMID: 26707950]
[12]
Li L, Saade F, Petrovsky N. The future of human DNA vaccines. J Biotechnol 2012; 162(2-3): 171-82.
[http://dx.doi.org/10.1016/j.jbiotec.2012.08.012] [PMID: 22981627]
[13]
Coban C, Kobiyama K, Jounai N, Tozuka M, Ishii KJ. DNA vaccines. Hum Vaccin Immunother 2013; 9(10): 2216-21.
[http://dx.doi.org/10.4161/hv.25893] [PMID: 23912600]
[14]
Yang B, Jeang J, Yang A, Wu TC, Hung CF. DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother 2014; 10(11): 3153-64.
[http://dx.doi.org/10.4161/21645515.2014.980686] [PMID: 25625927]
[15]
Halle S, Halle O, Förster R. Mechanisms and dynamics of T cell- mediated cytotoxicity in vivo. Trends Immunol 2017; 38(6): 432-43.
[http://dx.doi.org/10.1016/j.it.2017.04.002] [PMID: 28499492]
[16]
Almeida AM, Queiroz JA, Sousa F, Sousa Â. Cervical cancer and HPV infection: Ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discov Today 2019; 24(10): 2044-57.
[http://dx.doi.org/10.1016/j.drudis.2019.07.011] [PMID: 31398400]
[17]
Ori D, Murase M, Kawai T. Cytosolic nucleic acid sensors and innate immune regulation. Int Rev Immunol 2017; 36(2): 74-88.
[http://dx.doi.org/10.1080/08830185.2017.1298749] [PMID: 28333574]
[18]
Kobiyama K, Jounai N, Aoshi T, et al. Innate immune signaling by, and genetic adjuvants for DNA vaccination. Vaccines 2013; 1(3): 278-92.
[http://dx.doi.org/10.3390/vaccines1030278] [PMID: 26344113]
[19]
Nigar S, Shimosato T. Cooperation of oligodeoxynucleotides and synthetic molecules as enhanced immune modulators. Front Nutr 2019; 6: 140.
[http://dx.doi.org/10.3389/fnut.2019.00140] [PMID: 31508424]
[20]
Myhr AI. DNA vaccines: Regulatory considerations and safety aspects. Curr Issues Mol Biol 2017; 22(1): 79-88.
[http://dx.doi.org/10.21775/cimb.022.079] [PMID: 27705898]
[21]
Hobernik D, Bros M. DNA vaccines-how far from clinical use? Int J Mol Sci 2018; 19(11): 3605.
[http://dx.doi.org/10.3390/ijms19113605] [PMID: 30445702]
[22]
Pierini S, Perales-Linares R, Uribe-Herranz M, et al. Trial watch: DNA-based vaccines for oncological indications. OncoImmunology 2017; 6(12): e1398878.
[http://dx.doi.org/10.1080/2162402X.2017.1398878] [PMID: 29209575]
[23]
Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines 2015; 14(11): 1509-23.
[http://dx.doi.org/10.1586/14760584.2015.1081067] [PMID: 26313239]
[24]
Yu X, Geng W, Zhao H, et al. Using a commonly down-regulated cytomegalovirus (CMV) promoter for high-level expression of ectopic gene in a human B lymphoma cell line. Med Sci Monit 2017; 23: 5943-50.
[http://dx.doi.org/10.12659/MSM.906240] [PMID: 29244783]
[25]
Krinner S, Heitzer A, Asbach B, Wagner R. Interplay of promoter usage and intragenic CpG content: Impact on GFP reporter gene expression. Hum Gene Ther 2015; 26(12): 826-40.
[http://dx.doi.org/10.1089/hum.2015.075] [PMID: 26414116]
[26]
Barry M, Johnston SA. Biological features of genetic immunization. Vaccine 1997; 15(8): 788-91.
[http://dx.doi.org/10.1016/S0264-410X(96)00265-4] [PMID: 9234514]
[27]
Schirmbeck R, Reimann J. Revealing the potential of DNA-based vaccination: Lessons learned from the hepatitis B virus surface antigen. Biol Chem 2001; 382(4): 543-52.
[http://dx.doi.org/10.1515/BC.2001.068] [PMID: 11405219]
[28]
Ingolotti M, Kawalekar O, Shedlock DJ, Muthumani K, Weiner DB. DNA vaccines for targeting bacterial infections. Expert Rev Vaccines 2010; 9(7): 747-63.
[http://dx.doi.org/10.1586/erv.10.57] [PMID: 20624048]
[29]
Williams J. Vector design for improved DNA vaccine efficacy, safety and production. Vaccines 2013; 1(3): 225-49.
[http://dx.doi.org/10.3390/vaccines1030225] [PMID: 26344110]
[30]
Ismail R, Allaudin ZN, Lila MAM. Scaling-up recombinant plasmid DNA for clinical trial: Current concern, solution and status. Vaccine 2012; 30(41): 5914-20.
[http://dx.doi.org/10.1016/j.vaccine.2012.02.061] [PMID: 22406276]
[31]
Ratnapriya S, Keerti, Sahasrabuddhe AA, Dube A. Visceral leishmaniasis: An overview of vaccine adjuvants and their applications. Vaccine 2019; 37(27): 3505-19.
[http://dx.doi.org/10.1016/j.vaccine.2019.04.092] [PMID: 31103364]
[32]
Jin Z, Gao S, Cui X, Sun D, Zhao K. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int J Pharm 2019; 572: 118731.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118731] [PMID: 31669213]
[33]
Garg R, Kaur M, Saxena A, Prasad R, Bhatnagar R. Alum adjuvanted rabies DNA vaccine confers 80% protection against lethal 50 LD50 rabies challenge virus standard strain. Mol Immunol 2017; 85: 166-73.
[http://dx.doi.org/10.1016/j.molimm.2017.02.011] [PMID: 28267643]
[34]
Hosseinipour MC, Innes C, Naidoo S, et al. Phase 1 human immunodeficiency virus (HIV) vaccine trial to evaluate the safety and immunogenicity of HIV subtype C DNA and MF59-adjuvanted subtype C envelope protein. Clin Infect Dis 2021; 72(1): 50-60.
[PMID: 31900486]
[35]
Chen H, Yan M, Tang Y, Diao Y. Evaluation of immunogenicity and protective efficacy of a CpG-adjuvanted DNA vaccine against Tembusu virus. Vet Immunol Immunopathol 2019; 218: 109953.
[http://dx.doi.org/10.1016/j.vetimm.2019.109953] [PMID: 31590073]
[36]
Fioretti D, Iurescia S, Rinaldi M. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer. Recent Pat Anticancer Drug Discov 2013; 9(1): 66-82.
[http://dx.doi.org/10.2174/1574891X113089990037] [PMID: 23444943]
[37]
Cao W, He L, Cao W, Huang X, Jia K, Dai J. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater 2020; 112: 14-28.
[http://dx.doi.org/10.1016/j.actbio.2020.06.009] [PMID: 32531395]
[38]
Tom JK, Albin TJ, Manna S, Moser BA, Steinhardt RC, Esser-Kahn AP. Applications of immunomodulatory immune synergies to adjuvant discovery and vaccine development. Trends Biotechnol 2019; 37(4): 373-88.
[http://dx.doi.org/10.1016/j.tibtech.2018.10.004] [PMID: 30470547]
[39]
Zhai YZ, Zhou Y, Ma L, Feng GH. The dominant roles of ICAM-1-encoding gene in DNA vaccination against Japanese encephalitis virus are the activation of dendritic cells and enhancement of cellular immunity. Cell Immunol 2013; 281(1): 1-10.
[http://dx.doi.org/10.1016/j.cellimm.2013.01.005] [PMID: 23411485]
[40]
Liu Q, Wang F, Wang G, et al. Toxoplasma gondii. Hum Vaccin Immunother 2014; 10(1): 184-91.
[http://dx.doi.org/10.4161/hv.26703] [PMID: 24096573]
[41]
Cao A, Liu Y, Wang J, et al. Toxoplasma gondii: Vaccination with a DNA vaccine encoding T- and B-cell epitopes of SAG1, GRA2, GRA7 and ROP16 elicits protection against acute toxoplasmosis in mice. Vaccine 2015; 33(48): 6757-62.
[http://dx.doi.org/10.1016/j.vaccine.2015.10.077] [PMID: 26518401]
[42]
Wang H, Yu J, Li L. A DNA vaccine encoding mutated HPV58 mE6E7-Fc-GPI fusion antigen and GM-CSF and B7.1. OncoTargets Ther 2015; 8: 3067-77.
[PMID: 26604780]
[43]
Song X, Zhao X, Xu L, Yan R, Li X. Immune protection duration and efficacy stability of DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 against coccidiosis. Res Vet Sci 2017; 111: 31-5.
[http://dx.doi.org/10.1016/j.rvsc.2016.11.012] [PMID: 27914219]
[44]
Ruan J, Duan Y, Li F, Wang Z. Enhanced synergistic anti-Lewis lung carcinoma effect of a DNA vaccine harboring a MUC1-VEGFR2 fusion gene used with GM-CSF as an adjuvant. Clin Exp Pharmacol Physiol 2017; 44(1): 71-8.
[http://dx.doi.org/10.1111/1440-1681.12654] [PMID: 27562635]
[45]
Lei L, Li J, Liu M, Hu X, Zhou Y, Yang S. CD40L-adjuvanted DNA vaccine carrying EBV-LMP2 antigen enhances anti-tumor effect in NPC transplantation tumor animal. Cent Eur J Immunol 2018; 43(2): 117-22.
[http://dx.doi.org/10.5114/ceji.2018.77379] [PMID: 30135622]
[46]
Marx M, Zumpe M, Troschke-Meurer S, Shah D, Lode HN, Siebert N. Co-expression of IL-15 enhances anti-neuroblastoma effectivity of a tyrosine hydroxylase-directed DNA vaccination in mice. PLoS One 2018; 13(11): e0207320.
[http://dx.doi.org/10.1371/journal.pone.0207320] [PMID: 30452438]
[47]
Kang JG, Jeon K, Choi H, et al. Vaccination with single plasmid DNA encoding IL-12 and antigens of severe fever with thrombocytopenia syndrome virus elicits complete protection in IFNAR knockout mice. PLoS Negl Trop Dis 2020; 14(3): e0007813.
[http://dx.doi.org/10.1371/journal.pntd.0007813] [PMID: 32196487]
[48]
Thorne AH, Malo KN, Wong AJ, et al. Adjuvant screen identifies synthetic DNA-Encoding Flt3L and CD80 immunotherapeutics as candidates for enhancing anti-tumor T cell responses. Front Immunol 2020; 11: 327.
[http://dx.doi.org/10.3389/fimmu.2020.00327] [PMID: 32161596]
[49]
Alpar HO, Papanicolaou I, Bramwell VW. Strategies for DNA vaccine delivery. Expert Opin Drug Deliv 2005; 2(5): 829-42.
[http://dx.doi.org/10.1517/17425247.2.5.829] [PMID: 16296781]
[50]
Jorritsma SHT, Gowans EJ, Grubor-Bauk B, Wijesundara DK. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine 2016; 34(46): 5488-94.
[http://dx.doi.org/10.1016/j.vaccine.2016.09.062] [PMID: 27742218]
[51]
Rajapaksa AE, Ho JJ, Qi A, et al. Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization. Respir Res 2014; 15(1): 60.
[http://dx.doi.org/10.1186/1465-9921-15-60] [PMID: 24884387]
[52]
Mohajeri P, Soltani S, Farahani A, Dastranj M, Momenifar N, Emamie A. DNA vaccine: Methods and mechanisms. Adv Hum Biol 2018; 8(3): 132.
[http://dx.doi.org/10.4103/AIHB.AIHB_74_17]
[53]
Hu X, Yang G, Chen S, Luo S, Zhang J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci 2020; 8(4): 1020-44.
[http://dx.doi.org/10.1039/C9BM01378D] [PMID: 31621709]
[54]
Jiao H, Yang H, Zhao D, et al. Design and immune characterization of a novel Neisseria gonorrhoeae DNA vaccine using bacterial ghosts as vector and adjuvant. Vaccine 2018; 36(30): 4532-9.
[http://dx.doi.org/10.1016/j.vaccine.2018.06.006] [PMID: 29914847]
[55]
Jiang Y, Gao X, Xu K, et al. A novel Cre recombinase-mediated in vivo minicircle DNA (CRIM) vaccine provides partial protection against Newcastle disease virus. Appl Environ Microbiol 2019; 85(14): e00407-19.
[http://dx.doi.org/10.1128/AEM.00407-19] [PMID: 31053588]
[56]
Thakkar SG, Warnken ZN, Alzhrani RF, et al. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J Control Release 2018; 292: 111-8.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.020] [PMID: 30339906]
[57]
Jahan N, Archie SR, Shoyaib AA, Kabir N, Cheung K. Recent approaches for solid dose vaccine delivery. Sci Pharm 2019; 87(4): 27.
[http://dx.doi.org/10.3390/scipharm87040027]
[58]
Kis EE, Winter G, Myschik J. Devices for intradermal vaccination. Vaccine 2012; 30(3): 523-38.
[http://dx.doi.org/10.1016/j.vaccine.2011.11.020] [PMID: 22100637]
[59]
Weber CS, Hainz K, Deressa T, et al. Immune reactions against gene gun vaccines are differentially modulated by distinct dendritic cell subsets in the skin. PLoS One 2015; 10(6): e0128722.
[http://dx.doi.org/10.1371/journal.pone.0128722] [PMID: 26030383]
[60]
McBurney SP, Sunshine JE, Gabriel S, et al. Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates. Vaccine 2016; 34(30): 3500-7.
[http://dx.doi.org/10.1016/j.vaccine.2016.03.108] [PMID: 27085173]
[61]
Broderick KE, Humeau LM. Electroporation-enhanced delivery of nucleic acid vaccines. Expert Rev Vaccines 2015; 14(2): 195-204.
[http://dx.doi.org/10.1586/14760584.2015.990890] [PMID: 25487734]
[62]
Sällberg M, Frelin L, Ahlén G, Sällberg-Chen M. Electroporation for therapeutic DNA vaccination in patients. Med Microbiol Immunol 2015; 204(1): 131-5.
[http://dx.doi.org/10.1007/s00430-014-0384-8] [PMID: 25535102]
[63]
Kalams SA, Parker SD, Elizaga M, et al. Safety and comparative immunogenicity of an HIV-1 DNA vaccine in combination with plasmid interleukin 12 and impact of intramuscular electroporation for delivery. J Infect Dis 2013; 208(5): 818-29.
[http://dx.doi.org/10.1093/infdis/jit236] [PMID: 23840043]
[64]
Kim TJ, Jin HT, Hur SY, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun 2014; 5(1): 5317.
[http://dx.doi.org/10.1038/ncomms6317] [PMID: 25354725]
[65]
Heller R, Heller LC. Gene electrotransfer clinical trials. Adv Genet 2015; 89: 235-62.
[http://dx.doi.org/10.1016/bs.adgen.2014.10.006] [PMID: 25620013]
[66]
Moreira AF, Rodrigues CF, Jacinto TA, Miguel SP, Costa EC, Correia IJ. Microneedle-based delivery devices for cancer therapy: A review. Pharmacol Res 2019; 148: 104438.
[http://dx.doi.org/10.1016/j.phrs.2019.104438] [PMID: 31476370]
[67]
Leone M, Mönkäre J, Bouwstra JA, Kersten G. Dissolving microneedle patches for dermal vaccination. Pharm Res 2017; 34(11): 2223-40.
[http://dx.doi.org/10.1007/s11095-017-2223-2] [PMID: 28718050]
[68]
McCaffrey J, Donnelly RF, McCarthy HO. Microneedles: An innovative platform for gene delivery. Drug Deliv Transl Res 2015; 5(4): 424-37.
[http://dx.doi.org/10.1007/s13346-015-0243-1] [PMID: 26122168]
[69]
Ali AA, McCrudden CM, McCaffrey J, et al. DNA vaccination for cervical cancer: A novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomedicine 2017; 13(3): 921-32.
[http://dx.doi.org/10.1016/j.nano.2016.11.019] [PMID: 27979747]
[70]
Duong HTT, Kim NW, Thambi T, et al. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. J Control Release 2018; 269: 225-34.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.025] [PMID: 29154976]
[71]
Barolet D, Benohanian A. Current trends in needle-free jet injection: an update. Clin Cosmet Investig Dermatol 2018; 11: 231-8.
[http://dx.doi.org/10.2147/CCID.S162724] [PMID: 29750049]
[72]
Graham BS, Enama ME, Nason MC, et al. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One 2013; 8(4): e59340.
[http://dx.doi.org/10.1371/journal.pone.0059340] [PMID: 23577062]
[73]
Sefidi-Heris Y, Jahangiri A, Mokhtarzadeh A, et al. Recent progress in the design of DNA vaccines against tuberculosis. Drug Discov Today 2020; 25(11): 1971-87.
[http://dx.doi.org/10.1016/j.drudis.2020.09.005] [PMID: 32927065]
[74]
Fotoran WL, Santangelo R, de Miranda BNM, Irvine DJ, Wunderlich G. DNA-loaded cationic liposomes efficiently function as a vaccine against malarial proteins. Mol Ther Methods Clin Dev 2017; 7: 1-10.
[http://dx.doi.org/10.1016/j.omtm.2017.08.004] [PMID: 28879213]
[75]
Tian M, Zhou Z, Tan S, Fan X, Li L, Ullah N. Formulation in DDA-MPLA-TDB liposome enhances the immunogenicity and protective efficacy of a DNA vaccine against Mycobacterium tuberculosis infection. Front Immunol 2018; 9: 310.
[http://dx.doi.org/10.3389/fimmu.2018.00310] [PMID: 29535714]
[76]
Muddineti OS, Shah A, Rompicharla SVK, Ghosh B, Biswas S. Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. Int J Biol Macromol 2018; 118(Pt A): 857-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.114] [PMID: 29953893]
[77]
Xing L, Fan YT, Zhou TJ, et al. Chemical modification of chitosan for efficient vaccine delivery. Molecules 2018; 23(2): 229.
[http://dx.doi.org/10.3390/molecules23020229] [PMID: 29370100]
[78]
Carroll EC, Jin L, Mori A, et al. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 2016; 44(3): 597-608.
[http://dx.doi.org/10.1016/j.immuni.2016.02.004] [PMID: 26944200]
[79]
Tahamtan A, Barati M, Tabarraei A, et al. Antitumor immunity induced by genetic immunization with Chitosan nanoparticle formulated adjuvanted for HPV-16 E7 DNA vaccine. Iran J Immunol 2018; 15(4): 269-80.
[PMID: 30593741]
[80]
Huang T, Song X, Jing J, et al. Chitosan-DNA nanoparticles enhanced the immunogenicity of multivalent DNA vaccination on mice against Trueperella pyogenes infection. J Nanobiotechnology 2018; 16(1): 8.
[http://dx.doi.org/10.1186/s12951-018-0337-2] [PMID: 29378591]
[81]
Zhao K, Han J, Zhang Y, et al. Enhancing mucosal immune response of Newcastle disease virus DNA vaccine using N-2-hydroxypropyl trimethylammonium chloride chitosan and N, O-carboxymethyl chitosan nanoparticles as delivery carrier. Mol Pharm 2018; 15(1): 226-37.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00826] [PMID: 29172532]
[82]
Heuking S, Borchard G. Toll-like receptor-7 agonist decoration enhances the adjuvanticity of chitosan-DNA nanoparticles. J Pharm Sci 2012; 101(3): 1166-77.
[http://dx.doi.org/10.1002/jps.23017] [PMID: 22190381]
[83]
Bansal A, Wu X, Olson V, D’Souza MJ. Characterization of rabies pDNA nanoparticulate vaccine in poloxamer 407 gel. Int J Pharm 2018; 545(1-2): 318-28.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.018] [PMID: 29746999]
[84]
Wu M, Zhao H, Li M, Yue Y, Xiong S, Xu W. Intranasal vaccination with mannosylated chitosan formulated DNA vaccine enables robust IgA and cellular response induction in the lungs of mice and improves protection against pulmonary mycobacterial challenge. Front Cell Infect Microbiol 2017; 7: 445.
[http://dx.doi.org/10.3389/fcimb.2017.00445] [PMID: 29085809]
[85]
Layek B, Lipp L, Singh J. APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J Control Release 2015; 207: 143-53.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.014] [PMID: 25886704]
[86]
Meleshko AN, Petrovskaya NA, Savelyeva N, Vashkevich KP, Doronina SN, Sachivko NV. Phase I clinical trial of idiotypic DNA vaccine administered as a complex with polyethylenimine to patients with B-cell lymphoma. Hum Vaccin Immunother 2017; 13(6): 1398-403.
[http://dx.doi.org/10.1080/21645515.2017.1285477] [PMID: 28272989]
[87]
Stegantseva MV, Shinkevich VA, Tumar EM, Meleshko AN. Multi-antigen DNA vaccine delivered by polyethylenimine and Salmonella enterica in neuroblastoma mouse model. Cancer Immunol Immunother 2020; 69(12): 2613-22.
[http://dx.doi.org/10.1007/s00262-020-02652-2] [PMID: 32594197]
[88]
Sousa Â, Faria R, Albuquerque T, et al. Design of experiments to select triphenylphosphonium-polyplexes with suitable physicochemical properties for mitochondrial gene therapy. J Mol Liq 2020; 302: 112488.
[http://dx.doi.org/10.1016/j.molliq.2020.112488]
[89]
Lu Y, Wu F, Duan W, et al. Engineering a PEG-g-PEI/DNA nanoparticle-in- PLGA microsphere hybrid controlled release system to enhance immunogenicity of DNA vaccine. Mater Sci Eng C 2020; 106: 110294.
[http://dx.doi.org/10.1016/j.msec.2019.110294] [PMID: 31753340]
[90]
Neves AR, Sousa A, Faria R, Albuquerque T, Queiroz JA, Costa D. Cancer gene therapy mediated by RALA/plasmid DNA vectors: Nitrogen to phosphate groups ratio (N/P) as a tool for tunable transfection efficiency and apoptosis. Colloids Surf B Biointerfaces 2020; 185: 110610.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110610] [PMID: 31711736]
[91]
Rádis-Baptista G, Campelo IS, Morlighem JÉRL, Melo LM, Freitas VJF. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol 2017; 252: 15-26.
[http://dx.doi.org/10.1016/j.jbiotec.2017.05.002] [PMID: 28479163]
[92]
Souci L, Jaunet H, Le Diguerher G, et al. Intranasal inoculations of naked or PLGA-PEI nanovectored DNA vaccine induce systemic and mucosal antibodies in pigs: A feasibility study. Res Vet Sci 2020; 132: 194-201.
[http://dx.doi.org/10.1016/j.rvsc.2020.06.018] [PMID: 32619800]
[93]
Stegantseva MV, Shinkevich VA, Tumar EM, Meleshko AN. Conjugation of new DNA vaccine with polyethylenimine induces cellular immune response and tumor regression in neuroblastoma mouse model. Exp Oncol 2020; 42(2): 120-5.
[PMID: 32602294]
[94]
Bahadoran A, Moeini H, Bejo MH, Hussein MZ, Omar AR. Development of tat-conjugated dendrimer for transdermal DNA vaccine delivery. J Pharm Pharm Sci 2016; 19(3): 325-38.
[http://dx.doi.org/10.18433/J3G31Q] [PMID: 27806247]
[95]
Bahadoran A, Ebrahimi M, Yeap SK, et al. Induction of a robust immune response against avian influenza virus following transdermal inoculation with H5-DNA vaccine formulated in modified dendrimer-based delivery system in mouse model. Int J Nanomedicine 2017; 12: 8573-85.
[http://dx.doi.org/10.2147/IJN.S139126] [PMID: 29270010]
[96]
Daftarian P, Kaifer AE, Li W, et al. Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res 2011; 71(24): 7452-62.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1766] [PMID: 21987727]
[97]
Ullas PT, Madhusudana SN, Desai A, et al. Enhancement of immunogenicity and efficacy of a plasmid DNA rabies vaccine by nanoformulation with a fourth-generation amine-terminated poly(ether imine) dendrimer. Int J Nanomedicine 2014; 9: 627-34.
[PMID: 24501540]
[98]
Dubensky TW, Campbell BA, Villarreal LP. Direct transfection of viral and plasmid DNA into the liver or spleen of mice. Proc Natl Acad Sci 1984; 81(23): 7529-33.
[http://dx.doi.org/10.1073/pnas.81.23.7529] [PMID: 6095303]
[99]
Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: Protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci 1993; 90(24): 11478-82.
[http://dx.doi.org/10.1073/pnas.90.24.11478] [PMID: 8265577]
[100]
Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. Size-dependent immunogenicity: Therapeutic and protective properties of nano- vaccines against tumors. J Immunol 2004; 173(5): 3148-54.
[http://dx.doi.org/10.4049/jimmunol.173.5.3148] [PMID: 15322175]
[101]
Minigo G, Scholzen A, Tang CK, et al. Poly-l-lysine-coated nanoparticles: A potent delivery system to enhance DNA vaccine efficacy. Vaccine 2007; 25(7): 1316-27.
[http://dx.doi.org/10.1016/j.vaccine.2006.09.086] [PMID: 17052812]
[102]
O’Hagan DT, Rappuoli R. Novel approaches to vaccine delivery. Pharm Res 2004; 21(9): 1519-30.
[http://dx.doi.org/10.1023/B:PHAM.0000041443.17935.33] [PMID: 15497674]
[103]
Lai WF, Lin MCM. Nucleic acid delivery with chitosan and its derivatives. J Control Release 2009; 134(3): 158-68.
[http://dx.doi.org/10.1016/j.jconrel.2008.11.021] [PMID: 19100795]
[104]
Iqbal M, Lin W, Jabbal-Gill I, Davis SS, Steward MW, Illum L. Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine 2003; 21(13-14): 1478-85.
[http://dx.doi.org/10.1016/S0264-410X(02)00662-X] [PMID: 12615444]
[105]
Du X, Zhao B, Li J, et al. Astragalus polysaccharides enhance immune responses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice. Int Immunopharmacol 2012; 14(4): 463-70.
[http://dx.doi.org/10.1016/j.intimp.2012.09.006] [PMID: 23006659]
[106]
Stylianou E, Diogo GR, Pepponi I, et al. Mucosal delivery of antigen‐coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice. Eur J Immunol 2014; 44(2): 440-9.
[http://dx.doi.org/10.1002/eji.201343887] [PMID: 24214530]
[107]
McKeever U, Barman S, Hao T, et al. Protective immune responses elicited in mice by immunization with formulations of poly(lactide-co-glycolide) microparticles. Vaccine 2002; 20(11-12): 1524-31.
[http://dx.doi.org/10.1016/S0264-410X(01)00509-6] [PMID: 11858858]
[108]
Kurosaki T, Kodama Y, Muro T, et al. Secure splenic delivery of plasmid DNA and its application to DNA vaccine. Biol Pharm Bull 2013; 36(11): 1800-6.
[http://dx.doi.org/10.1248/bpb.b13-00489] [PMID: 24189423]
[109]
Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997; 28(1): 5-24.
[http://dx.doi.org/10.1016/S0169-409X(97)00048-3] [PMID: 10837562]
[110]
Hedley ML, Curley J, Urban R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat Med 1998; 4(3): 365-8.
[http://dx.doi.org/10.1038/nm0398-365] [PMID: 9500615]
[111]
Hedley ML, Strominger JL, Urban RG. Plasmid DNA encoding targeted naturally processed peptides generates protective cytotoxic T lymphocyte responses in immunized animals. Hum Gene Ther 1998; 9(3): 325-32.
[http://dx.doi.org/10.1089/hum.1998.9.3-325] [PMID: 9508050]
[112]
Jones D, Corris S, McDonald S, Clegg JCS, Farrar GH. Poly(DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 1997; 15(8): 814-7.
[http://dx.doi.org/10.1016/S0264-410X(96)00266-6] [PMID: 9234522]
[113]
Kaneko H, Bednarek I, Wierzbicki A, et al. Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology 2000; 267(1): 8-16.
[http://dx.doi.org/10.1006/viro.1999.0093] [PMID: 10648178]
[114]
Wang F, He XW, Jiang L, et al. Enhanced immunogenicity of microencapsulated multiepitope DNA vaccine encoding T and B cell epitopes of foot-and-mouth disease virus in mice. Vaccine 2006; 24(12): 2017-26.
[http://dx.doi.org/10.1016/j.vaccine.2005.11.042] [PMID: 16414158]
[115]
Lynn DM, Anderson DG, Putnam D, Langer R. Accelerated discovery of synthetic transfection vectors: Parallel synthesis and screening of a degradable polymer library. J Am Chem Soc 2001; 123(33): 8155-6.
[http://dx.doi.org/10.1021/ja016288p] [PMID: 11506588]
[116]
Greenland JR, Liu H, Berry D, et al. Beta-amino ester polymers facilitate in vivo DNA transfection and adjuvant plasmid DNA immunization. Mol Ther 2005; 12(1): 164-70.
[http://dx.doi.org/10.1016/j.ymthe.2005.01.021] [PMID: 15963932]
[117]
Anderson DG, Lynn DM, Langer R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew Chem Int Ed 2003; 42(27): 3153-8.
[http://dx.doi.org/10.1002/anie.200351244] [PMID: 12866105]
[118]
Jones CH, Chen M, Ravikrishnan A, et al. Mannosylated poly(beta-amino esters) for targeted antigen presenting cell immune modulation. Biomaterials 2015; 37: 333-44.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.037] [PMID: 25453962]
[119]
Wang C, Ge Q, Ting D, et al. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater 2004; 3(3): 190-6.
[http://dx.doi.org/10.1038/nmat1075] [PMID: 14991022]
[120]
Green JJ, Shi J, Chiu E, Leshchiner ES, Langer R, Anderson DG. Biodegradable polymeric vectors for gene delivery to human endothelial cells. Bioconjug Chem 2006; 17(5): 1162-9.
[http://dx.doi.org/10.1021/bc0600968] [PMID: 16984124]
[121]
DeMuth PC, Min Y, Huang B, et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nat Mater 2013; 12(4): 367-76.
[http://dx.doi.org/10.1038/nmat3550] [PMID: 23353628]
[122]
Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 2015; 115(19): 11109-46.
[http://dx.doi.org/10.1021/acs.chemrev.5b00109] [PMID: 26154342]
[123]
Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc Natl Acad Sci 1995; 92(16): 7297-301.
[http://dx.doi.org/10.1073/pnas.92.16.7297] [PMID: 7638184]
[124]
Regnström K, Ragnarsson EGE, Köping-Höggård M, Torstensson E, Nyblom H, Artursson P. PEI – a potent, but not harmless, mucosal immuno-stimulator of mixed T-helper cell response and FasL-mediated cell death in mice. Gene Ther 2003; 10(18): 1575-83.
[http://dx.doi.org/10.1038/sj.gt.3302054] [PMID: 12907949]
[125]
Torrieri-Dramard L, Lambrecht B, Ferreira HL, Van den Berg T, Klatzmann D, Bellier B. Intranasal DNA vaccination induces potent mucosal and systemic immune responses and cross-protective immunity against influenza viruses. Mol Ther 2011; 19(3): 602-11.
[http://dx.doi.org/10.1038/mt.2010.222] [PMID: 20959813]
[126]
Palumbo RN, Zhong X, Wang C. Polymer-mediated DNA vaccine delivery via bystander cells requires a proper balance between transfection efficiency and cytotoxicity. J Control Release 2012; 157(1): 86-93.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.037] [PMID: 21907252]
[127]
Goh SL, Murthy N, Xu M, Fréchet JMJ. Cross-linked microparticles as carriers for the delivery of plasmid DNA for vaccine development. Bioconjug Chem 2004; 15(3): 467-74.
[http://dx.doi.org/10.1021/bc034159n] [PMID: 15149173]
[128]
Zhang L, Sinclair A, Cao Z, et al. Hydrolytic cationic ester microparticles for highly efficient DNA vaccine delivery. Small 2013; 9(20): 3439-44.
[http://dx.doi.org/10.1002/smll.201202727] [PMID: 23661618]
[129]
Hu J, Hu K, Cheng Y. Tailoring the dendrimer core for efficient gene delivery. Acta Biomater 2016; 35: 1-11.
[http://dx.doi.org/10.1016/j.actbio.2016.02.031] [PMID: 26923528]
[130]
Wang X, Dai Y, Zhao S, et al. PAMAM-Lys, a novel vaccine delivery vector, enhances the protective effects of the SjC23 DNA vaccine against Schistosoma japonicum infection. PLoS One 2014; 9(1): e86578.
[http://dx.doi.org/10.1371/journal.pone.0086578] [PMID: 24497955]
[131]
Voltan R, Castaldello A, Brocca-Cofano E, et al. Priming with a very low dose of DNA complexed with cationic block copolymers followed by protein boost elicits broad and long-lasting antigen-specific humoral and cellular responses in mice. Vaccine 2009; 27(33): 4498-507.
[http://dx.doi.org/10.1016/j.vaccine.2009.05.031] [PMID: 19450649]
[132]
Butterfield LH, Economou JS, Gamblin T, Geller DA. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients. J Transl Med 2014; 12(1): 86.
[http://dx.doi.org/10.1186/1479-5876-12-86] [PMID: 24708667]
[133]
Han JW, Sung PS, Hong SH, et al. IFNL3-adjuvanted HCV DNA vaccine reduces regulatory T cell frequency and increases virus-specific T cell responses. J Hepatol 2020; 73(1): 72-83.
[http://dx.doi.org/10.1016/j.jhep.2020.02.009] [PMID: 32088322]
[134]
Cespedes MS, Kang M, Kojic EM, et al. Anogenital human papillomavirus virus DNA and sustained response to the quadrivalent HPV vaccine in women living with HIV-1. Papillomavirus Res 2018; 6: 15-21.
[http://dx.doi.org/10.1016/j.pvr.2018.08.002] [PMID: 30118852]
[135]
Trimble CL, Morrow MP, Kraynyak KA, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015; 386(10008): 2078-88.
[http://dx.doi.org/10.1016/S0140-6736(15)00239-1] [PMID: 26386540]
[136]
Morrow MP, Tebas P, Yan J, et al. Synthetic consensus HIV-1 DNA induces potent cellular immune responses and synthesis of granzyme B, perforin in HIV infected individuals. Mol Ther 2015; 23(3): 591-601.
[http://dx.doi.org/10.1038/mt.2014.245] [PMID: 25531694]
[137]
Spearman P, Mulligan M, Anderson EJ, et al. A phase 1, randomized, controlled dose-escalation study of EP-1300 polyepitope DNA vaccine against Plasmodium falciparum malaria administered via electroporation. Vaccine 2016; 34(46): 5571-8.
[http://dx.doi.org/10.1016/j.vaccine.2016.09.041] [PMID: 27697302]
[138]
Jin X, Morgan C, Yu X, et al. Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials. Vaccine 2015; 33(20): 2347-53.
[http://dx.doi.org/10.1016/j.vaccine.2015.03.036] [PMID: 25820067]
[139]
Safety and immunogenicity of COVID-eVax, a candidate plasmid DNA vaccine for COVID-19, in healthy adult volunteers. Patent NCT04788459, 2021.
[140]
Phase II/III study of COVID-19 DNA vaccine (AG0302- COVID19). Patent NCT04655625, 2020.
[141]
Safety, immunogenicity, and efficacy of INO-4800 for COVID-19 in healthy seronegative adults at high risk of SARSCoV-2 exposure. Patent NCT04642638, 2020.
[142]
Novel corona virus-2019-nCov vaccine by intradermal route in healthy subjects. 2021. Available at: http://ctri.nic.in/ Clinicaltrials/pmaindet2.php?trialid=51254&EncHid=&userName=30416 (Accessed 23 March, 2023).
[143]
Bagley KC, Schwartz JA, Andersen H, et al. An interleukin 12 adjuvanted herpes simplex virus 2 DNA vaccine is more protective than a glycoprotein D subunit vaccine in a high-dose murine challenge model. Viral Immunol 2017; 30(3): 178-95.
[http://dx.doi.org/10.1089/vim.2016.0136] [PMID: 28085634]
[144]
Holt GE, Daftarian P. Non-small-cell lung cancer homing peptide-labeled dendrimers selectively transfect lung cancer cells. Immunotherapy 2018; 10(16): 1349-60.
[http://dx.doi.org/10.2217/imt-2018-0078] [PMID: 30474481]
[145]
Jia R, Yan L, Guo J. Enhancing the immunogenicity of a DNA vaccine against Streptococcus mutans by attenuating the inhibition of endogenous miR-9. Vaccine 2020; 38(6): 1424-30.
[http://dx.doi.org/10.1016/j.vaccine.2019.11.083] [PMID: 31917038]
[146]
Suschak JJ, Dupuy LC, Shoemaker CJ, et al. Nanoplasmid vectors co-expressing innate immune agonists enhance DNA vaccines for venezuelan equine encephalitis virus and ebola virus. Mol Ther Methods Clin Dev 2020; 17: 810-21.
[http://dx.doi.org/10.1016/j.omtm.2020.04.009] [PMID: 32296729]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy