Generic placeholder image

Nanoscience & Nanotechnology-Asia


ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Derivatives of Sri Lankan Vein Graphite: Atomic Scale Study of Graphene Oxide and Reduced Graphene Oxide

Author(s): Damayanthi Dahanayake*, Hansani Yashomala, Chanaka Sandaruwan, Haneen Packeer Ally, Sunanda Gunasekara, Veranja Karunarathne and Gehan A. J. Amaratunga

Volume 13, Issue 5, 2023

Published on: 28 September, 2023

Article ID: e250823220360 Pages: 10

DOI: 10.2174/2210681213666230825112219

Price: $65


Aims: The present study examines the atomic-scale structures of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO).

Background: Electron microscopic studies on Sri Lankan vein graphite are considerably less; hence, this study focuses on the atomic-scale study of Sri Lankan vein graphite, using advanced electron microscopic techniques.

Objective: The purpose of this research is to utilize the data obtained to explore the multidisciplinary characteristics of graphene to the maximum prospectively.

Method: We report an atomic-scale study on Sri Lankan vein graphite (purest) derivatives using advanced electron microscopic techniques, including High-Resolution Transmission Electron Microscope (HRTEM), Scanning Transmission Electron Microscope (STEM), and Electron Energy Loss Spectroscopy (EELS). The present study examines the atomic-scale structures of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO).

Result: The results obtained exhibited an inter-atomic layer distance of 3.54 Å for RGO. The EELS study performed with the electron dose optimization for GO and RGO distinguished the differences in the C K edge with the oxygen functionalities. The XPS study confirmed the changes in oxygen functionalities obtained with EELS.

Conclusion: The advanced electron microscopic techniques and other molecular spectroscopic analysis techniques allowed us to obtain a comprehensive study on Sri Lankan vein graphene-based structural and chemical features on an atomic scale.

Keywords: High-resolution transmission electron microscope, scanning electron microscope, electron energy loss spectroscopy, vein graphite, graphene oxide, reduced graphene oxide.

Graphical Abstract
Touzain, P.; Balasooriya, N.; Bandaranayake, K.; Descolas-Gros, C. Vein graphite from the Bogala and Kahatagaha--Kolongaha mines, Sri Lanka: a possible origin. Can. Mineral., 2010, 48(6), 1373-1384.
Amaraweera, T.; Balasooriya, N.W.B.; Wijayasinghe, H.; Attanayake, A.N.B.; Dissanayake, M. Purity enhancement of Sri Lankan vein graphite for lithium-ion rechargeable battery anode, Proc. to 29th Tech. Sess. Geol. Soc. Sri Lanka., 2013, 101, 104.
Kim, T.I.; Kwon, B.; Yoon, J.; Park, I.J.; Bang, G.S.; Park, Y.; Seo, Y.S.; Choi, S.Y. Antibacterial activities of graphene oxide--molybdenum disulfide nanocomposite films. ACS Appl. Mater. Interfaces, 2017, 9(9), 7908-7917.
[] [PMID: 28198615]
Novoselov, K.S. Fal′ Ko, VI; Colombo, L.; Gellert, PR; Schwab, MG; Kim, K. A roadmap for graphene. Nature, 2012, 490, 192-200.
[] [PMID: 23060189]
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene Science (80), 2008, 321, 385-388.
Loryuenyong, V.; Totepvimarn, K.; Eimburanapravat, P.; Boonchompoo, W.; Buasri, A. Others, preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv. Mater. Sci. Eng., 2013, Article ID 923403.
Chen, Da.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev., 2012, 112(11), 6027-6053.
Mkhoyan, K.A.; Contryman, A.W.; Silcox, J.; Stewart, D.A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and electronic structure of graphene-oxide. Nano Lett., 2009, 9(3), 1058-1063.
[] [PMID: 19199476]
Paredes, J.I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J.M.D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 2009, 25(10), 5957-5968.
[] [PMID: 19341286]
Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhänen, T. Ultrafast graphene oxide humidity sensors. ACS Nano, 2013, 7(12), 11166-11173.
[] [PMID: 24206232]
Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol., 2008, 3, 270-274.
Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R.D.; Stankovich, S.; Jung, I.; Field, D.A.; Ventrice, C.A., Jr; Ruoff, R.S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 2009, 47(1), 145-152.
Williams, G.; Seger, B.; Kamat, P.V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(7), 1487-1491.
[] [PMID: 19206319]
Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7), 1558-1565.
Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett., 2008, 8(1), 323-327.
[] [PMID: 18069877]
Zhou, T.; Chen, F.; Liu, K.; Deng, H.; Zhang, Q.; Feng, J.; Fu, Q. A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology, 2011, 22(4), 045704.
[] [PMID: 21169657]
Gilje, S.; Han, S.; Wang, M.; Wang, K.L.; Kaner, R.B. A chemical route to graphene for device applications. Nano Lett., 2007, 7(11), 3394-3398.
[] [PMID: 17944523]
Yang, Z.; Zheng, Q.; Qiu, H.; Li, J.; Yang, J. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst. N. Carbon Mater., 2015, 30(1), 41-47.
Shin, H.J.; Kim, K.K.; Benayad, A.; Yoon, S.M.; Park, H.K.; Jung, I.S.; Jin, M.H.; Jeong, H.K.; Kim, J.M.; Choi, J.Y.; Lee, Y.H. others, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater., 2009, 19(12), 1987-1992.
Su, C.Y.; Xu, Y.; Zhang, W.; Zhao, J.; Liu, A.; Tang, X.; Tsai, C.H.; Huang, Y.; Li, L.J. Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors. ACS Nano, 2010, 4(9), 5285-5292.
[] [PMID: 20718442]
He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-based electronic sensors. Chem. Sci., 2012, 3(6), 1764-1772.
Lu, G.; Park, S.; Yu, K.; Ruoff, R.S.; Ocola, L.E.; Rosenmann, D.; Chen, J. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano, 2011, 5(2), 1154-1164.
[] [PMID: 21204575]
Wang, H.; Cui, L.F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J.T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc., 2010, 132(40), 13978-13980.
[] [PMID: 20853844]
Joshi, R.K.; Carbone, P.; Wang, F.-C.; Kravets, V.G.; Su, Y.; Grigorieva, I. V; Wu, H.A.; Geim, A.K.; Nair, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes Science (80), 2014, 343, 752-754.
Tararan, A.; Zobelli, A.; Benito, A.M.; Maser, W.K.; Stéphan, O. Revisiting graphene oxide chemistry via spatially-resolved electron energy loss spectroscopy. Chem. Mater., 2016, 28(11), 3741-3748.
Williams, D.B.; Carter, C.B.; Williams, D.B.; Carter, C.B. The transmission electron microscope; Springer, 1996.
Egerton, R.F. Electron energy-loss spectroscopy in the electron microscope; Springer Science Business Media, 2011.
Egerton, R.F. Control of radiation damage in the TEM. Ultramicroscopy, 2013, 127, 100-108.
[] [PMID: 22910614]
Tan, P.; Deng, Y.; Zhao, Q.; Cheng, W. The intrinsic temperature effect of the Raman spectra of graphite. Appl. Phys. Lett., 1999, 74(13), 1818-1820.
Bokobza, L.; Zhang, J. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett., 2012, 6, 601-608.
Prawer, S.; Nugent, K.W.; Jamieson, D.N. The raman spectrum of amorphous diamond. Diamond Related Materials, 1998, 7(1), 106-110.
Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; Geim, A.K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 2006, 97(18), 187401.
[] [PMID: 17155573]
Kaur, A.; Kaur, J.; Singh, R.C. Tailor made exfoliated reduced graphene oxide nanosheets based on oxidative-exfoliation approach. Fuller. Nanotub. Carbon Nanostruct., 2018, 26(1), 1-11.
Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J. others, Twodimensional nanosheets produced by liquid exfoliation of layered materials Science (80-. ), 2011, 331, 568-571.
Shen, J.; Wu, J.; Wang, M.; Dong, P.; Xu, J.; Li, X.; Zhang, X.; Yuan, J.; Wang, X.; Ye, M.; Vajtai, R.; Lou, J.; Ajayan, P.M. others, Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small, 2016, 12(20), 2741-2749.
[] [PMID: 27059403]
Shen, J.; He, Y.; Wu, J.; Gao, C.; Keyshar, K.; Zhang, X.; Yang, Y.; Ye, M.; Vajtai, R.; Lou, J.; Ajayan, P.M. Others, Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett., 2015, 15(8), 5449-5454.
[] [PMID: 26200657]
Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. On the roughness of single- and bi-layer graphene membranes. Solid State Commun., 2007, 143(1-2), 101-109.
Eda, G.; Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater., 2010, 22(22), 2392-2415.
[] [PMID: 20432408]
Wilson, N.R.; Pandey, P.A.; Beanland, R.; Young, R.J.; Kinloch, I.A.; Gong, L.; Liu, Z.; Suenaga, K.; Rourke, J.P.; York, S.J.; Sloan, J. Graphene oxide: Structural analysis and application as a highly transparent support for electron microscopy. ACS Nano, 2009, 3(9), 2547-2556.
[] [PMID: 19689122]
Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C, 2011, 115(34), 17009-17019.
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M. Gun’Ko, Y.K.; Boland, J.J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A.C.; Coleman, J.N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9), 563-568.
[] [PMID: 18772919]
Zhang, G.; Sun, S.; Yang, D.; Dodelet, J.P.; Sacher, E. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon, 2008, 46(2), 196-205.
Kuznetsova, A.; Popova, I.; Yates, J.T., Jr; Bronikowski, M.J.; Huffman, C.B.; Liu, J.; Smalley, R.E.; Hwu, H.H.; Chen, J.G. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J. Am. Chem. Soc., 2001, 123(43), 10699-10704.
[] [PMID: 11674002]
Xu, Z.; Bando, Y.; Liu, L.; Wang, W.; Bai, X.; Golberg, D. Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. ACS Nano, 2011, 5(6), 4401-4406.
[] [PMID: 21557542]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy