Research Article

TRIM65在动脉粥样硬化中与VCAM-1相互作用抑制氧化低密度脂蛋白诱导的内皮炎症

卷 31, 期 30, 2024

发表于: 22 August, 2023

页: [4898 - 4911] 页: 14

弟呕挨: 10.2174/0929867331666230822152350

价格: $65

Open Access Journals Promotions 2
摘要

背景与目的:内皮细胞的激活,以血管细胞粘附分子1 (VCAM-1)水平的增加为特征,在动脉粥样硬化(AS)的发展中起着至关重要的作用。因此,抑制VCAM-1介导的炎症反应对AS的防治具有重要意义。TRIM65蛋白参与癌症发展、抗病毒和炎症的调控。我们的目的是研究TRIM65在动脉粥样硬化中通过与VCAM-1相互作用调节内皮炎症的功能。 方法与结果:在体外,我们报道了氧化低密度脂蛋白(oxLDL)处理的人脐静脉内皮细胞(HUVECs)以时间和剂量依赖的方式显著上调TRIM65的表达。TRIM65的过表达降低了oxLDL触发的VCAM-1蛋白表达,降低了单核细胞对HUVECs的粘附,抑制了炎症细胞因子IL-1β、IL-6、IL-8和TNF-α的产生以及内皮细胞的oxLDL转胞作用。相反,sirna介导的TRIM65敲低可促进VCAM-1的表达,导致单核细胞粘附增加,炎症细胞因子IL-1β、IL-6、IL-8和TNF-α的释放,并增强内皮细胞oxLDL的转胞作用。在体内,与C57BL/6J小鼠主动脉斑块相比,我们测量了ApoE-/-小鼠主动脉斑块中TRIM65的高表达。然后,我们检测了TRIM65敲除ApoE-/-小鼠的血液VCAM-1水平是否高于西方饮食诱导的对照小鼠。此外,Western blot结果显示,与对照组相比,TRIM65敲除ApoE-/-小鼠主动脉组织中VCAM-1的蛋白表达明显增强。免疫荧光染色显示,与ApoE-/-对照相比,TRIM65-/-/ApoE-/-主动脉血管粥样硬化斑块中VCAM-1的表达明显增加。在机制上,TRIM65特异性地与VCAM-1相互作用,并将其靶向k48相关的泛素化。 结论:我们的研究表明,TRIM65通过靶向VCAM-1泛素化来减轻内皮炎症反应,为抑制AS内皮炎症提供了潜在的治疗靶点。

关键词: TRIM65,动脉粥样硬化,内皮炎症,VCAM-1,单核细胞粘附,泛素化。

[1]
Zhang, F.; Xia, X.; Chai, R.; Xu, R.; Xu, Q.; Liu, M.; Chen, X.; Liu, B.; Liu, S.; Liu, N. Inhibition of USP14 suppresses the formation of foam cell by promoting CD36 degradation. J. Cell. Mol. Med., 2020, 24(6), 3292-3302.
[http://dx.doi.org/10.1111/jcmm.15002] [PMID: 31970862]
[2]
Jiang, T.; Jiang, D.; You, D.; Zhang, L.; Liu, L.; Zhao, Q. Agonism of GPR120 prevents ox-LDL-induced attachment of monocytes to endothelial cells. Chem. Biol. Interact., 2020, 316, 108916.
[http://dx.doi.org/10.1016/j.cbi.2019.108916] [PMID: 31870843]
[3]
Hu, C.; Peng, K.; Wu, Q.; Wang, Y.; Fan, X.; Zhang, D.M.; Passerini, A.G.; Sun, C. HDAC1 and 2 regulate endothelial VCAM-1 expression and atherogenesis by suppressing methylation of the GATA6 promoter. Theranostics, 2021, 11(11), 5605-5619.
[http://dx.doi.org/10.7150/thno.55878] [PMID: 33859766]
[4]
Qi, Y.; Liang, J.; She, Z.G.; Cai, Y.; Wang, J.; Lei, T.; Stallcup, W.B.; Fu, M. MCP-induced protein 1 suppresses TNFα-induced VCAM-1 expression in human endothelial cells. FEBS Lett., 2010, 584(14), 3065-3072.
[http://dx.doi.org/10.1016/j.febslet.2010.05.040] [PMID: 20561987]
[5]
Edlinger, C.; Lichtenauer, M.; Wernly, B.; Pistulli, R.; Paar, V.; Prodinger, C.; Krizanic, F.; Thieme, M.; Kammler, J.; Jung, C.; Hoppe, U.C.; Schulze, P.C.; Kretzschmar, D. Disease-specific characteristics of vascular cell adhesion molecule-1 levels in patients with peripheral artery disease. Heart Vessels, 2019, 34(6), 976-983.
[http://dx.doi.org/10.1007/s00380-018-1315-1] [PMID: 30535754]
[6]
Bala, G.; Blykers, A.; Xavier, C.; Descamps, B.; Broisat, A.; Ghezzi, C.; Fagret, D.; Van Camp, G.; Caveliers, V.; Vanhove, C.; Lahoutte, T.; Droogmans, S.; Cosyns, B.; Devoogdt, N.; Hernot, S. Targeting of vascular cell adhesion molecule-1 by 18 F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur. Heart J. Cardiovasc. Imaging, 2016, 17(9), 1001-1008.
[http://dx.doi.org/10.1093/ehjci/jev346] [PMID: 26800768]
[7]
Zhang, Y.; Qian, H.; Wu, B.; You, S.; Wu, S.; Lu, S.; Wang, P.; Cao, L.; Zhang, N.; Sun, Y. E3 Ubiquitin ligase NEDD4 family-regulatory network in cardiovascular disease. Int. J. Biol. Sci., 2020, 16(14), 2727-2740.
[http://dx.doi.org/10.7150/ijbs.48437] [PMID: 33110392]
[8]
Hatakeyama, S. TRIM family proteins: Roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci, 2017, 42(4), 297-311.
[http://dx.doi.org/10.1016/j.tibs.2017.01.002] [PMID: 28118948]
[9]
Huang, W.Q.; Ye, H.M.; Cai, L.L.; Ma, Q.L.; Lu, C.X.; Tong, S.J.; Tzeng, C.M.; Lin, Q. The associations of PMF1, ICAM1, AGT, TRIM65, FBF1, and ACOX1 variants with leukoaraiosis in Chinese population. Front Genet, 2019, 10, 615.
[http://dx.doi.org/10.3389/fgene.2019.00615] [PMID: 31396257]
[10]
Huang, W.Q.; Ye, H.M.; Li, F.F.; Yi, K.H.; Zhang, Y.; Cai, L.L.; Lin, H.N.; Lin, Q.; Tzeng, C.M. Analysis of genetic polymorphisms associated with leukoaraiosis in the southern Chinese population. Medicine (Baltimore), 2016, 95(35), e3857.
[http://dx.doi.org/10.1097/MD.0000000000003857] [PMID: 27583843]
[11]
Li, S.; Wang, L.; Fu, B.; Berman, M.A.; Diallo, A.; Dorf, M.E. TRIM65 regulates microRNA activity by ubiquitination of TNRC6. Proc. Natl. Acad. Sci. USA, 2014, 111(19), 6970-6975.
[http://dx.doi.org/10.1073/pnas.1322545111] [PMID: 24778252]
[12]
Li, S.; Wang, L.; Fu, B.; Dorf, M.E. Trim65: A cofactor for regulation of the microRNA pathway. RNA Biol., 2014, 11(9), 1113-1121.
[http://dx.doi.org/10.4161/rna.36179] [PMID: 25483047]
[13]
Lu, Y.; Xiao, Y.; Yang, J.; Su, H.; Zhang, X.; Su, F.; Tian, B.; Zhao, D.; Ling, X.; Zhang, T. TRIM65 promotes malignant cell behaviors in triple-negative breast cancer by impairing the stability of LATS1 protein. Oxid. Med. Cell. Longev., 2022, 2022, 1-16.
[http://dx.doi.org/10.1155/2022/4374978] [PMID: 36035221]
[14]
Liu, C.; Sun, W.; Yang, K.; Xia, B. Knockdown of TRIM65 suppressed the proliferation and invasiveness of gastric cancer cells by restricting the ubiquitin degradation of PPM1A. Exp. Cell Res., 2022, 416(2), 113154.
[http://dx.doi.org/10.1016/j.yexcr.2022.113154] [PMID: 35421368]
[15]
Yao, H.; Xie, W.; Dai, Y.; Liu, Y.; Gu, W.; Li, J.; Wu, L.; Xie, J.; Rui, W.; Ren, B.; Xue, L.; Cheng, Y.; Lin, S.; Li, C.; Tang, H.; Wang, Y.; Lou, M.; Zhang, X.; Hu, R.; Shang, H.; Huang, J.; Wu, Z.B. TRIM65 determines the fate of a novel subtype of pituitary neuroendocrine tumors via ubiquitination and degradation of TPIT. Neuro-oncol., 2022, 24(8), 1286-1297.
[http://dx.doi.org/10.1093/neuonc/noac053] [PMID: 35218667]
[16]
Chen, D.; Li, Y.; Zhang, X.; Wu, H.; Wang, Q.; Cai, J.; Cui, Y.; Liu, H.; Lan, P.; Wang, J.; Yang, Z.; Wang, L. Ubiquitin ligase TRIM65 promotes colorectal cancer metastasis by targeting ARHGAP35 for protein degradation. Oncogene, 2019, 38(37), 6429-6444.
[http://dx.doi.org/10.1038/s41388-019-0891-6] [PMID: 31332286]
[17]
Chen, G.; Zhou, T.; Liu, Y.; Yu, Z. Combinatory inhibition of TRIM65 and MDM2 in lung cancer cells. Biochem. Biophys. Res. Commun., 2018, 506(3), 698-702.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.130] [PMID: 30454706]
[18]
Wei, W.S.; Chen, X.; Guo, L.Y.; Li, X.D.; Deng, M.H.; Yuan, G.J.; He, L.Y.; Li, Y.H.; Zhang, Z.L.; Jiang, L.J.; Chen, R.X.; Ma, X.D.; Wei, S.; Ma, N.F.; Liu, Z.W.; Luo, J.H.; Zhou, F.J.; Xie, D. TRIM65 supports bladder urothelial carcinoma cell aggressiveness by promoting ANXA2 ubiquitination and degradation. Cancer Lett, 2018, 435, 10-22.
[http://dx.doi.org/10.1016/j.canlet.2018.07.036] [PMID: 30075204]
[19]
Wu, Y.T.; Ma, S.Y.; Sun, W.Q.; Shen, W.W.; Zhu, H.T.; Zhang, Q.; Chen, H.F. TRIM65 promotes invasion of endometrial stromal cells by activating ERK1/2/C-myc signaling via ubiquitination of DUSP6. J. Clin. Endocrinol. Metab., 2021, 106(2), 526-538.
[http://dx.doi.org/10.1210/clinem/dgaa804] [PMID: 33146694]
[20]
Yang, Y.F.; Zhang, M.F.; Tian, Q.H.; Zhang, C.Z. TRIM65 triggers β-Catenin signaling via ubiquitination of Axin1 to promote hepatocellular carcinoma. J. Cell Sci., 2017, 130(18), jcs.206623.
[http://dx.doi.org/10.1242/jcs.206623] [PMID: 28754688]
[21]
Li, Y.; Ma, C.; Zhou, T.; Liu, Y.; Sun, L.; Yu, Z. TRIM65 negatively regulates p53 through ubiquitination. Biochem. Biophys. Res. Commun., 2016, 473(1), 278-282.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.093] [PMID: 27012201]
[22]
Lang, X.; Tang, T.; Jin, T.; Ding, C.; Zhou, R.; Jiang, W. TRIM65-catalized ubiquitination is essential for MDA5-mediated antiviral innate immunity. J. Exp. Med., 2017, 214(2), 459-473.
[http://dx.doi.org/10.1084/jem.20160592] [PMID: 28031478]
[23]
Meng, J.; Yao, Z.; He, Y.; Zhang, R.; Zhang, Y.; Yao, X.; Yang, H.; Chen, L.; Zhang, Z.; Zhang, H.; Bao, X.; Hu, G.; Wu, T.; Cheng, J. ARRDC4 regulates enterovirus 71-induced innate immune response by promoting K63 polyubiquitination of MDA5 through TRIM65. Cell Death Dis., 2017, 8(6), e2866.
[http://dx.doi.org/10.1038/cddis.2017.257] [PMID: 28594402]
[24]
Li, Y.; Huang, X.; Guo, F.; Lei, T.; Li, S.; Monaghan-Nichols, P.; Jiang, Z.; Xin, H.B.; Fu, M. TRIM65 E3 ligase targets VCAM-1 degradation to limit LPS-induced lung inflammation. J. Mol. Cell Biol., 2020, 12(3), 190-201.
[http://dx.doi.org/10.1093/jmcb/mjz077] [PMID: 31310649]
[25]
Liu, B.; Tang, Y.; Yang, P.; Wu, C.; Huang, Y. TRIM65 in white natter lesions, innate immunity, and tumor. Curr. Mol. Pharmacol., 2021, 14(5), 798-805.
[http://dx.doi.org/10.2174/1874467214666210203211603] [PMID: 33538683]
[26]
Tang, T.; Li, P.; Zhou, X.; Wang, R.; Fan, X.; Yang, M.; Qi, K. The E3 ubiquitin ligase TRIM65 negatively regulates inflammasome activation through promoting ubiquitination of NLRP3. Front. Immunol., 2021, 12, 741839.
[http://dx.doi.org/10.3389/fimmu.2021.741839] [PMID: 34512673]
[27]
Zhou, Z.X.; Ren, Z.; Yan, B.J.; Qu, S.L.; Tang, Z.H.; Wei, D.H.; Liu, L.S.; Fu, M.G.; Jiang, Z.S. The role of ubiquitin E3 ligase in atherosclerosis. Curr. Med. Chem., 2020, 28(1), 152-168.
[http://dx.doi.org/10.2174/0929867327666200306124418] [PMID: 32141415]
[28]
Kim, S.; Lee, W.; Cho, K. P62 links the autophagy pathway and the ubiquitin-proteasome system in endothelial cells during atherosclerosis. Int. J. Mol. Sci., 2021, 22(15), 7791.
[http://dx.doi.org/10.3390/ijms22157791] [PMID: 34360560]
[29]
Zhang, N.; Zhang, Y.; Wu, B.; You, S.; Sun, Y. Role of WW domain E3 ubiquitin protein ligase 2 in modulating ubiquitination and degradation of Septin4 in oxidative stress endothelial injury. Redox Biol., 2020, 30, 101419.
[http://dx.doi.org/10.1016/j.redox.2019.101419] [PMID: 31924572]
[30]
Jiang, H.; Zhou, Y.; Nabavi, S.M.; Sahebkar, A.; Little, P.J.; Xu, S.; Weng, J.; Ge, J. Mechanisms of oxidized LDL-mediated endothelial dysfunction and its consequences for the development of atherosclerosis. Front. Cardiovasc. Med., 2022, 9, 925923.
[http://dx.doi.org/10.3389/fcvm.2022.925923] [PMID: 35722128]
[31]
Cybulsky, M.I.; Iiyama, K.; Li, H.; Zhu, S.; Chen, M.; Iiyama, M.; Davis, V.; Gutierrez-Ramos, J.C.; Connelly, P.W.; Milstone, D.S. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest., 2001, 107(10), 1255-1262.
[http://dx.doi.org/10.1172/JCI11871] [PMID: 11375415]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy