Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Single-cell Sequencing Data Reveals Aggressive CD68-type Macrophages and Prognostic Models in Bladder Cancer

Author(s): Chenyu Mao* and Nong Xu

Volume 31, Issue 12, 2024

Published on: 01 September, 2023

Page: [1523 - 1538] Pages: 16

DOI: 10.2174/0929867331666230824093312

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The highly heterogeneous, complex pathological histology, and clinical phenotype in bladder cancer (BC) plague the prognostic management of BC to the present day.

Methods: This study was conducted using single-cell sequencing data from the gene expression omnibus (GEO) database (GSE135337). A descending, annotated analysis was performed to identify the cell types contributing to BC aggressiveness. BC cell sequencing data from The Cancer Genome Atlas (TCGA) database were then combined with univariate, least absolute shrinkage and selection operator (LASSO), multivariate COX regression analysis to identify biomarkers of BC prognosis to construct a BC. We identified biomarkers of BC prognosis to construct a prognostic risk guidance system for BC. The feedback of patients in different risk strata to immunotherapy was analyzed. Finally, the regulation of prognostic genes on cancer cell activity was verified in vitro by Western blot and cell counting kit-8 (CCK8) assays.

Results: Macrophages specifically expressing CD68 in BC were the cell type with the highest AUCell score, and CD68 was the biomarker of Tumor-associated macrophages (TAMs). CD68 macrophages were potentially the critical cell type in the aggressive BC subtype. Through univariate, LASSO, multivariate COX-based regression analysis. CTSS, GMFG, ANXA5, GSN, SLC2A3, and FTL were authenticated as prognostic biomarkers (p < 0.05) and composed the Risk Score. Patients in the low-risk group showed an excellent survival advantage (p < 0.01) and immunotherapy feedback. Additionally, inhibition of GSN expression decreased EMT activity to inhibit bladder cancer cell viability.

Conclusion: In conclusion, this study provided feedback on the immune cell types associated with aggressiveness in BC. Importantly, a prognostic management system for BC was created based on the genes involved, providing more insight into the aggressive pathological phenotype as well as the prognosis of BC.

Keywords: Bladder cancer, single-cell sequencing, tumor heterogeneity, macrophages, prognosis, gene expression omnibus.

[1]
Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Linares Espinós, E.; Lorch, A.; Neuzillet, Y.; Rouanne, M.; Thalmann, G.N.; Veskimäe, E.; Ribal, M.J.; van der Heijden, A.G. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2020 guidelines. Eur. Urol., 2021, 79(1), 82-104.
[http://dx.doi.org/10.1016/j.eururo.2020.03.055] [PMID: 32360052]
[2]
Patel, V.G.; Oh, W.K.; Galsky, M.D. Treatment of muscle- invasive and advanced bladder cancer in 2020. CA Cancer J. Clin., 2020, 70(5), 404-423.
[http://dx.doi.org/10.3322/caac.21631] [PMID: 32767764]
[3]
Jordan, B.; Meeks, J.J. T1 bladder cancer: Current considerations for diagnosis and management. Nat. Rev. Urol., 2019, 16(1), 23-34.
[http://dx.doi.org/10.1038/s41585-018-0105-y] [PMID: 30323201]
[4]
van Rhijn, B.W.G.; Burger, M.; Lotan, Y.; Solsona, E.; Stief, C.G.; Sylvester, R.J.; Witjes, J.A.; Zlotta, A.R. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur. Urol., 2009, 56(3), 430-442.
[http://dx.doi.org/10.1016/j.eururo.2009.06.028] [PMID: 19576682]
[5]
Yang, Z.; Li, C.; Fan, Z.; Liu, H.; Zhang, X.; Cai, Z.; Xu, L.; Luo, J.; Huang, Y.; He, L.; Liu, C.; Wu, S. Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 Driving Self-renewal of human bladder cancer stem cells. Eur. Urol., 2017, 71(1), 8-12.
[http://dx.doi.org/10.1016/j.eururo.2016.06.025] [PMID: 27387124]
[6]
Chen, Z.; Zhou, L.; Liu, L.; Hou, Y.; Xiong, M.; Yang, Y.; Hu, J.; Chen, K. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat. Commun., 2020, 11(1), 5077.
[http://dx.doi.org/10.1038/s41467-020-18916-5] [PMID: 33033240]
[7]
Oh, D.Y.; Kwek, S.S.; Raju, S.S.; Li, T.; McCarthy, E.; Chow, E.; Aran, D.; Ilano, A.; Pai, C.C.S.; Rancan, C.; Allaire, K.; Burra, A.; Sun, Y.; Spitzer, M.H.; Mangul, S.; Porten, S.; Meng, M.V.; Friedlander, T.W.; Ye, C.J.; Fong, L. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell, 2020, 181(7), 1612-1625.e13.
[http://dx.doi.org/10.1016/j.cell.2020.05.017] [PMID: 32497499]
[8]
Lee, H.W.; Chung, W.; Lee, H.O.; Jeong, D.E.; Jo, A.; Lim, J.E.; Hong, J.H.; Nam, D.H.; Jeong, B.C.; Park, S.H.; Joo, K.M.; Park, W.Y. Single-cell RNA sequencing reveals the tumor microenvironment and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient. Genome Med., 2020, 12(1), 47.
[http://dx.doi.org/10.1186/s13073-020-00741-6] [PMID: 32460812]
[9]
Chen, C.; He, W.; Huang, J.; Wang, B.; Li, H.; Cai, Q.; Su, F.; Bi, J.; Liu, H.; Zhang, B.; Jiang, N.; Zhong, G.; Zhao, Y.; Dong, W.; Lin, T. LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat. Commun., 2018, 9(1), 3826.
[http://dx.doi.org/10.1038/s41467-018-06152-x] [PMID: 30237493]
[10]
Wang, P.; Nishitani, M.A.; Tanimoto, S.; Kishimoto, T.; Fukumori, T.; Takahashi, M.; Kanayama, H.O. Bladder cancer cell invasion is enhanced by cross-talk with fibroblasts through hepatocyte growth factor. Urology, 2007, 69(4), 780-784.
[http://dx.doi.org/10.1016/j.urology.2007.01.063] [PMID: 17445681]
[11]
Cao, R.; Yuan, L.; Ma, B.; Wang, G.; Qiu, W.; Tian, Y. An EMT-related gene signature for the prognosis of human bladder cancer. J. Cell. Mol. Med., 2020, 24(1), 605-617.
[http://dx.doi.org/10.1111/jcmm.14767] [PMID: 31657881]
[12]
Baumgart, E.; Cohen, M.S.; Neto, B.S.; Jacobs, M.A.; Wotkowicz, C.; Rieger-Christ, K.M.; Biolo, A.; Zeheb, R.; Loda, M.; Libertino, J.A.; Summerhayes, I.C. Identification and prognostic significance of an epithelial-mesenchymal transition expression profile in human bladder tumors. Clin. Cancer Res., 2007, 13(6), 1685-1694.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2330] [PMID: 17363521]
[13]
Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; Li, S.; Song, X. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 2022, 1(3), e36.
[http://dx.doi.org/10.1002/imt2.36]
[14]
Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., III; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell, 2019, 177(7), 1888-1902.e21.
[http://dx.doi.org/10.1016/j.cell.2019.05.031] [PMID: 31178118]
[15]
Hu, C.; Li, T.; Xu, Y.; Zhang, X.; Li, F.; Bai, J.; Chen, J.; Jiang, W.; Yang, K.; Ou, Q.; Li, X.; Wang, P.; Zhang, Y. CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res., 2023, 51(D1), D870-D876.
[http://dx.doi.org/10.1093/nar/gkac947] [PMID: 36300619]
[16]
Yu, Z.; Liao, J.; Chen, Y.; Zou, C.; Zhang, H.; Cheng, J.; Liu, D.; Li, T.; Zhang, Q.; Li, J.; Yang, X.; Ye, Y.; Huang, Z.; Long, X.; Yang, R.; Mo, Z. Single-cell transcriptomic map of the human and mouse bladders. J. Am. Soc. Nephrol., 2019, 30(11), 2159-2176.
[http://dx.doi.org/10.1681/ASN.2019040335] [PMID: 31462402]
[17]
Aibar, S.; González-Blas, C.B.; Moerman, T.; Huynh-Thu, V.A.; Imrichova, H.; Hulselmans, G.; Rambow, F.; Marine, J.C.; Geurts, P.; Aerts, J.; van den Oord, J.; Atak, Z.K.; Wouters, J.; Aerts, S. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods, 2017, 14(11), 1083-1086.
[http://dx.doi.org/10.1038/nmeth.4463] [PMID: 28991892]
[18]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[19]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[20]
Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinf., 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[21]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[22]
Therneau, T.M.; Lumley, T. Package ‘survival’. R Top Doc, 2015, 128, 28-33.
[23]
Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for cox’s proportional hazards model via coordinate descent. J. Stat. Softw., 2011, 39(5), 1-13.
[http://dx.doi.org/10.18637/jss.v039.i05] [PMID: 27065756]
[24]
Ripley, B.; Venables, B.; Bates, D.M. Package ‘mass’. Cran R, 2013, 538, 113-120.
[25]
Kassambara, A.; Kosinski, M.; Biecek, P. Package ‘survminer’. Drawing Survival Curves using ‘ggplot, 2017.
[26]
Tran, A.N.; Dussaq, A.M.; Kennell, T., Jr; Willey, C.D.; Hjelmeland, A.B. HPAanalyze: An R package that facilitates the retrieval and analysis of the Human Protein Atlas data. BMC Bioinf., 2019, 20(1), 463.
[http://dx.doi.org/10.1186/s12859-019-3059-z] [PMID: 31500569]
[27]
Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756.
[http://dx.doi.org/10.1101/gr.239244.118] [PMID: 30341162]
[28]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[29]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinf., 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[30]
Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[31]
Xu, Y.; Zeng, H.; Jin, K.; Liu, Z.; Zhu, Y.; Xu, L.; Wang, Z.; Chang, Y.; Xu, J. Immunosuppressive tumor-associated macrophages expressing interlukin-10 conferred poor prognosis and therapeutic vulnerability in patients with muscle-invasive bladder cancer. J. Immunother. Cancer, 2022, 10(3), e003416.
[http://dx.doi.org/10.1136/jitc-2021-003416] [PMID: 35338085]
[32]
Ngambenjawong, C.; Gustafson, H.H.; Pun, S.H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev., 2017, 114, 206-221.
[http://dx.doi.org/10.1016/j.addr.2017.04.010] [PMID: 28449873]
[33]
Zhang, S.Y.; Song, X.Y.; Li, Y.; Ye, L.L.; Zhou, Q.; Yang, W.B. Tumor-associated macrophages: A promising target for a cancer immunotherapeutic strategy. Pharmacol. Res., 2020, 161, 105111.
[http://dx.doi.org/10.1016/j.phrs.2020.105111] [PMID: 33065284]
[34]
Li, B.; Ren, M.; Zhou, X.; Han, Q.; Cheng, L. Targeting tumor-associated macrophages in head and neck squamous cell carcinoma. Oral Oncol., 2020, 106, 104723.
[http://dx.doi.org/10.1016/j.oraloncology.2020.104723] [PMID: 32315971]
[35]
Lin, F.; Yin, H.B.; Li, X.Y.; Zhu, G.M.; He, W.Y.; Gou, X. Bladder cancer cell-secreted exosomal miR-21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. Int. J. Oncol., 2020, 56(1), 151-164.
[PMID: 31814034]
[36]
Boutilier, A.J.; Elsawa, S.F. Macrophage polarization states in the tumor microenvironment. Int. J. Mol. Sci., 2021, 22(13), 6995.
[http://dx.doi.org/10.3390/ijms22136995] [PMID: 34209703]
[37]
Chistiakov, D.A.; Killingsworth, M.C.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. CD68/macrosialin: Not just a histochemical marker. Lab. Invest., 2017, 97(1), 4-13.
[http://dx.doi.org/10.1038/labinvest.2016.116] [PMID: 27869795]
[38]
Alessandrini, F.; Pezzè, L.; Ciribilli, Y. LAMPs: Shedding light on cancer biology. Semin. Oncol., 2017, 44(4), 239-253.
[http://dx.doi.org/10.1053/j.seminoncol.2017.10.013] [PMID: 29526252]
[39]
Jiang, L.R.; Zhang, N.; Chen, S.T.; He, J.; Liu, Y.H.; Han, Y.Q.; Shi, X.Q.; Yang, J.J.; Mu, D.Y.; Fu, G.H.; Gao, F. PD-1-Positive tumor-associated macrophages define poor clinical outcomes in patients with muscle invasive bladder cancer through potential CD68/PD-1 complex interactions. Front. Oncol., 2021, 11, 679928.
[http://dx.doi.org/10.3389/fonc.2021.679928] [PMID: 34079767]
[40]
Kremenovic, M.; Chan, A.A.; Feng, B.; Bäriswyl, L.; Robatel, S.; Gruber, T.; Tang, L.; Lee, D.J.; Schenk, M. BCG hydrogel promotes CTSS-mediated antigen processing and presentation, thereby suppressing metastasis and prolonging survival in melanoma. J. Immunother. Cancer, 2022, 10(6), e004133.
[http://dx.doi.org/10.1136/jitc-2021-004133] [PMID: 35732347]
[41]
Aerbajinai, W.; Ghosh, M.C.; Liu, J.; Kumkhaek, C.; Zhu, J.; Chin, K.; Rouault, T.A.; Rodgers, G.P. Glia maturation factor-γ regulates murine macrophage iron metabolism and M2 polarization through mitochondrial ROS. Blood Adv., 2019, 3(8), 1211-1225.
[http://dx.doi.org/10.1182/bloodadvances.2018026070] [PMID: 30971398]
[42]
Xu, F.; Guo, M.; Huang, W.; Feng, L.; Zhu, J.; Luo, K.; Gao, J.; Zheng, B.; Kong, L.D.; Pang, T.; Wu, X.; Xu, Q. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol., 2020, 36, 101634.
[http://dx.doi.org/10.1016/j.redox.2020.101634] [PMID: 32863213]
[43]
Wang, H.C.; Chen, C.W.; Yang, C.L.; Tsai, I.M.; Hou, Y.C.; Chen, C.J.; Shan, Y.S. Tumor-associated macrophages promote epigenetic silencing of gelsolin through dna methyltransferase 1 in gastric cancer cells. Cancer Immunol. Res., 2017, 5(10), 885-897.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0295] [PMID: 28835422]
[44]
Yao, X.; He, Z.; Qin, C.; Deng, X.; Bai, L.; Li, G.; Shi, J. SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer. Cancer Cell Int., 2020, 20(1), 503.
[http://dx.doi.org/10.1186/s12935-020-01599-9] [PMID: 33061855]
[45]
Park, J.E.; Dutta, B.; Tse, S.W.; Gupta, N.; Tan, C.F.; Low, J.K.; Yeoh, K.W.; Kon, O.L.; Tam, J.P.; Sze, S.K. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene, 2019, 38(26), 5158-5173.
[http://dx.doi.org/10.1038/s41388-019-0782-x] [PMID: 30872795]
[46]
Liu, F.; Qiu, H.; Xue, M.; Zhang, S.; Zhang, X.; Xu, J.; Chen, J.; Yang, Y.; Xie, J. MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res. Ther., 2019, 10(1), 345.
[http://dx.doi.org/10.1186/s13287-019-1447-y] [PMID: 31771622]
[47]
Du, S.; Qian, J.; Tan, S.; Li, W.; Liu, P.; Zhao, J.; Zeng, Y.; Xu, L.; Wang, Z.; Cai, J. Tumor cell-derived exosomes deliver TIE2 protein to macrophages to promote angiogenesis in cervical cancer. Cancer Lett., 2022, 529, 168-179.
[http://dx.doi.org/10.1016/j.canlet.2022.01.005] [PMID: 35007697]
[48]
Park, D.; Lim, G.; Yoon, S.J.; Yi, H.S.; Choi, D.W. The role of immunomodulatory metabolites in shaping the inflammatory response of macrophages. BMB Rep., 2022, 55(11), 519-527.
[http://dx.doi.org/10.5483/BMBRep.2022.55.11.128] [PMID: 36195564]
[49]
Hao, X.; Zheng, Z.; Liu, H.; Zhang, Y.; Kang, J.; Kong, X.; Rong, D.; Sun, G.; Sun, G.; Liu, L.; Yu, H.; Tang, W.; Wang, X. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol., 2022, 56, 102463.
[http://dx.doi.org/10.1016/j.redox.2022.102463] [PMID: 36108528]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy