Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

The Potential Roles of Ficus carica Extract in the Management of COVID-19 Viral Infections: A Computer-aided Drug Design Study

Author(s): Mahmoud Hamed, Maha Khalifa, Mahmoud A. El Hassab, Mohammed A. S. Abourehab, Omkulthom Al Kamaly*, Ashwag S. Alanazi, Wagdy M. Eldehna and Fotouh R. Mansour

Volume 20, Issue 6, 2024

Published on: 04 September, 2023

Page: [974 - 986] Pages: 13

DOI: 10.2174/1573409920666230818092445

open access plus

conference banner
Abstract

Introduction: The conventional processes of drug discovery are too expensive, timeconsuming and the success rate is limited. Searching for alternatives that have evident safety and potential efficacy could save money, time and improve the current therapeutic regimen outcomes.

Methods: Clinical phytotherapy implies the use of extracts of natural origin for prophylaxis, treatment, or management of human disorders. In this work, the potential role of common Fig (Ficus carica) in the management of COVID-19 infections has been explored. The antiviral effects of Cyanidin 3-rhamnoglucoside which is abundant in common Figs have been illustrated on COVID-19 targets. The immunomodulatory effect and the ability to ameliorate the cytokine storm associated with coronavirus infections have also been highlighted. This work involves various computational studies to investigate the potential roles of common figs in the management of COVID-19 viral infections.

Results: Two molecular docking studies of all active ingredients in common Figs were conducted starting with MOE to provide initial insights, followed by Autodock Vina for further confirmation of the results of the top five compounds with the best docking score.

Conclusion: Finally, Molecular dynamic simulation alongside MMPBSA calculations were conducted using GROMACS to endorse and validate the entire work.

Keywords: Coronavirus pandemic, COVID-19, Ficus carica, common figs, molecular modelling, molecular docking.

Graphical Abstract
[1]
Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[2]
Colalto, C. What phytotherapy needs: Evidence-based guidelines for better clinical practice. Phytother. Res., 2018, 32(3), 413-425.
[http://dx.doi.org/10.1002/ptr.5977] [PMID: 29193357]
[3]
Falzon, C.C.; Balabanova, A. Phytotherapy. Prim. Care, 2017, 44(2), 217-227.
[http://dx.doi.org/10.1016/j.pop.2017.02.001] [PMID: 28501226]
[4]
Barolo, M.I.; Ruiz Mostacero, N.; López, S.N. Ficus carica L. (Moraceae): An ancient source of food and health. Food Chem., 2014, 164, 119-127.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.112] [PMID: 24996314]
[5]
Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol., 2014, 52(11), 1487-1503.
[http://dx.doi.org/10.3109/13880209.2014.892515] [PMID: 25017517]
[6]
Yasmeen, N.; Usha, K.G.; Sameer, A.S. Genotoxic and antimutagenic activity of ficus carica extracts. In: Fig (Ficus carica): Production, Processing, and Properties; Ramadan, M.F., Ed.; Springer International Publishing: Cham, 2023; pp. 579-596.
[http://dx.doi.org/10.1007/978-3-031-16493-4_26]
[7]
Chauhan, A.; Tanwar, B. Intelli. influence of processing on physicochemical, nutritional and phytochemical composition of ficus carica (Fig) fruit. Res. J. Pharm. Biol. Chem. Sci., 2015, 6(6), 1474-1489.
[8]
Barolo, M.I.; Castelli, M.V.; López, S.N. Antimicrobial properties and biotransforming ability of fungal endophytes from Ficus carica L. (Moraceae). Mycology., 2023, 14(2), 108-132.
[http://dx.doi.org/10.1080/21501203.2023.2175500] [PMID: 37152850]
[9]
Hajibeygi, R.; Mirghazanfari, S.M.; Pahlavani, N.; Jalil, A.T.; Alshahrani, S.H.; Rizaev, J.A.; Hadi, S.; Hadi, V.; Yekta, N.H. Effect of a diet based on Iranian traditional medicine on inflammatory markers and clinical outcomes in COVID-19 patients: A double-blind, randomized, controlled trial. Eur. J. Integr. Med., 2022, 55, 102179.
[http://dx.doi.org/10.1016/j.eujim.2022.102179] [PMID: 36035633]
[10]
El Hassab, M.A.; Hemeda, L.R.; Elsayed, Z.M.; Al-Rashood, S.T.; Abdel-Hamid Amin, M.K.; Abdel-Aziz, H.A.; Eldehna, W.M. Computational prediction of the potential target of SARS‐CoV‐2 inhibitor plitidepsin via molecular docking, dynamic simulations and MM‐PBSA calculations. Chem. Biodivers., 2022, 19(2), e202100719.
[http://dx.doi.org/10.1002/cbdv.202100719] [PMID: 34813168]
[11]
El Hassab, M.A.; Eldehna, W.M.; Al-Rashood, S.T.; Alharbi, A.; Eskandrani, R.O.; Alkahtani, H.M.; Elkaeed, E.B.; Abou-Seri, S.M. Multi-stage structure-based virtual screening approach towards identification of potential SARS-CoV-2 NSP13 helicase inhibitors. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 563-572.
[http://dx.doi.org/10.1080/14756366.2021.2022659] [PMID: 35012384]
[12]
Basu, S.; Ramaiah, S.; Anbarasu, A. In-silico strategies to combat COVID-19: A comprehensive review. Biotechnol. Genet. Eng. Rev., 2021, 37(1), 64-81.
[http://dx.doi.org/10.1080/02648725.2021.1966920] [PMID: 34470564]
[13]
Ali, M.; Nur, A.; Khatun, M.; Dash, R.; Rahman, M.; Karim, M. Identification of potential SARS-CoV-2 main protease inhibitors from Ficus Carica Latex: An in-silico approach. J. Adv. Biotechnol. Exp. Ther., 2020, 3(4), 57.
[http://dx.doi.org/10.5455/jabet.2020.d157]
[14]
Upreti, S.; Prusty, J.S.; Pandey, S.C.; Kumar, A.; Samant, M. Identification of novel inhibitors of angiotensin-converting enzyme 2 (ACE-2) receptor from Urtica dioica to combat coronavirus disease 2019 (COVID-19). Mol. Divers., 2021, 25(3), 1795-1809.
[http://dx.doi.org/10.1007/s11030-020-10159-2] [PMID: 33398633]
[15]
Lingwan, M.; Shagun, S.; Pahwa, F.; Kumar, A.; Verma, D.K.; Pant, Y.; Kamatam, L.V.K.; Kumari, B.; Nanda, R.K.; Sunil, S.; Masakapalli, S.K. Phytochemical rich Himalayan Rhododendron arboreum petals inhibit SARS-CoV-2 infection in vitro. J. Biomol. Struct. Dyn., 2023, 41(4), 1403-1413.
[http://dx.doi.org/10.1080/07391102.2021.2021287] [PMID: 34961411]
[16]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[17]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX., 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[18]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[19]
Schuler, L.D.; Daura, X.; van Gunsteren, W.F. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem., 2001, 22(11), 1205-1218.
[http://dx.doi.org/10.1002/jcc.1078]
[20]
Lazreg Aref, H.; Gaaliche, B.; Fekih, A.; Mars, M.; Aouni, M.; Pierre Chaumon, J.; Said, K. In vitro cytotoxic and antiviral activities of Ficus carica latex extracts. Nat. Prod. Res., 2011, 25(3), 310-319.
[http://dx.doi.org/10.1080/14786419.2010.528758] [PMID: 21294043]
[21]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[22]
Fazel, M.; Wheeler, J.; Danesh, J. Prevalence of serious mental disorder in 7000 refugees resettled in western countries: A systematic review. Lancet., 2005, 365(9467), 1309-1314.
[http://dx.doi.org/10.1016/S0140-6736(05)61027-6] [PMID: 15823380]
[23]
Liu, J.; Liao, X.; Qian, S.; Yuan, J.; Wang, F.; Liu, Y.; Wang, Z.; Wang, F.S.; Liu, L.; Zhang, Z. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerg. Infect. Dis., 2020, 26(6), 1320-1323.
[http://dx.doi.org/10.3201/eid2606.200239] [PMID: 32125269]
[24]
Wu, G.; Yang, P.; Xie, Y.; Woodruff, H.C.; Rao, X.; Guiot, J.; Frix, A.N.; Louis, R.; Moutschen, M.; Li, J.; Li, J.; Yan, C.; Du, D.; Zhao, S.; Ding, Y.; Liu, B.; Sun, W.; Albarello, F.; D’Abramo, A.; Schininà, V.; Nicastri, E.; Occhipinti, M.; Barisione, G.; Barisione, E.; Halilaj, I.; Lovinfosse, P.; Wang, X.; Wu, J.; Lambin, P. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: An international multicentre study. Eur. Respir. J., 2020, 56(2), 2001104.
[http://dx.doi.org/10.1183/13993003.01104-2020] [PMID: 32616597]
[25]
Cao, W.; Li, T. COVID-19: Towards understanding of pathogenesis. Cell Res., 2020, 30(5), 367-369.
[http://dx.doi.org/10.1038/s41422-020-0327-4] [PMID: 32346073]
[26]
Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet., 2020, 395(10223), 473-475.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[27]
King, R.G.; Silva-Sanchez, A.; Peel, J.N.; Botta, D.; Dickson, A.M.; Pinto, A.K.; Meza-Perez, S.; Allie, S.R.; Schultz, M.D.; Liu, M.; Bradley, J.E.; Qiu, S.; Yang, G.; Zhou, F.; Zumaquero, E.; Simpler, T.S.; Mousseau, B.; Killian, J.T., Jr; Dean, B.; Shang, Q.; Tipper, J.L.; Risley, C.A.; Harrod, K.S.; Feng, T.; Lee, Y.; Shiberu, B.; Krishnan, V.; Peguillet, I.; Zhang, J.; Green, T.J.; Randall, T.D.; Suschak, J.J.; Georges, B.; Brien, J.D.; Lund, F.E.; Roberts, M.S. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines., 2021, 9(8), 881.
[http://dx.doi.org/10.3390/vaccines9080881] [PMID: 34452006]
[28]
Singh, D.; Singh, B.; Goel, R.K. Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review. J. Ethnopharmacol., 2011, 134(3), 565-583.
[http://dx.doi.org/10.1016/j.jep.2011.01.046] [PMID: 21296646]
[29]
Sethi, A.; Joshi, K.; Sasikala, K.; Alvala, M. Molecular Docking in Modern Drug Discovery: Principles and Recent Applications. In: Drug Discovery and Development - New Advances; IntechOpen, 2020.
[30]
Prieto-Martínez, F.D.; Arciniega, M.; Medina-Franco, J. Molecular docking: Current advances and challenges. TIP Rev Esp Cienc Quim Biol, 2018, 21(S1), 65-87.
[31]
Dalal, V.; Kumari, R. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus: An in Silico Approach. ChemistrySelect, 2022, 7(42), e202201728.
[http://dx.doi.org/10.1002/slct.202201728]
[32]
Kumari, R.; Rathi, R.; Pathak, S.R.; Dalal, V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J. Mol. Struct., 2022, 1255, 132476.
[http://dx.doi.org/10.1016/j.molstruc.2022.132476]
[33]
Kumari, R.; Kumar, V.; Dhankhar, P.; Dalal, V. Promising antivirals for PLpro of SARS-CoV-2 using virTUAL screening; Molecular Docking, Dynamics, and MMPBSA, 2022.
[http://dx.doi.org/10.1080/07391102.2022.2071340]
[34]
Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn., 2020, 39(9), 3347-3357.
[http://dx.doi.org/10.1080/07391102.2020.1763201] [PMID: 32362245]
[35]
Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar. Drugs, 2020, 18(4), 225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[36]
Bacha, U.; Barrila, J.; Velazquez-Campoy, A.; Leavitt, S.A.; Freire, E. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry., 2004, 43(17), 4906-4912.
[http://dx.doi.org/10.1021/bi0361766] [PMID: 15109248]
[37]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[38]
Turkoglu, M.; Pekmezci, E.; Kilic, S.; Dundar, C.; Sevinc, H. Effect of Ficus carica leaf extract on the gene expression of selected factors in HaCaT cells. J. Cosmet. Dermatol., 2017, 16(4), e54-e58.
[http://dx.doi.org/10.1111/jocd.12344] [PMID: 28432719]
[39]
Mujić, I.; Bavcon Kralj, M.; Jokić, S.; Jug, T.; Šubarić, D.; Vidović, S.; Živković, J.; Jarni, K. Characterisation of volatiles in dried white varieties figs (Ficus carica L.). J. Food Sci. Technol., 2014, 51(9), 1837-1846.
[http://dx.doi.org/10.1007/s13197-012-0740-x] [PMID: 25190838]
[40]
Sharma, S.H.; Kumar, J.S.; Chellappan, D.R.; Nagarajan, S. Molecular chemoprevention by morin - A plant flavonoid that targets nuclear factor kappa B in experimental colon cancer. Biomed. Pharmacother., 2018, 100, 367-373.
[http://dx.doi.org/10.1016/j.biopha.2018.02.035] [PMID: 29453046]
[41]
Vikas, P.V.; Bhangale, S.C.; Patil, V.R. Evaluation of anti-pyretic potential of ficus carica leaves. Int. J. Pharm. Sci. Res., 2010, 2(2)
[42]
Chawla, A.; Kaur, R.; Sharma, A.K. Ficus carica linn.: A review on its pharmacognostic, phytochemical and pharmacological aspects. Int. J. Pharm. Phytopharm. Res., 2012, 1(4), 215-232.
[43]
Jeong, M.R.; Kim, H.Y.; Cha, J.D. Antimicrobial activity of methanol extract from ficus carica leaves against oral bacteria. J. Bacteriol. Virol., 2009, 39(2), 97-102.
[http://dx.doi.org/10.4167/jbv.2009.39.2.97]
[44]
Kuete, V.; Nana, F.; Ngameni, B.; Mbaveng, A.T.; Keumedjio, F.; Ngadjui, B.T. Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovata (Moraceae). J. Ethnopharmacol., 2009, 124(3), 556-561.
[http://dx.doi.org/10.1016/j.jep.2009.05.003] [PMID: 19450673]

© 2024 Bentham Science Publishers | Privacy Policy