Meta-Analysis

评估接种肽疫苗的多型胶质母细胞瘤患者的生存率:系统综述和综合分析

卷 24, 期 12, 2023

发表于: 25 August, 2023

页: [998 - 1007] 页: 10

弟呕挨: 10.2174/1389450124666230816114131

价格: $65

conference banner
摘要

简介:多型胶质母细胞瘤(GBM)预后不佳,目前的治疗方法在生存方面没有优势。某些新的免疫疗法方法,如肽疫苗,已被用于临床试验。在这项荟萃分析中,研究了肽疫苗对GBM患者生存率的有效性。 方法:使用PubMed、Scopus和ISI三个电子数据库进行综合检索。本研究的目的是评估总体生存率(OS)。使用通用逆方差技术计算肽疫苗接种GBM的一年和两年总生存率,作为随机效应危险比(HR)。在这项研究中,对国家的亚组进行了相互比较。日本的一年生存率最高,美国的两年生存率最高。 结果:在95%置信区间(CI)下,接受肽疫苗接种的GBM患者的一年OS率显著提高,但两年生存率没有提高。因此,尽管还需要更多的研究,但不能得出结论认为它是治疗GBM的有效方法。 结论:我们的研究发现,虽然肽疫苗接种治疗并没有增加第二年的生存率,但它提高了第一年的生存。需要进行更多的研究,以找到有效的基于疫苗的GBM治疗方法,帮助患者存活更长时间。

关键词: 肽疫苗,存活率,多形性胶质母细胞瘤,综合分析,MHC II限制性肽,癌基因。

图形摘要
[1]
De Leo A, Ugolini A, Veglia F. Myeloid cells in glioblastoma microenvironment. Cells 2020; 10(1): 18.
[http://dx.doi.org/10.3390/cells10010018] [PMID: 33374253]
[2]
Elmaci I, Ozpinar A, Ozpinar A, Perez JL, Altinoz MA. From epidemiology and neurometabolism to treatment: Vitamin D in pathogenesis of glioblastoma multiforme (gbm) and a proposal for vitamin d + all-trans retinoic acid + temozolomide combination in treatment of GBM. Metab Brain Dis 2019; 34(3): 687-704.
[http://dx.doi.org/10.1007/s11011-019-00412-5] [PMID: 30937698]
[3]
Alzial G, Renoult O, Paris F, Gratas C, Clavreul A, Pecqueur C. Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma. Oncogene 2022; 41(5): 613-21.
[http://dx.doi.org/10.1038/s41388-021-02056-1] [PMID: 34764443]
[4]
Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma. JAMA 2017; 318(23): 2306-16.
[http://dx.doi.org/10.1001/jama.2017.18718] [PMID: 29260225]
[5]
Strepkos D, Markouli M, Klonou A, Piperi C, Papavassiliou AG. Insights in the immunobiology of glioblastoma. J Mol Med 2020; 98(1): 1-10.
[http://dx.doi.org/10.1007/s00109-019-01835-4] [PMID: 31650201]
[6]
Crivii CB, Boșca AB, Melincovici CS, et al. Glioblastoma microenvironment and cellular interactions. Cancers 2022; 14(4): 1092.
[http://dx.doi.org/10.3390/cancers14041092] [PMID: 35205842]
[7]
Seike T, Fujita K, Yamakawa Y, et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis 2011; 28(1): 13-25.
[http://dx.doi.org/10.1007/s10585-010-9354-8] [PMID: 20953899]
[8]
Zhang H, Zhou Y, Cui B, Liu Z, Shen H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother 2020; 126: 110086.
[http://dx.doi.org/10.1016/j.biopha.2020.110086] [PMID: 32172060]
[9]
Wu A, Wei J, Kong LY, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncol 2010; 12(11): 1113-25.
[http://dx.doi.org/10.1093/neuonc/noq082] [PMID: 20667896]
[10]
Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes Dev 2019; 33(11-12): 591-609.
[http://dx.doi.org/10.1101/gad.324301.119] [PMID: 31160393]
[11]
Albittar AA, Alhalabi O, Glitza Oliva IC. Immunotherapy for Melanoma. Adv Exp Med Biol 2020; 1244: 51-68.
[http://dx.doi.org/10.1007/978-3-030-41008-7_3] [PMID: 32301010]
[12]
Medikonda R, Dunn G, Rahman M, Fecci P, Lim M. A review of glioblastoma immunotherapy. J Neurooncol 2021; 151(1): 41-53.
[http://dx.doi.org/10.1007/s11060-020-03448-1] [PMID: 32253714]
[13]
Kong Z, Wang Y, Ma W. Vaccination in the immunotherapy of glioblastoma. Hum Vaccin Immunother 2018; 14(2): 255-68.
[http://dx.doi.org/10.1080/21645515.2017.1388481] [PMID: 29087782]
[14]
McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. Current state of immunotherapy for treatment of glioblastoma. Curr Treat Options Oncol 2019; 20(3): 24.
[http://dx.doi.org/10.1007/s11864-019-0619-4] [PMID: 30790064]
[15]
Asadi N, Davaran S, Panahi Y, et al. Application of nanostructured drug delivery systems in immunotherapy of cancer: A review. Artif Cells Nanomed Biotechnol 2017; 45(1): 18-23.
[http://dx.doi.org/10.1080/21691401.2016.1178136] [PMID: 27196810]
[16]
Klippstein R, Pozo D. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine 2010; 6(4): 523-9.
[http://dx.doi.org/10.1016/j.nano.2010.01.001] [PMID: 20085824]
[17]
Zhou Q, Wang Y, Ma W. The progress of immunotherapy for glioblastoma. Hum Vaccin Immunother 2015; 11(11): 2654-8.
[http://dx.doi.org/10.1080/21645515.2015.1081727] [PMID: 26308501]
[18]
Elsamadicy AA, Chongsathidkiet P, Desai R, et al. Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin Biol Ther 2017; 17(4): 507-13.
[http://dx.doi.org/10.1080/14712598.2017.1299705] [PMID: 28274144]
[19]
Fecci PE, Sampson JH. The current state of immunotherapy for gliomas: An eye toward the future. J Neurosurg 2019; 131(3): 657-66.
[http://dx.doi.org/10.3171/2019.5.JNS181762] [PMID: 31473668]
[20]
Zhao T, Li C, Ge H, Lin Y, Kang D. Glioblastoma vaccine tumor therapy research progress. Chin Neurosurg J 2022; 8(1): 2.
[http://dx.doi.org/10.1186/s41016-021-00269-7] [PMID: 35045874]
[21]
Swartz AM, Batich KA, Fecci PE, Sampson JH. Peptide vaccines for the treatment of glioblastoma. J Neurooncol 2015; 123(3): 433-40.
[http://dx.doi.org/10.1007/s11060-014-1676-y] [PMID: 25491947]
[22]
Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 2007; 6(5): 404-14.
[http://dx.doi.org/10.1038/nrd2224] [PMID: 17473845]
[23]
Kimura T, Egawa S, Uemura H. Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat Rev Urol 2017; 14(8): 501-10.
[http://dx.doi.org/10.1038/nrurol.2017.77] [PMID: 28561807]
[24]
Ma M, Liu J, Jin S, Wang L. Development of tumour peptide vaccines: From universalization to personalization. Scand J Immunol 2020; 91(6): e12875.
[http://dx.doi.org/10.1111/sji.12875] [PMID: 32090366]
[25]
Lynn GM, Sedlik C, Baharom F, et al. Peptide–TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol 2020; 38(3): 320-32.
[http://dx.doi.org/10.1038/s41587-019-0390-x] [PMID: 31932728]
[26]
Wille-Reece U, Flynn BJ, Loré K, et al. HIV gag protein conjugated to a toll-like receptor 7/8 agonist improves the magnitude and quality of th1 and cd8 + t cell responses in nonhuman primates. Proc Natl Acad Sci USA 2005; 102(42): 15190-4.
[http://dx.doi.org/10.1073/pnas.0507484102] [PMID: 16219698]
[27]
Desrichard A, Snyder A, Chan TA. Cancer neoantigens and applications for immunotherapy. Clin Cancer Res 2016; 22(4): 807-12.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3175] [PMID: 26515495]
[28]
Kumai T, Matsuda Y, Oikawa K, et al. EGFR inhibitors augment antitumour helper T-cell responses of HER family-specific immunotherapy. Br J Cancer 2013; 109(8): 2155-66.
[http://dx.doi.org/10.1038/bjc.2013.577] [PMID: 24045666]
[29]
Hartmaier RJ, Charo J, Fabrizio D, et al. Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness and targeted cancer immunotherapy strategies. Genome Med 2017; 9(1): 16.
[http://dx.doi.org/10.1186/s13073-017-0408-2] [PMID: 28231819]
[30]
Higgins JPT, Altman DG, Gøtzsche PC, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343(oct18 2): d5928.
[http://dx.doi.org/10.1136/bmj.d5928] [PMID: 22008217]
[31]
Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 2015; 349(jan02 1): g7647.
[http://dx.doi.org/10.1136/bmj.g7647] [PMID: 25555855]
[32]
Fu S, Piccioni DE, Liu H, et al. A phase I study of the WT2725 dosing emulsion in patients with advanced malignancies. Sci Rep 2021; 11(1): 22355.
[http://dx.doi.org/10.1038/s41598-021-01707-3] [PMID: 34785698]
[33]
Tamura R, Morimoto Y, Kosugi K, Sato M, Oishi Y, Ueda R, et al. Clinical and histopathological analyses of VEGF receptors peptide vaccine in patients with primary glioblastoma - A case series. BMC Cancer 2020; 20(1)
[34]
Narita Y, Arakawa Y, Yamasaki F, et al. A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. Neuro-oncol 2019; 21(3): 348-59.
[http://dx.doi.org/10.1093/neuonc/noy200] [PMID: 30500939]
[35]
Migliorini D, Dutoit V, Allard M, et al. Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro-oncol 2019; 21(7): 923-33.
[http://dx.doi.org/10.1093/neuonc/noz040] [PMID: 30753611]
[36]
Kikuchi R, Ueda R, Saito K, et al. A pilot study of vaccine therapy with multiple glioma oncoantigen/glioma angiogenesis-associated antigen peptides for patients with recurrent/progressive high-grade glioma. J Clin Med 2019; 8(2): 263.
[http://dx.doi.org/10.3390/jcm8020263] [PMID: 30791546]
[37]
Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019; 565(7738): 240-5.
[http://dx.doi.org/10.1038/s41586-018-0810-y] [PMID: 30568303]
[38]
Shibao S, Ueda R, Saito K, et al. A pilot study of peptide vaccines for VEGF receptor 1 and 2 in patients with recurrent/progressive high grade glioma. Oncotarget 2018; 9(30): 21569-79.
[http://dx.doi.org/10.18632/oncotarget.25131] [PMID: 29765561]
[39]
Ji N, Zhang Y, Liu Y, et al. Heat shock protein peptide complex-96 vaccination for newly diagnosed glioblastoma: A phase I, single-arm trial. JCI Insight 2018; 3(10): e99145.
[http://dx.doi.org/10.1172/jci.insight.99145] [PMID: 29769450]
[40]
Bloch O, Lim M, Sughrue ME, et al. Autologous heat shock protein peptide vaccination for newly diagnosed glioblastoma: Impact of peripheral PD-L1 expression on response to therapy. Clin Cancer Res 2017; 23(14): 3575-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1369] [PMID: 28193626]
[41]
Rampling R, Peoples S, Mulholland PJ, et al. A cancer research uk first time in human phase i trial of ima950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res 2016; 22(19): 4776-85.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0506] [PMID: 27225692]
[42]
Fenstermaker RA, Ciesielski MJ, Qiu J, et al. Clinical study of a survivin long peptide vaccine (survaxm) in patients with recurrent malignant glioma. Cancer Immunol Immunother 2016; 65(11): 1339-52.
[http://dx.doi.org/10.1007/s00262-016-1890-x] [PMID: 27576783]
[43]
Schuster J, Lai RK, Recht LD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-oncol 2015; 17(6): 854-61.
[http://dx.doi.org/10.1093/neuonc/nou348] [PMID: 25586468]
[44]
Hashimoto N, Tsuboi A, Kagawa N, et al. Wilms tumor 1 peptide vaccination combined with temozolomide against newly diagnosed glioblastoma: Safety and impact on immunological response. Cancer Immunol Immunother 2015; 64(6): 707-16.
[http://dx.doi.org/10.1007/s00262-015-1674-8] [PMID: 25772149]
[45]
Bloch O, Parsa AT. Heat shock protein peptide complex-96 (HSPPC-96) vaccination for recurrent glioblastoma: A phase II, single arm trial. Neuro-oncol 2014; 16(5): 758-9.
[http://dx.doi.org/10.1093/neuonc/nou054] [PMID: 24729070]
[46]
Phuphanich S, Wheeler CJ, Rudnick JD, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 2013; 62(1): 125-35.
[http://dx.doi.org/10.1007/s00262-012-1319-0] [PMID: 22847020]
[47]
Terasaki M, Shibui S, Narita Y, et al. Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen--A24 with recurrent or progressive glioblastoma multiforme. J Clin Oncol 2011; 29(3): 337-44.
[http://dx.doi.org/10.1200/JCO.2010.29.7499] [PMID: 21149665]
[48]
Sampson JH, Aldape KD, Archer GE, et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate egfrviii-expressing tumor cells in patients with glioblastoma. Neuro-oncol 2011; 13(3): 324-33.
[http://dx.doi.org/10.1093/neuonc/noq157] [PMID: 21149254]
[49]
Sampson JH, Heimberger AB, Archer GE, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant iii peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010; 28(31): 4722-9.
[http://dx.doi.org/10.1200/JCO.2010.28.6963] [PMID: 20921459]
[50]
Sampson JH, Archer GE, Mitchell DA, et al. An epidermal growth factor receptor variant III–targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 2009; 8(10): 2773-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0124] [PMID: 19825799]
[51]
Izumoto S, Tsuboi A, Oka Y, et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 2008; 108(5): 963-71.
[http://dx.doi.org/10.3171/JNS/2008/108/5/0963] [PMID: 18447714]
[52]
Yajima N, Yamanaka R, Mine T, et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res 2005; 11(16): 5900-11.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0559] [PMID: 16115932]
[53]
Wainwright DA, Nigam P, Thaci B, Dey M, Lesniak MS. Recent developments on immunotherapy for brain cancer. Expert Opin Emerg Drugs 2012; 17(2): 181-202.
[http://dx.doi.org/10.1517/14728214.2012.679929] [PMID: 22533851]
[54]
Rangel-Sosa MM, Aguilar-Córdova E, Rojas-Martínez A. Immunotherapy and gene therapy as novel treatments for cancer. Colomb Med 2017; 48(3): 138-47.
[PMID: 29213157]
[55]
Nelde A, Rammensee HG, Walz JS. The peptide vaccine of the future. Mol Cell Proteomics 2021; 20: 100022.
[http://dx.doi.org/10.1074/mcp.R120.002309] [PMID: 33583769]
[56]
Di Giacomo AM, Mair MJ, Ceccarelli M, et al. Immunotherapy for brain metastases and primary brain tumors. Eur J Cancer 2023; 179: 113-20.
[http://dx.doi.org/10.1016/j.ejca.2022.11.012] [PMID: 36521332]
[57]
Yang T, Shi Y, Liang T, et al. Peptide vaccine against glioblastoma: From bench to bedside. Holistic Integrative Oncology 2022; 1(1): 21.
[http://dx.doi.org/10.1007/s44178-022-00021-w]
[58]
Wang Y, Wang M, Wu HX, Xu RH. Advancing to the era of cancer immunotherapy. Cancer Commun 2021; 41(9): 803-29.
[http://dx.doi.org/10.1002/cac2.12178] [PMID: 34165252]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy