Meta-Analysis

Estimating the Survival Rate in Glioblastoma Multiforme Patients who Received a Peptide Vaccine: A Systematic Review and Meta-analysis

Author(s): Masoumeh Eliyasi Dashtaki, Zahra Moradi, Yousef Moradi, Elham Asadi Farsani and Sorayya Ghasemi*

Volume 24, Issue 12, 2023

Published on: 25 August, 2023

Page: [998 - 1007] Pages: 10

DOI: 10.2174/1389450124666230816114131

Price: $65

conference banner
Abstract

Introduction: Glioblastoma Multiforme (GBM) has a poor prognosis, with current treatments providing no advantage in terms of survival. Certain new immunotherapy methods, such as peptide vaccines, have been used in clinical trials. In this meta-analysis, the effectiveness of peptide vaccinations on the survival rate of GBM patients was studied.

Methods: A comprehensive search was carried out using three electronic databases: PubMed, Scopus, and ISI. The purpose of this research was to assess Overall Survival (OS). The pooled overall one-year and two-year survival rates in GBM with peptide vaccination were calculated using the general inverse variance technique as random effects hazard ratios (HRs). In the study, subgroups of countries were compared with each other. Japan had the highest one-year survival rate, and the US had the highest two-year survival rate.

Results: With 95% Confidence Intervals (CIs), the one-year OS rate in GBM patients treated with peptide vaccination increased significantly, but the two-year survival rate did not increase. As a result, while additional research is needed, it cannot be concluded that it is an effective therapy for GBM.

Conclusion: Our study found that while peptide vaccination treatment did not increase second-year survival, it improved first-year survival. More research needs to be done to find effective vaccinebased treatments for GBM that can help patients survive longer.

Keywords: Peptide vaccines, survival, glioblastoma multiforme, meta-analysis, MHC-II-restricted peptides, cancerous gene.

Graphical Abstract
[1]
De Leo A, Ugolini A, Veglia F. Myeloid cells in glioblastoma microenvironment. Cells 2020; 10(1): 18.
[http://dx.doi.org/10.3390/cells10010018] [PMID: 33374253]
[2]
Elmaci I, Ozpinar A, Ozpinar A, Perez JL, Altinoz MA. From epidemiology and neurometabolism to treatment: Vitamin D in pathogenesis of glioblastoma multiforme (gbm) and a proposal for vitamin d + all-trans retinoic acid + temozolomide combination in treatment of GBM. Metab Brain Dis 2019; 34(3): 687-704.
[http://dx.doi.org/10.1007/s11011-019-00412-5] [PMID: 30937698]
[3]
Alzial G, Renoult O, Paris F, Gratas C, Clavreul A, Pecqueur C. Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma. Oncogene 2022; 41(5): 613-21.
[http://dx.doi.org/10.1038/s41388-021-02056-1] [PMID: 34764443]
[4]
Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma. JAMA 2017; 318(23): 2306-16.
[http://dx.doi.org/10.1001/jama.2017.18718] [PMID: 29260225]
[5]
Strepkos D, Markouli M, Klonou A, Piperi C, Papavassiliou AG. Insights in the immunobiology of glioblastoma. J Mol Med 2020; 98(1): 1-10.
[http://dx.doi.org/10.1007/s00109-019-01835-4] [PMID: 31650201]
[6]
Crivii CB, Boșca AB, Melincovici CS, et al. Glioblastoma microenvironment and cellular interactions. Cancers 2022; 14(4): 1092.
[http://dx.doi.org/10.3390/cancers14041092] [PMID: 35205842]
[7]
Seike T, Fujita K, Yamakawa Y, et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis 2011; 28(1): 13-25.
[http://dx.doi.org/10.1007/s10585-010-9354-8] [PMID: 20953899]
[8]
Zhang H, Zhou Y, Cui B, Liu Z, Shen H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother 2020; 126: 110086.
[http://dx.doi.org/10.1016/j.biopha.2020.110086] [PMID: 32172060]
[9]
Wu A, Wei J, Kong LY, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncol 2010; 12(11): 1113-25.
[http://dx.doi.org/10.1093/neuonc/noq082] [PMID: 20667896]
[10]
Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes Dev 2019; 33(11-12): 591-609.
[http://dx.doi.org/10.1101/gad.324301.119] [PMID: 31160393]
[11]
Albittar AA, Alhalabi O, Glitza Oliva IC. Immunotherapy for Melanoma. Adv Exp Med Biol 2020; 1244: 51-68.
[http://dx.doi.org/10.1007/978-3-030-41008-7_3] [PMID: 32301010]
[12]
Medikonda R, Dunn G, Rahman M, Fecci P, Lim M. A review of glioblastoma immunotherapy. J Neurooncol 2021; 151(1): 41-53.
[http://dx.doi.org/10.1007/s11060-020-03448-1] [PMID: 32253714]
[13]
Kong Z, Wang Y, Ma W. Vaccination in the immunotherapy of glioblastoma. Hum Vaccin Immunother 2018; 14(2): 255-68.
[http://dx.doi.org/10.1080/21645515.2017.1388481] [PMID: 29087782]
[14]
McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. Current state of immunotherapy for treatment of glioblastoma. Curr Treat Options Oncol 2019; 20(3): 24.
[http://dx.doi.org/10.1007/s11864-019-0619-4] [PMID: 30790064]
[15]
Asadi N, Davaran S, Panahi Y, et al. Application of nanostructured drug delivery systems in immunotherapy of cancer: A review. Artif Cells Nanomed Biotechnol 2017; 45(1): 18-23.
[http://dx.doi.org/10.1080/21691401.2016.1178136] [PMID: 27196810]
[16]
Klippstein R, Pozo D. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine 2010; 6(4): 523-9.
[http://dx.doi.org/10.1016/j.nano.2010.01.001] [PMID: 20085824]
[17]
Zhou Q, Wang Y, Ma W. The progress of immunotherapy for glioblastoma. Hum Vaccin Immunother 2015; 11(11): 2654-8.
[http://dx.doi.org/10.1080/21645515.2015.1081727] [PMID: 26308501]
[18]
Elsamadicy AA, Chongsathidkiet P, Desai R, et al. Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin Biol Ther 2017; 17(4): 507-13.
[http://dx.doi.org/10.1080/14712598.2017.1299705] [PMID: 28274144]
[19]
Fecci PE, Sampson JH. The current state of immunotherapy for gliomas: An eye toward the future. J Neurosurg 2019; 131(3): 657-66.
[http://dx.doi.org/10.3171/2019.5.JNS181762] [PMID: 31473668]
[20]
Zhao T, Li C, Ge H, Lin Y, Kang D. Glioblastoma vaccine tumor therapy research progress. Chin Neurosurg J 2022; 8(1): 2.
[http://dx.doi.org/10.1186/s41016-021-00269-7] [PMID: 35045874]
[21]
Swartz AM, Batich KA, Fecci PE, Sampson JH. Peptide vaccines for the treatment of glioblastoma. J Neurooncol 2015; 123(3): 433-40.
[http://dx.doi.org/10.1007/s11060-014-1676-y] [PMID: 25491947]
[22]
Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 2007; 6(5): 404-14.
[http://dx.doi.org/10.1038/nrd2224] [PMID: 17473845]
[23]
Kimura T, Egawa S, Uemura H. Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat Rev Urol 2017; 14(8): 501-10.
[http://dx.doi.org/10.1038/nrurol.2017.77] [PMID: 28561807]
[24]
Ma M, Liu J, Jin S, Wang L. Development of tumour peptide vaccines: From universalization to personalization. Scand J Immunol 2020; 91(6): e12875.
[http://dx.doi.org/10.1111/sji.12875] [PMID: 32090366]
[25]
Lynn GM, Sedlik C, Baharom F, et al. Peptide–TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol 2020; 38(3): 320-32.
[http://dx.doi.org/10.1038/s41587-019-0390-x] [PMID: 31932728]
[26]
Wille-Reece U, Flynn BJ, Loré K, et al. HIV gag protein conjugated to a toll-like receptor 7/8 agonist improves the magnitude and quality of th1 and cd8 + t cell responses in nonhuman primates. Proc Natl Acad Sci USA 2005; 102(42): 15190-4.
[http://dx.doi.org/10.1073/pnas.0507484102] [PMID: 16219698]
[27]
Desrichard A, Snyder A, Chan TA. Cancer neoantigens and applications for immunotherapy. Clin Cancer Res 2016; 22(4): 807-12.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3175] [PMID: 26515495]
[28]
Kumai T, Matsuda Y, Oikawa K, et al. EGFR inhibitors augment antitumour helper T-cell responses of HER family-specific immunotherapy. Br J Cancer 2013; 109(8): 2155-66.
[http://dx.doi.org/10.1038/bjc.2013.577] [PMID: 24045666]
[29]
Hartmaier RJ, Charo J, Fabrizio D, et al. Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness and targeted cancer immunotherapy strategies. Genome Med 2017; 9(1): 16.
[http://dx.doi.org/10.1186/s13073-017-0408-2] [PMID: 28231819]
[30]
Higgins JPT, Altman DG, Gøtzsche PC, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343(oct18 2): d5928.
[http://dx.doi.org/10.1136/bmj.d5928] [PMID: 22008217]
[31]
Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 2015; 349(jan02 1): g7647.
[http://dx.doi.org/10.1136/bmj.g7647] [PMID: 25555855]
[32]
Fu S, Piccioni DE, Liu H, et al. A phase I study of the WT2725 dosing emulsion in patients with advanced malignancies. Sci Rep 2021; 11(1): 22355.
[http://dx.doi.org/10.1038/s41598-021-01707-3] [PMID: 34785698]
[33]
Tamura R, Morimoto Y, Kosugi K, Sato M, Oishi Y, Ueda R, et al. Clinical and histopathological analyses of VEGF receptors peptide vaccine in patients with primary glioblastoma - A case series. BMC Cancer 2020; 20(1)
[34]
Narita Y, Arakawa Y, Yamasaki F, et al. A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. Neuro-oncol 2019; 21(3): 348-59.
[http://dx.doi.org/10.1093/neuonc/noy200] [PMID: 30500939]
[35]
Migliorini D, Dutoit V, Allard M, et al. Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro-oncol 2019; 21(7): 923-33.
[http://dx.doi.org/10.1093/neuonc/noz040] [PMID: 30753611]
[36]
Kikuchi R, Ueda R, Saito K, et al. A pilot study of vaccine therapy with multiple glioma oncoantigen/glioma angiogenesis-associated antigen peptides for patients with recurrent/progressive high-grade glioma. J Clin Med 2019; 8(2): 263.
[http://dx.doi.org/10.3390/jcm8020263] [PMID: 30791546]
[37]
Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019; 565(7738): 240-5.
[http://dx.doi.org/10.1038/s41586-018-0810-y] [PMID: 30568303]
[38]
Shibao S, Ueda R, Saito K, et al. A pilot study of peptide vaccines for VEGF receptor 1 and 2 in patients with recurrent/progressive high grade glioma. Oncotarget 2018; 9(30): 21569-79.
[http://dx.doi.org/10.18632/oncotarget.25131] [PMID: 29765561]
[39]
Ji N, Zhang Y, Liu Y, et al. Heat shock protein peptide complex-96 vaccination for newly diagnosed glioblastoma: A phase I, single-arm trial. JCI Insight 2018; 3(10): e99145.
[http://dx.doi.org/10.1172/jci.insight.99145] [PMID: 29769450]
[40]
Bloch O, Lim M, Sughrue ME, et al. Autologous heat shock protein peptide vaccination for newly diagnosed glioblastoma: Impact of peripheral PD-L1 expression on response to therapy. Clin Cancer Res 2017; 23(14): 3575-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1369] [PMID: 28193626]
[41]
Rampling R, Peoples S, Mulholland PJ, et al. A cancer research uk first time in human phase i trial of ima950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res 2016; 22(19): 4776-85.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0506] [PMID: 27225692]
[42]
Fenstermaker RA, Ciesielski MJ, Qiu J, et al. Clinical study of a survivin long peptide vaccine (survaxm) in patients with recurrent malignant glioma. Cancer Immunol Immunother 2016; 65(11): 1339-52.
[http://dx.doi.org/10.1007/s00262-016-1890-x] [PMID: 27576783]
[43]
Schuster J, Lai RK, Recht LD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-oncol 2015; 17(6): 854-61.
[http://dx.doi.org/10.1093/neuonc/nou348] [PMID: 25586468]
[44]
Hashimoto N, Tsuboi A, Kagawa N, et al. Wilms tumor 1 peptide vaccination combined with temozolomide against newly diagnosed glioblastoma: Safety and impact on immunological response. Cancer Immunol Immunother 2015; 64(6): 707-16.
[http://dx.doi.org/10.1007/s00262-015-1674-8] [PMID: 25772149]
[45]
Bloch O, Parsa AT. Heat shock protein peptide complex-96 (HSPPC-96) vaccination for recurrent glioblastoma: A phase II, single arm trial. Neuro-oncol 2014; 16(5): 758-9.
[http://dx.doi.org/10.1093/neuonc/nou054] [PMID: 24729070]
[46]
Phuphanich S, Wheeler CJ, Rudnick JD, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 2013; 62(1): 125-35.
[http://dx.doi.org/10.1007/s00262-012-1319-0] [PMID: 22847020]
[47]
Terasaki M, Shibui S, Narita Y, et al. Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen--A24 with recurrent or progressive glioblastoma multiforme. J Clin Oncol 2011; 29(3): 337-44.
[http://dx.doi.org/10.1200/JCO.2010.29.7499] [PMID: 21149665]
[48]
Sampson JH, Aldape KD, Archer GE, et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate egfrviii-expressing tumor cells in patients with glioblastoma. Neuro-oncol 2011; 13(3): 324-33.
[http://dx.doi.org/10.1093/neuonc/noq157] [PMID: 21149254]
[49]
Sampson JH, Heimberger AB, Archer GE, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant iii peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010; 28(31): 4722-9.
[http://dx.doi.org/10.1200/JCO.2010.28.6963] [PMID: 20921459]
[50]
Sampson JH, Archer GE, Mitchell DA, et al. An epidermal growth factor receptor variant III–targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 2009; 8(10): 2773-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0124] [PMID: 19825799]
[51]
Izumoto S, Tsuboi A, Oka Y, et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 2008; 108(5): 963-71.
[http://dx.doi.org/10.3171/JNS/2008/108/5/0963] [PMID: 18447714]
[52]
Yajima N, Yamanaka R, Mine T, et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res 2005; 11(16): 5900-11.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0559] [PMID: 16115932]
[53]
Wainwright DA, Nigam P, Thaci B, Dey M, Lesniak MS. Recent developments on immunotherapy for brain cancer. Expert Opin Emerg Drugs 2012; 17(2): 181-202.
[http://dx.doi.org/10.1517/14728214.2012.679929] [PMID: 22533851]
[54]
Rangel-Sosa MM, Aguilar-Córdova E, Rojas-Martínez A. Immunotherapy and gene therapy as novel treatments for cancer. Colomb Med 2017; 48(3): 138-47.
[PMID: 29213157]
[55]
Nelde A, Rammensee HG, Walz JS. The peptide vaccine of the future. Mol Cell Proteomics 2021; 20: 100022.
[http://dx.doi.org/10.1074/mcp.R120.002309] [PMID: 33583769]
[56]
Di Giacomo AM, Mair MJ, Ceccarelli M, et al. Immunotherapy for brain metastases and primary brain tumors. Eur J Cancer 2023; 179: 113-20.
[http://dx.doi.org/10.1016/j.ejca.2022.11.012] [PMID: 36521332]
[57]
Yang T, Shi Y, Liang T, et al. Peptide vaccine against glioblastoma: From bench to bedside. Holistic Integrative Oncology 2022; 1(1): 21.
[http://dx.doi.org/10.1007/s44178-022-00021-w]
[58]
Wang Y, Wang M, Wu HX, Xu RH. Advancing to the era of cancer immunotherapy. Cancer Commun 2021; 41(9): 803-29.
[http://dx.doi.org/10.1002/cac2.12178] [PMID: 34165252]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy