Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Ethnomedicinal Importance of Patuletin in Medicine: Pharmacological Activities and Analytical Aspects

Author(s): Dinesh Kumar Patel*, Gireesh Kumar Singh, Gulam Mohammed Husain and Satyendra K. Prasad

Volume 24, Issue 5, 2024

Published on: 04 October, 2023

Page: [519 - 530] Pages: 12

DOI: 10.2174/1871530323666230816141740

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Plant-derived bioactive molecules have been a major source of therapeutic agents for human and veterinarian purposes. Different traditional medicine system across the globe had relied on natural resources to meet their demand of healthcare. Still in modern world, pharmaceutical industries look for phytochemicals to develop new drugs. The current review explores patuletin, a flavonoid for its diverse reported pharmacological activities along with its analytical techniques.

Methods: Scientific data published on patuletin was collected from Scopus, Science Direct, Pubmed, Google, and Google Scholar. The collected data were analyzed and arranged as per specific pharmacological activities performed using in-vitro or in-vivo methods. Analytical methods of patuletin have been presented next to pharmacological activities

Results: Available scientific literature indicates patuletin has anti-inflammatory, cytotoxic, genotoxic, hepatoprotective, antiproliferative, antiplatelet, antinociceptive, and antioxidant activity. In addition to these activities, its biological potential on breast cancer, rheumatoid arthritis, aldose reductase, and different types of microorganisms has been also presented in this work. Analytical data on patuletin signified the importance of patuletin for the standardization of herbal products and derived medicine.

Conclusion: It may be concluded that patuletin with its diverse biological activities and readily available analytical methods, holds the potential to be translated into a new drug entity.

Keywords: Patuletin, anti-inflammatory, cytotoxic, hepatoprotective, antiproliferative, antiplatelet, antinociceptive, antioxidant, breast cancer, rheumatoid arthritis, aldose reductase.

Graphical Abstract
[1]
Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem., 2001, 49(11), 5165-5170.
[http://dx.doi.org/10.1021/jf010697n] [PMID: 11714298]
[2]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “a concise report of its phytopharmaceutical importance”. Curr. Tradit. Med., 2017, 3(3), 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[3]
Pan, S.Y.; Litscher, G.; Gao, S.H.; Zhou, S.F.; Yu, Z.L.; Chen, H.Q.; Zhang, S.F.; Tang, M.K.; Sun, J.N.; Ko, K.M. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-20.
[http://dx.doi.org/10.1155/2014/525340] [PMID: 24872833]
[4]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[5]
Kang, D.; Shao, Y.; Zhu, Z.; Yin, X.; Shen, B.; Chen, C.; Xu, Y.; Shen, J.; Li, H.; Li, X.; Xie, L.; Wang, G.; Liang, Y. Systematically identifying the hepatoprotective ingredients of schisandra lignan extract from pharmacokinetic and pharmacodynamic perspectives. Phytomedicine, 2019, 53, 182-192.
[http://dx.doi.org/10.1016/j.phymed.2018.09.010] [PMID: 30668398]
[6]
Oteiza, P.I.; Fraga, C.G.; Galleano, M. Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biol., 2021, 42, 101914.
[http://dx.doi.org/10.1016/j.redox.2021.101914] [PMID: 33750648]
[7]
Patel, D.K. Medicinal importance of flavonoid “eupatorin” in the health sectors: therapeutic benefit and pharmacological activities through scientific data analysis. Current Chinese Science, 2021, 1(6), 629-638.
[http://dx.doi.org/10.2174/2210298101666210804141644]
[8]
Li, J.; Wen, J.; Tang, G.; Li, R.; Guo, H.; Weng, W.; Wang, D.; Ji, S. Development of a comprehensive quality control method for the quantitative analysis of volatiles and lignans in Magnolia biondii Pamp. by near infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 230, 118080.
[http://dx.doi.org/10.1016/j.saa.2020.118080] [PMID: 31982656]
[9]
Liu, C. Overview on development of ASEAN traditional and herbal medicines. Chin. Herb. Med., 2021, 13(4), 441-450.
[http://dx.doi.org/10.1016/j.chmed.2021.09.002] [PMID: 36119367]
[10]
Nguyen, P.H.; Tran, V.D.; Pham, D.T.; Dao, T.N.P.; Dewey, R.S. Use of and attitudes towards herbal medicine during the COVID-19 pandemic: A cross-sectional study in Vietnam. Eur. J. Integr. Med., 2021, 44, 101328.
[http://dx.doi.org/10.1016/j.eujim.2021.101328] [PMID: 36570027]
[11]
Lee, J.W.; Hyun, M.K.; Kim, H.J.; Kim, D.I. Acupuncture and herbal medicine for female infertility: An overview of systematic reviews. Integr. Med. Res., 2021, 10(3), 100694.
[http://dx.doi.org/10.1016/j.imr.2020.100694] [PMID: 33665092]
[12]
Patel, D.K.; Patel, K.; Duraiswamy, B.; Dhanabal, S.P. Phytochemical analysis and standardization of Strychnos nux-vomica extract through HPTLC techniques. Asian Pac. J. Trop. Dis., 2012, 2, S56-S60.
[http://dx.doi.org/10.1016/S2222-1808(12)60124-8]
[13]
Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci., 2016, 7, 19.
[http://dx.doi.org/10.3389/fpls.2016.00019] [PMID: 26870049]
[14]
War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav., 2012, 7(10), 1306-1320.
[http://dx.doi.org/10.4161/psb.21663] [PMID: 22895106]
[15]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[16]
Cavalcanti, R.N.; Forster-Carneiro, T.; Gomes, M.T.M.S.; Rostagno, M.A.; Prado, J.M.; Meireles, M.A.A. Uses and applications of extracts from natural sources.Natural Product Extraction; Royal society of chemistry: London, 2013, pp. 1-57.
[http://dx.doi.org/10.1039/9781849737579-00001]
[17]
Nazar, N.; Howard, C.; Slater, A.; Sgamma, T. Challenges in medicinal and aromatic plants DNA barcoding-lessons from the lamiaceae. Plants, 2022, 11(1), 137.
[http://dx.doi.org/10.3390/plants11010137] [PMID: 35009140]
[18]
Nadeeshani, D.G.; Dharmadasa, R.M.; Chandana Abeysinghe, D.; Saman w., R.G.; Prathapasinghe, G.A.; Someya, T. Global perspective of plant-based cosmetic industry and possible contribution of sri lanka to the development of herbal cosmetics. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-26.
[http://dx.doi.org/10.1155/2022/9940548] [PMID: 35280508]
[19]
Patel, K.; Singh, R.B.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of solasodine: A concise report of current scientific literature. J. Acute Dis., 2013, 2(2), 92-98.
[http://dx.doi.org/10.1016/S2221-6189(13)60106-7]
[20]
Patel, K.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of ricinine: A concise report. J. Coast. Life Med., 2016, 4(8), 663-667.
[http://dx.doi.org/10.12980/jclm.4.2016J6-96]
[21]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[22]
Patel, D.K.; Patel, K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: biological importance, therapeutic benefit and analytical aspects. Curr. Cancer Ther. Rev., 2022, 18(1), 41-50.
[http://dx.doi.org/10.2174/1573394717666210831163322]
[23]
Patel, D.K. Biological importance, therapeutic benefit, and medicinal importance of flavonoid, cirsiliol for the development of remedies against human disorders. Curr. Bioact. Compd., 2022, 18(3), e240821195804.
[http://dx.doi.org/10.2174/1573407217666210824125427]
[24]
Peng, L.; Wang, B.; Ren, P. Reduction of MTT by flavonoids in the absence of cells. Colloids Surf. B Biointerfaces, 2005, 45(2), 108-111.
[http://dx.doi.org/10.1016/j.colsurfb.2005.07.014] [PMID: 16150580]
[25]
Han, L. Effect of light on flavonoids biosynthesis in red rice Rdh. Agric. Sci. China, 2009, 8, 746-752.
[26]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[27]
Patel, D.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: a review of medicinal importance and health benefits. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(2), 104-114.
[http://dx.doi.org/10.2174/1871529X21666210812111931] [PMID: 34387174]
[28]
Patel, K.; Patel, D.K. Therapeutic benefit and biological importance of ginkgetin in the medicine: medicinal importance, pharmacological activities and analytical aspects. Curr. Bioact. Compd., 2021, 17(9), e190721190770.
[http://dx.doi.org/10.2174/1573407217666210127091221]
[29]
Alvarado-Sansininea, J.; Sánchez-Sánchez, L.; López-Muñoz, H.; Escobar, M.; Flores-Guzmán, F.; Tavera-Hernández, R.; Jiménez-Estrada, M. Quercetagetin and patuletin: antiproliferative, necrotic and apoptotic activity in tumor cell lines. Molecules, 2018, 23(10), 2579.
[http://dx.doi.org/10.3390/molecules23102579] [PMID: 30304821]
[30]
Patel, K.; Patel, D.K. The Beneficial Role of Rutin, A Naturally Occurring Flavonoid in Health Promotion and Disease Prevention: A Systematic Review and Update. Bioact. Food as Diet. Interv. Arthritis Relat. Inflamm. Dis; Elsevier: Amsterdam, 2019, pp. 457-479.
[31]
Iannone, M.; Alberti, F.; Braganò, M.C.; de la Torre, X.; Molaioni, F.; Botrè, F. Influence of synthetic isoflavones on selected urinary steroid biomarkers: Relevance to doping control. Steroids, 2021, 174, 108900.
[http://dx.doi.org/10.1016/j.steroids.2021.108900] [PMID: 34391799]
[32]
Justus, A.; Pereira, D.G.; Ida, E.I.; Kurozawa, L.E. Combined uses of an endo- and exopeptidase in okara improve the hydrolysates via formation of aglycone isoflavones and antioxidant capacity. Lebensm. Wiss. Technol., 2019, 115, 108467.
[http://dx.doi.org/10.1016/j.lwt.2019.108467]
[33]
Sleiman, H.K.; de Oliveira, J.M.; Langoni de Freitas, G.B. Isoflavones alter male and female fertility in different development windows. Biomed. Pharmacother., 2021, 140, 111448.
[http://dx.doi.org/10.1016/j.biopha.2021.111448] [PMID: 34130202]
[34]
Shahzadi, I.; Shah, M.M. Acylated flavonol glycosides from Tagetes minuta with antibacterial activity. Front. Pharmacol., 2015, 6, 195.
[http://dx.doi.org/10.3389/fphar.2015.00195] [PMID: 26441652]
[35]
Könczöl, Á.; Engel, R.; Szabó, K.; Hornok, K.; Tóth, S.; Béni, Z.; Prechl, A.; Máthé, I.; Tibor Balogh, G. Topical analgesic, anti-inflammatory and antioxidant properties of Oxybaphus nyctagineus: Phytochemical characterization of active fractions. J. Ethnopharmacol., 2014, 155(1), 776-784.
[http://dx.doi.org/10.1016/j.jep.2014.06.020] [PMID: 24945398]
[36]
Fang, J.J.; Ye, G.; Chen, W.L.; Zhao, W.M. Antibacterial phenolic components from Eriocaulon buergerianum. Phytochemistry, 2008, 69(5), 1279-1286.
[http://dx.doi.org/10.1016/j.phytochem.2007.11.014] [PMID: 18191163]
[37]
Zhu, W.; Lv, C.; Wang, J.; Gao, Q.; Zhu, H.; Wen, H. Patuletin induces apoptosis of human breast cancer SK-BR-3 cell line via inhibiting fatty acid synthase gene expression and activity. Oncol. Lett., 2017, 14(6), 7449-7454.
[http://dx.doi.org/10.3892/ol.2017.7150] [PMID: 29344187]
[38]
Mishio, T; Takeda, K; Iwashina, T Anthocyanins and other flavonoids as flower pigments from Eleven Centaurea species. Nat Prod Commun., 2015, 10(3), 447-450.
[http://dx.doi.org/10.1177/1934578X1501000318]
[39]
Abdel-Wahhab, M.A.; Said, A.; Huefner, A. NMR and radical scavenging activities of patuletin from Urtica urens. Against aflatoxin B1. Pharm. Biol., 2005, 43(6), 515-525.
[http://dx.doi.org/10.1080/13880200500220730]
[40]
Azhar, M.; Farooq, A.D.; Haque, S.; Bano, S.; Zaheer, L.; Faizi, S. Cytotoxic and genotoxic action of Tagetes patula flower methanol extract and patuletin using the Allium test. Turk. J. Biol., 2019, 43(5), 326-339.
[http://dx.doi.org/10.3906/biy-1906-7]
[41]
Kokanova-Nedialkova, Z.; Nedialkov, P. Antioxidant properties of 6-methoxyflavonol glycosides from the aerial parts of Chenopodium bonus-henricus L. Izv. Him., 2017.
[42]
Pawłowska, K.; Czerwińska, M.E.; Wilczek, M.; Strawa, J.; Tomczyk, M.; Granica, S. Anti-inflammatory potential of flavonoids from the aerial parts of Corispermum marschallii. J. Nat. Prod., 2018, 81(8), 1760-1768.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00152] [PMID: 30109803]
[43]
Yasukawa, K.; Kasahara, Y. Effects of flavonoids from french marigold (Florets of Tagetes patula L.) on acute inflammation model. Int. J. Inflamm., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/309493] [PMID: 24175111]
[44]
Chkhikvishvili, I.; Sanikidze, T.; Gogia, N.; Enukidze, M.; Machavariani, M.; Kipiani, N.; Vinokur, Y.; Rodov, V. Constituents of french marigold (Tagetes patula L.) flowers protect jurkat t-cells against oxidative stress. Oxid. Med. Cell. Longev., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/4216285] [PMID: 27433287]
[45]
Abdou, A.M.; Abdallah, H.M.; Mohamed, M.A.; Fawzy, G.A.; Abdel-Naim, A.B. A new anti-inflammatory triterpene saponin isolated from Anabasis setifera. Arch. Pharm. Res., 2013, 36(6), 715-722.
[http://dx.doi.org/10.1007/s12272-013-0075-9] [PMID: 23471562]
[46]
Robak, J.; Shridi, F.; Wolbís, M.; Królikowska, M. Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity, as well as on nonenzymic lipid oxidation. Pol. J. Pharmacol. Pharm., 1988, 40(5), 451-458.
[PMID: 3151014]
[47]
Costa, S.S.; Jossang, A.; Bodo, B.; Souza, M.L.M.; Moraes, V.L.G. Patuletin acetylrhamnosides from Kalanchoe brasiliensis as inhibitors of human lymphocyte proliferative activity. J. Nat. Prod., 1994, 57(11), 1503-1510.
[http://dx.doi.org/10.1021/np50113a005] [PMID: 7853000]
[48]
Woerdenbag, H.J.; Merfort, I.; Schmidt, T.J.; Passreiter, C.M.; Willuhn, G.; Van Uden, W.; Pras, N.; Konings, A.W.T. Decreased helenalin-induced cytotoxicity by flavonoids from Arnica as studied in a human lung carcinoma cell line. Phytomedicine, 1995, 2(2), 127-132.
[http://dx.doi.org/10.1016/S0944-7113(11)80057-7] [PMID: 23196154]
[49]
Jabeen, A.; Mesaik, M.A.; Simjee, S.U.; Lubna,; Bano, S.; Faizi, S. Anti-TNF-α and anti-arthritic effect of patuletin: A rare flavonoid from Tagetes patula. Int. Immunopharmacol., 2016, 36, 232-240.
[http://dx.doi.org/10.1016/j.intimp.2016.04.034] [PMID: 27177082]
[50]
Koleckar, V.; Brojerova, E.; Rehakova, Z.; Kubikova, K.; Cervenka, F.; Kuca, K.; Jun, D.; Hronek, M.; Opletalova, V.; Opletal, L. In vitro antiplatelet activity of flavonoids from Leuzea carthamoides. Drug Chem. Toxicol., 2008, 31(1), 27-35.
[http://dx.doi.org/10.1080/01480540701688444] [PMID: 18161506]
[51]
Zarei, M.; Mohammadi, S.; Komaki, A. Antinociceptive activity of Inula britannica L. and patuletin: In vivo and possible mechanisms studies. J. Ethnopharmacol., 2018, 219, 351-358.
[http://dx.doi.org/10.1016/j.jep.2018.03.021] [PMID: 29567278]
[52]
Kokanova-Nedialkova, Z.; Nedialkov, P.; Kondeva-Burdina, M.; Simeonova, R.; Tzankova, V.; Aluani, D. Chenopodium bonus - henricus L. - A source of hepatoprotective flavonoids. Fitoterapia, 2017, 118, 13-20.
[http://dx.doi.org/10.1016/j.fitote.2017.02.001] [PMID: 28229939]
[53]
Li, S; Mao, W; Cao, X; Liang, S; Ding, Z; Li, N Inhibition of rat lens aldose reductase by quercetagetin and patuletin. Yan Ke Xue Bao, 1991, 7(1), 29-30.
[54]
Koleckar, V.; Opletal, L.; Macakova, K.; Jahodar, L.; Jun, D.; Kunes, J.; Kuca, K. New antioxidant flavonoid isolated from Leuzea carthamoides. J. Enzyme Inhib. Med. Chem., 2010, 25(1), 143-145.
[http://dx.doi.org/10.3109/14756360903090970] [PMID: 20030518]
[55]
Faizi, S.; Dar, A.; Siddiqi, H.; Naqvi, S.; Naz, A.; Bano, S. Lubna, Bioassay-guided isolation of antioxidant agents with analgesic properties from flowers of Tagetes patula. Pharm. Biol., 2011, 49(5), 516-525.
[http://dx.doi.org/10.3109/13880209.2010.523006] [PMID: 21284510]
[56]
Ibrahim, S.R.M.; Abdallah, H.M.; El-Halawany, A.M.; Esmat, A.; Mohamed, G.A. Thiotagetin B and tagetannins A and B, new acetylenic thiophene and digalloyl glucose derivatives from Tagetes minuta and evaluation of their in vitro antioxidative and anti-inflammatory activity. Fitoterapia, 2018, 125, 78-88.
[http://dx.doi.org/10.1016/j.fitote.2017.12.024] [PMID: 29288025]
[57]
Schmeda-Hirschmann, G.; Tapia, A.; Theoduloz, C.; Rodríguez, J.; López, S.; Feresin, G.E. Free radical scavengers and antioxidants from Tagetes mendocina. Z. Naturforsch. C J. Biosci., 2004, 59(5-6), 345-353.
[http://dx.doi.org/10.1515/znc-2004-5-610] [PMID: 18998399]
[58]
Khalfallah, A.; Berrehal, D.; Bensouici, C.; Kabouche, A.; Semra, Z.; Voutquenne-Nazabadioko, L.; Alabdul, M.,A.; Kabouche, Z. Flavonoids, cytotoxic, antioxidant and antibacterial activities of Evax pygmaea. Pharm. Biol., 2017, 55(1), 2292-2296.
[http://dx.doi.org/10.1080/13880209.2017.1405997] [PMID: 29191075]
[59]
Kashif, M.; Bano, S.; Naqvi, S.; Faizi, S.; Lubna,; Ahmed Mesaik, M.; Azeemi, K.S.; Farooq, A.D. Cytotoxic and antioxidant properties of phenolic compounds from Tagetes patula flower. Pharm. Biol., 2015, 53(5), 672-681.
[http://dx.doi.org/10.3109/13880209.2014.936471] [PMID: 25539472]
[60]
Gong, Y.; Liu, X.; He, W.H.; Xu, H.G.; Yuan, F.; Gao, Y.X. Investigation into the antioxidant activity and chemical composition of alcoholic extracts from defatted marigold (Tagetes erecta L.) residue. Fitoterapia, 2012, 83(3), 481-489.
[http://dx.doi.org/10.1016/j.fitote.2011.12.013] [PMID: 22223143]
[61]
Koleckar, V.; Opletal, L.; Brojerova, E.; Rehakova, Z.; Cervenka, F.; Kubikova, K.; Kuca, K.; Jun, D.; Polasek, M.; Kunes, J.; Jahodar, L. Evaluation of natural antioxidants of Leuzea carthamoides as a result of a screening study of 88 plant extracts from the European Asteraceae and Cichoriaceae. J. Enzyme Inhib. Med. Chem., 2008, 23(2), 218-224.
[http://dx.doi.org/10.1080/14756360701450806] [PMID: 18343907]
[62]
Daroui-Mokaddem, H; Kabouche, A; Boutaghane, N; Calliste, C-A; Duroux, J-L Kabouche, Z Antioxidant Flavonoids from Asteriscus maritimus. Nat. Prod. Commun., 2017, 12(3), 385-386.
[63]
Park, E.J.; Kim, Y.; Kim, J. Acylated flavonol glycosides from the flower of Inula britannica. J. Nat. Prod., 2000, 63(1), 34-36.
[http://dx.doi.org/10.1021/np990271r] [PMID: 10650074]
[64]
Kim, S.R.; Park, M.J.; Lee, M.K.; Sung, S.H.; Park, E.J.; Kim, J.; Kim, S.Y.; Oh, T.H.; Markelonis, G.J.; Kim, Y.C. Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radic. Biol. Med., 2002, 32(7), 596-604.
[http://dx.doi.org/10.1016/S0891-5849(02)00751-7] [PMID: 11909694]
[65]
Corrêa, W.R.; Serain, A.F.; Aranha Netto, L.; Marinho, J.V.N.; Arena, A.C.; Figueiredo de Santana Aquino, D.; Kuraoka-Oliveira, Â.M.; Júnior, A.J.; Bernal, L.P.T.; Kassuya, C.A.L.; Salvador, M.J. Anti-inflammatory and antioxidant properties of the extract, tiliroside, and patuletin 3-O- β -D-glucopyranoside from Pfaffia townsendii (Amaranthaceae). Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/6057579] [PMID: 30364020]
[66]
Stanković, J.; Gođevac, D.; Tešević, V.; Dajić-Stevanović, Z.; Ćirić, A.; Soković, M.; Novaković, M. Antibacterial and antibiofilm activity of flavonoid and saponin derivatives from Atriplex tatarica against Pseudomonas aeruginosa. J. Nat. Prod., 2019, 82(6), 1487-1495.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00970] [PMID: 31181926]
[67]
Krzyzaniak, L.M.; Antonelli-Ushirobira, T.M.; Panizzon, G.; Sereia, A.L.; Souza, J.R.P.; Zequi, J.A.C.; Novello, C.R.; Lopes, G.C.; Medeiros, D.C.; Silva, D.B.; Leite-Mello, E.V.S.; Mello, J.C.P. larvicidal activity against Aedes aegypti and chemical characterization of the inflorescences of Tagetes patula. Evid. based complement. Alternat. Med., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/9602368] [PMID: 29362590]
[68]
Mayorga, O.A.S.; da Costa, Y.F.G.; da Silva, J.B.; Scio, E.; Ferreira, A.L.P.; de Sousa, O.V.; Alves, M.S. Kalanchoe brasiliensis cambess., a promising natural source of antioxidant and antibiotic agents against multidrug-resistant pathogens for the treatment of Salmonella Gastroenteritis. Oxid. Med. Cell. Longev., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/9245951] [PMID: 31827708]
[69]
Maas, M.; Hensel, A.; Costa, F.B.; Brun, R.; Kaiser, M.; Schmidt, T.J. An unusual dimeric guaianolide with antiprotozoal activity and further sesquiterpene lactones from Eupatorium perfoliatum. Phytochemistry, 2011, 72(7), 635-644.
[http://dx.doi.org/10.1016/j.phytochem.2011.01.025] [PMID: 21329950]
[70]
Céspedes, C.L.; Avila, J.G.; Martínez, A.; Serrato, B.; Calderón-Mugica, J.C.; Salgado-Garciglia, R. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J. Agric. Food Chem., 2006, 54(10), 3521-3527.
[http://dx.doi.org/10.1021/jf053071w] [PMID: 19127719]
[71]
Ateeq, M.; Shah, M.R.; Ain, N.; Bano, S.; Anis, I.; Lubna,; Faizi, S.; Bertino, M.F; Sohaila Naz, S. Green synthesis and molecular recognition ability of patuletin coated gold nanoparticles. Biosens. Bioelectron., 2015, 63, 499-505.
[http://dx.doi.org/10.1016/j.bios.2014.07.076] [PMID: 25129513]
[72]
Wei, Y.; Xie, Q.; Fisher, D.; Sutherland, I.A. Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography. J. Chromatogr. A, 2011, 1218(36), 6206-6211.
[http://dx.doi.org/10.1016/j.chroma.2011.01.058] [PMID: 21329934]
[73]
de Araújo, E.; Guerra, G.; Araújo, D.; de Araújo, A.; Fernandes, J.; de Araújo Júnior, R.; da Silva, V.; de Carvalho, T.; Ferreira, L.; Zucolotto, S. Gastroprotective and antioxidant activity of Kalanchoe brasiliensis and Kalanchoe pinnata leaf juices against indomethacin and ethanol-induced gastric lesions in rats. Int. J. Mol. Sci., 2018, 19(5), 1265.
[http://dx.doi.org/10.3390/ijms19051265] [PMID: 29695040]
[74]
Yuk, H.J.; Ryu, H.W.; Kim, D.Y.; Park, M.H.; Seo, W.D.; Jeong, S.H.; Oh, S.R. Comparison of flavonoid and policosanol profiles in Korean winter-spinach (Spinacia oleracea L.) cultivated in different regions. Food Chem., 2019, 279, 202-208.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.143] [PMID: 30611481]
[75]
Zhao, M.; Wang, P.F.; Wang, X.M.; Liu, Y.; Liu, X.Q.; Chen, L.M.; Gao, H.M.; Wang, Z.M.; Zhang, W. Structural identification of related substances in Breviscapine by UPLC-QTOF-MS. Zhongguo Zhongyao Zazhi, 2018, 43(14), 2872-2877.
[PMID: 30111044]
[76]
Passon, M.; Bühlmeier, J.; Zimmermann, B.F.; Stratmann, A.; Latz, S.; Stehle, P.; Galensa, R. Polyphenol phase-II metabolites are detectable in human plasma after ingestion of 13C labeled spinach-a pilot intervention trial in young healthy adults. Mol. Nutr. Food Res., 2018, 62(10), 1701003.
[http://dx.doi.org/10.1002/mnfr.201701003] [PMID: 29529352]
[77]
Kokanova-Nedialkova, Z.; Nedialkov, P.T. UHPLC-HRMS based flavonoid profiling of the aerial parts of Chenopodium foliosum Asch. (Amaranthaceae). Nat. Prod. Res., 2021, 35(19), 3336-3340.
[http://dx.doi.org/10.1080/14786419.2019.1689502] [PMID: 31711317]
[78]
Cen, M.; Ruan, J.; Huang, L.; Zhang, Z.; Yu, N.; Zhang, Y.; Cheng, X.; Xiong, X.; Wang, G.; Zang, L.; Wang, S. Simultaneous determination of thirteen flavonoids from Xiaobuxin-Tang extract using high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal., 2015, 115, 214-224.
[http://dx.doi.org/10.1016/j.jpba.2015.07.015] [PMID: 26232587]
[79]
Liu, B.; Zhang, T.; Zhang, X.; Ye, W.; Li, Y. Chemical constituents of Laggera pterodonta. Zhongguo Zhongyao Zazhi, 2010, 35(5), 602-606.
[PMID: 20506820]
[80]
Singh, A.; Singh, P.; Kumar, B.; Kumar, S.; Dev, K.; Maurya, R. Detection of flavonoids from Spinacia oleracea leaves using HPLC-ESI-QTOF-MS/MS and UPLC-QqQ LIT -MS/MS techniques. Nat. Prod. Res., 2019, 33(15), 2253-2256.
[http://dx.doi.org/10.1080/14786419.2018.1489395] [PMID: 30259760]
[81]
Baiceanu, E.; Vlase, L.; Baiceanu, A.; Nanes, M.; Rusu, D.; Crisan, G. New polyphenols identified in Artemisiae abrotani herba extract. Molecules, 2015, 20(6), 11063-11075.
[http://dx.doi.org/10.3390/molecules200611063] [PMID: 26083039]
[82]
Williams, C.A.; Greenham, J.; Harborne, J.B. The role of lipophilic and polar flavonoids in the classification of temperate members of the Anthemideae. Biochem. Syst. Ecol., 2001, 29(9), 929-945.
[http://dx.doi.org/10.1016/S0305-1978(01)00039-4] [PMID: 11445294]
[83]
Song, K.; Wang, H-Q.; Liu, C.; Kang, J.; Li, B-M.; Chen, R-Y. Chemical constituents from Chenopodium ambrosioides. Zhongguo Zhongyao Zazhi, 2014, 39(2), 254-257.
[PMID: 24761641]
[84]
Hubert, J.; Chollet, S.; Purson, S.; Reynaud, R.; Harakat, D.; Martinez, A.; Nuzillard, J.M.; Renault, J.H. Exploiting the complementarity between dereplication and computer-assisted structure elucidation for the chemical profiling of natural cosmetic ingredients: Tephrosia purpurea as a Case Study. J. Nat. Prod., 2015, 78(7), 1609-1617.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00174] [PMID: 26103208]
[85]
Nugroho, A.; Lim, S.C.; Karki, S.; Choi, J.S.; Park, H.J. Simultaneous quantification and validation of new peroxynitrite scavengers from Artemisia iwayomogi. Pharm. Biol., 2015, 53(5), 653-661.
[http://dx.doi.org/10.3109/13880209.2014.936022] [PMID: 25474707]
[86]
Ezzat, M.I.; Ezzat, S.M.; El Deeb, K.S.; El Fishawy, A.M.; El-Toumy, S.A. A new acylated flavonol from the aerial parts of Asteriscus maritimus (L.) Less (Asteraceae). Nat. Prod. Res., 2016, 30(15), 1753-1761.
[http://dx.doi.org/10.1080/14786419.2016.1138298] [PMID: 26828806]
[87]
Guinot, P.; Gargadennec, A.; Valette, G.; Fruchier, A.; Andary, C. Primary flavonoids in marigold dye: Extraction, structure and involvement in the dyeing process. Phytochem. Anal., 2008, 19(1), 46-51.
[http://dx.doi.org/10.1002/pca.1014] [PMID: 17654539]
[88]
Negri, G.; Teixeira, E.W.; Florêncio, A.; M.L.T.M.; Moreti, A.C.C.C.; Otsuk, I.P.; Borguini, R.G; Salatino, A Hydroxycinnamic acid amide derivatives, phenolic compounds and antioxidant activities of extracts of pollen samples from Southeast Brazil. J. Agric. Food Chem., 2011, 59(10), 5516-5522.
[http://dx.doi.org/10.1021/jf200602k] [PMID: 21500799]
[89]
Masterova, I.; Grancai, D.; Grancaiova, Z.; Pour, M.; Ubik, K. A New Flavonoid: Tinctosid from Anthemis tinctoria L. ChemInform, 2006, 37(16), 37.
[http://dx.doi.org/10.1002/chin.200616204]
[90]
Louaar, S; Achouri, A; Lefahal, M; Laouer, H; Medjroubi, K; Duddeck, H Flavonoids from algerian endemic Centaurea microcarpa and their chemotaxonomical significance. Nat. Prod. Commun., 2011, 6(11), 1603-1604.
[http://dx.doi.org/10.1177/1934578X1100601113]
[91]
Fernandes, J.M.; Félix-Silva, J.; da Cunha, L.M.; Gomes, J.A.S.; Siqueira, E.M.S.; Gimenes, L.P.; Lopes, N.P.; Soares, L.A.L.; Fernandes-Pedrosa, M.F.; Zucolotto, S.M. Inhibitory effects of hydroethanolic leaf extracts of Kalanchoe brasiliensis and Kalanchoe pinnata (Crassulaceae) against local effects induced by bothrops jararaca snake venom. PLoS One, 2016, 11(12), e0168658.
[http://dx.doi.org/10.1371/journal.pone.0168658] [PMID: 28033347]
[92]
Skała, E.; Kicel, A.; Olszewska, M.A.; Kiss, A.K.; Wysokińska, H. Establishment of hairy root cultures of Rhaponticum carthamoides (Willd.) Iljin for the production of biomass and caffeic acid derivatives. BioMed Res. Int., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/181098] [PMID: 25811023]
[93]
Williams, C.A.; Harborne, J.B.; Greenham, J.R.; Grayer, R.J.; Kite, G.C.; Eagles, J. Variations in lipophilic and vacuolar flavonoids among European Pulicaria species. Phytochemistry, 2003, 64(1), 275-283.
[http://dx.doi.org/10.1016/S0031-9422(03)00207-3] [PMID: 12946426]
[94]
Merfort, I.; Wendisch, D. Flavonoidglycoside aus Arnica montana und Arnica chamissonis1. Planta Med., 1987, 53(5), 434-437.
[http://dx.doi.org/10.1055/s-2006-962766] [PMID: 17269063]
[95]
Zhang, J.X.; Lin, B.R.; Shen, H.F.; Pu, X.M.; Wang, Z.W.; Zeng, D.Q.; Huang, N. First Report of Bacterial Soft Rot on Tagetes patula Caused by Dickeya dieffenbachiae in China. Plant Dis., 2013, 97(2), 282-282.
[http://dx.doi.org/10.1094/PDIS-09-12-0838-PDN] [PMID: 30722334]
[96]
Merfort, I.; Wendisch, D. New flavonoid glycosides from arnicae flos DAB 91. Planta Med., 1992, 58(4), 355-357.
[http://dx.doi.org/10.1055/s-2006-961484] [PMID: 17226484]
[97]
Xie, Q.; Ding, L.; Wei, Y.; Ito, Y. Determination of major components and fingerprint analysis of Flaveria bidentis (L.). Kuntze. J. Chromatogr. Sci., 2014, 52(3), 252-257.
[http://dx.doi.org/10.1093/chromsci/bmt020] [PMID: 23515193]
[98]
Stodulka, P.; Koleckar, V.; Jun, D.; Kuca, K.; Rehakova, Z.; Kubikova, K.; Jahodar, L.; Kunes, J.; Opletal, L. High-performance liquid chromatography analysis of four Leuzea carthamoides flavonoids. J. Chromatogr. Sci., 2008, 46(2), 162-164.
[http://dx.doi.org/10.1093/chromsci/46.2.162] [PMID: 18366877]
[99]
Mohti, H.; Taviano, M.F.; Cacciola, F.; Dugo, P.; Mondello, L.; Marino, A.; Crisafi, G.; Benameur, Q.; Zaid, A.; Miceli, N. Inula viscosa (L.) Aiton leaves and flower buds: Effect of extraction solvent/technique on their antioxidant ability, antimicrobial properties and phenolic profile. Nat. Prod. Res., 2020, 34(1), 46-52.
[http://dx.doi.org/10.1080/14786419.2019.1569659] [PMID: 30822145]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy