Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Alleviative Effects of Adipose Tissue-derived Stem Cells and α-NETA on Metabolic, Biochemical, and Endocrine Parameters in a Letrozole-induced Rat Model of PCOS

Author(s): Hamid Reza Nejabati*, Sadeneh Nikzad and Leila Roshangar*

Volume 29, Issue 24, 2023

Published on: 18 August, 2023

Page: [1929 - 1938] Pages: 10

DOI: 10.2174/1381612829666230816100641

Price: $65

conference banner
Abstract

Background: Polycystic ovary syndrome (PCOS), the most prevalent reproductive disorder, is accompanied by hyperandrogenism (HA), ovulatory dysfunction (OD), and insulin resistance (IR). A number of reports indicate that adipokines play a vital role in the pathophysiology of PCOS. One of these adipokines is chemerin, which is engaged in metabolic disorders, especially obesity, diabetes, and PCOS. Based on the data, the circulating levels of chemerin and the expression of chemokine-like receptor-1 (CMKLR1) in white adipose tissue (WAT) of women with PCOS are significantly higher than in healthy ones. Currently, several scholars have emphasized the therapeutic capacities of stem cells, notably mesenchymal stem cells (MSCs), for the treatment of PCOS.

Objective: In this study, for the first time, the impacts of 2-(α-naphthoyl) ethyltrimethylammonium iodide (α- NETA), an antagonist of CMKLR1, adipose-derived stem cells (ADSCs), and their combinations on metabolic and endocrine aberrancies were assessed in the WAT and ovarian tissues of the letrozole (LET)-induced PCOS rats.

Methods: In the current study, 30 Wistar rats were randomly divided into five groups: control (n = 6), LET-induced PCOS (1.5 mg/kg p.o., n = 6), LET + ADSCs (106 ADSCs i.v., n = 6), LET + α-NETA (10 mg/kg p.o., n = 6), and LET + ADSCs + α-NETA (n = 6). The blood samples and adipose and ovarian tissues were obtained to evaluate the effects of ADSCs and α-NETA on hormonal and metabolic parameters in the PCOS rats.

Results: Our findings showed that the administration of α-NETA, ADSCs, and the combination of both favorably restored the irregular estrus cycle and considerably modulated the endocrine parameters in PCOS rats. In addition, these therapeutic factors remarkably regulated steroidogenic and adipogenic gene expressions, as well as the genes related to glucose metabolism and brown adipose tissue (BAT) markers in these animals.

Conclusion: These findings indicate that the combination of ADSCs and α-NETA can successfully ameliorate metabolic and endocrine dysfunction in LET-induced PCOS rats, and this strategy could be a new therapeutic choice for patients with PCOS.

Keywords: Polycystic ovary syndrome, AdMSCs, α-NETA, chemerin, CMKLR1, ovulatory dysfunction.

[1]
Escobar-Morreale HF. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 2018; 14(5): 270-84.
[http://dx.doi.org/10.1038/nrendo.2018.24] [PMID: 29569621]
[2]
Sirmans S, Pate K. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol 2013; 6: 1-13.
[http://dx.doi.org/10.2147/CLEP.S37559] [PMID: 24379699]
[3]
Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis Primers 2016; 2(1): 16057.
[http://dx.doi.org/10.1038/nrdp.2016.57] [PMID: 27510637]
[4]
Nestler JE, Jakubowicz DJ, de Vargas AF, Brik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 1998; 83(6): 2001-5.
[PMID: 9626131]
[5]
Burt Solorzano CM, McCartney CR, Blank SK, Knudsen KL, Marshall JC. Hyperandrogenaemia in adolescent girls: Origins of abnormal gonadotropin-releasing hormone secretion. BJOG 2010; 117(2): 143-9.
[http://dx.doi.org/10.1111/j.1471-0528.2009.02383.x] [PMID: 20002394]
[6]
Chen P, Jia R, Liu Y, Cao M, Zhou L, Zhao Z. Progress of adipokines in the female reproductive system: A focus on polycystic ovary syndrome. Front Endocrinol 2022; 13: 881684.
[http://dx.doi.org/10.3389/fendo.2022.881684] [PMID: 35692386]
[7]
Xu Y, Zhu H, Li W, et al. Targeting adipokines in polycystic ovary syndrome and related metabolic disorders: From experimental insights to clinical studies. Pharmacol Ther 2022; 240: 108284.
[http://dx.doi.org/10.1016/j.pharmthera.2022.108284] [PMID: 36162728]
[8]
Lin K, Sun X, Wang X, Wang H, Chen X. Circulating adipokine levels in nonobese women with polycystic ovary syndrome and in nonobese control women: A systematic review and meta-analysis. Front Endocrinol 2021; 11: 537809.
[http://dx.doi.org/10.3389/fendo.2020.537809] [PMID: 33488512]
[9]
Li L, Huang C, Zhang X, et al. Chemerin-derived peptide C-20 suppressed gonadal steroidogenesis. Am J Reprod Immunol 2014; 71(3): 265-77.
[http://dx.doi.org/10.1111/aji.12164] [PMID: 24506805]
[10]
Meder W, Wendland M, Busmann A, et al. Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett 2003; 555(3): 495-9.
[http://dx.doi.org/10.1016/S0014-5793(03)01312-7] [PMID: 14675762]
[11]
Eichelmann F, Schulze MB, Wittenbecher C, et al. Association of chemerin plasma concentration with risk of colorectal cancer. JAMA Netw Open 2019; 2(3): e190896.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.0896] [PMID: 30901045]
[12]
MacDougald OA, Burant CF. The rapidly expanding family of adipokines. Cell Metab 2007; 6(3): 159-61.
[http://dx.doi.org/10.1016/j.cmet.2007.08.010] [PMID: 17767903]
[13]
Zhou X, Tao Y, Chen Y, Xu W, Qian Z, Lu X. Serum chemerin as a novel prognostic indicator in chronic heart failure. J Am Heart Assoc 2019; 8(15): e012091.
[http://dx.doi.org/10.1161/JAHA.119.012091] [PMID: 31333053]
[14]
Huang R, Yue J, Sun Y, et al. Increased serum chemerin concentrations in patients with polycystic ovary syndrome: Relationship between insulin resistance and ovarian volume. Clin Chim Acta 2015; 450: 366-9.
[http://dx.doi.org/10.1016/j.cca.2015.09.015] [PMID: 26387454]
[15]
Martínez-García MÁ, Montes-Nieto R, Fernández-Durán E, Insenser M, Luque-Ramírez M, Escobar-Morreale HF. Evidence for masculinization of adipokine gene expression in visceral and subcutaneous adipose tissue of obese women with polycystic ovary syndrome (PCOS). J Clin Endocrinol Metab 2013; 98(2): E388-96.
[http://dx.doi.org/10.1210/jc.2012-3414] [PMID: 23337724]
[16]
Tan BK, Chen J, Farhatullah S, et al. Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes 2009; 58(9): 1971-7.
[http://dx.doi.org/10.2337/db08-1528] [PMID: 19502420]
[17]
Huang B, Zhao H, Huang C, et al. CMKLR1 deficiency attenuates androgen-induced lipid accumulation in mice. Am J Physiol Endocrinol Metab 2020; 318(3): E371-80.
[http://dx.doi.org/10.1152/ajpendo.00176.2019] [PMID: 31910029]
[18]
Aversa A, La Vignera S, Rago R, et al. Fundamental concepts and novel aspects of polycystic ovarian syndrome: Expert consensus resolutions. Front Endocrinol 2020; 11: 516.
[http://dx.doi.org/10.3389/fendo.2020.00516] [PMID: 32849300]
[19]
Palomba S, Santagni S, Falbo A, La Sala GB. Complications and challenges associated with polycystic ovary syndrome: Current perspectives. Int J Womens Health 2015; 7: 745-63.
[http://dx.doi.org/10.2147/IJWH.S70314] [PMID: 26261426]
[20]
Galipeau J, Sensébé L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell 2018; 22(6): 824-33.
[http://dx.doi.org/10.1016/j.stem.2018.05.004] [PMID: 29859173]
[21]
Naji A, Rouas-Freiss N, Durrbach A, Carosella ED, Sensébé L, Deschaseaux F. Concise review: Combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells 2013; 31(11): 2296-303.
[http://dx.doi.org/10.1002/stem.1494] [PMID: 23922260]
[22]
Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: An update. Cell Transplant 2016; 25(5): 829-48.
[http://dx.doi.org/10.3727/096368915X689622] [PMID: 26423725]
[23]
Trounson A, McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 2015; 17(1): 11-22.
[http://dx.doi.org/10.1016/j.stem.2015.06.007] [PMID: 26140604]
[24]
Jun Y, Kang AR, Lee JS, et al. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Biomaterials 2014; 35(17): 4815-26.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.045] [PMID: 24636217]
[25]
Lendeckel S, Jödicke A, Christophis P, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: Case report. J Craniomaxillofac Surg 2004; 32(6): 370-3.
[http://dx.doi.org/10.1016/j.jcms.2004.06.002] [PMID: 15555520]
[26]
Rungsiwiwut R, Virutamasen P, Pruksananonda K. Mesenchymal stem cells for restoring endometrial function: An infertility perspective. Reprod Med Biol 2021; 20: 13-9.
[27]
Yoon SY. Mesenchymal stem cells for restoration of ovarian function. Clin Exp Reprod Med 2019; 46(1): 1-7.
[http://dx.doi.org/10.5653/cerm.2019.46.1.1] [PMID: 30827071]
[28]
Chugh RM, Park HS, El Andaloussi A, et al. Mesenchymal stem cell therapy ameliorates metabolic dysfunction and restores fertility in a PCOS mouse model through interleukin-10. Stem Cell Res Ther 2021; 12(1): 388.
[http://dx.doi.org/10.1186/s13287-021-02472-w]
[29]
Kalhori Z, Azadbakht M, Soleimani Mehranjani M, Shariatzadeh MA. Improvement of the folliculogenesis by transplantation of bone marrow mesenchymal stromal cells in mice with induced polycystic ovary syndrome. Cytotherapy 2018; 20(12): 1445-58.
[http://dx.doi.org/10.1016/j.jcyt.2018.09.005] [PMID: 30523787]
[30]
Jafarzadeh H, Nazarian H, Ghaffari Novin M, Shams Mofarahe Z, Eini F, Piryaei A. Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell-conditioned media. J Cell Biochem 2018; 119(12): 10365-75.
[http://dx.doi.org/10.1002/jcb.27380] [PMID: 30171726]
[31]
Cao M, Zhao Y, Chen T, et al. Adipose mesenchymal stem cell- derived exosomal microRNAs ameliorate polycystic ovary syndrome by protecting against metabolic disturbances. Biomaterials 2022; 288: 121739.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121739] [PMID: 35987860]
[32]
Shah FS, Wu X, Dietrich M, Rood J, Gimble JM. A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy 2013; 15(8): 979-85.
[http://dx.doi.org/10.1016/j.jcyt.2013.04.001] [PMID: 23725689]
[33]
Ferdowsi KA, Soleimani RJ. Adipose tissue-derived stem cells upon decellularized ovine small intestine submucosa for tissue regeneration: An optimization and comparison method. J Cell Physiol 2020; 235(2): 1556-67.
[34]
Azziz R, Carmina E, Dewailly D, et al. The androgen excess and pcos society criteria for the polycystic ovary syndrome: The complete task force report. Fertil Steril 2009; 91(2): 456-88.
[http://dx.doi.org/10.1016/j.fertnstert.2008.06.035] [PMID: 18950759]
[35]
Ehrmann DA. Polycystic ovary syndrome. N Engl J Med 2005; 352(12): 1223-36.
[http://dx.doi.org/10.1056/NEJMra041536] [PMID: 15788499]
[36]
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32(1): 81-151.
[http://dx.doi.org/10.1210/er.2010-0013] [PMID: 21051590]
[37]
Wickenheisser JK, Nelson-DeGrave VL, McAllister JM. Dysregulation of cytochrome P450 17alpha-hydroxylase messenger ribonucleic acid stability in theca cells isolated from women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90(3): 1720-7.
[http://dx.doi.org/10.1210/jc.2004-1860] [PMID: 15598676]
[38]
Mansoori A, Amoochi-Foroushani G, Zilaee M, Hosseini SA, Azhdari M. Serum and follicular fluid chemerin and chemerin mRNA expression in women with polycystic ovary syndrome: Systematic review and meta-analysis. Endocrinol Diabetes Metab 2022; 5(1): e00307.
[39]
Tang M, Huang C, Wang YF, et al. CMKLR1 deficiency maintains ovarian steroid production in mice treated chronically with dihydrotestosterone. Sci Rep 2016; 6(1): 21328.
[http://dx.doi.org/10.1038/srep21328] [PMID: 26893072]
[40]
Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: A systematic review and meta-analysis. Hum Reprod Update 2010; 16(4): 347-63.
[http://dx.doi.org/10.1093/humupd/dmq001] [PMID: 20159883]
[41]
Ndeingang EC, Defo Deeh PB, Watcho P, Kamanyi A. Phyllanthus muellerianus (Euphorbiaceae) restores ovarian functions in letrozole-induced polycystic ovarian syndrome in rats. Evid Based Complement Alternat Med 2019; 2019: 1-16.
[http://dx.doi.org/10.1155/2019/2965821] [PMID: 31217802]
[42]
Jahan S, Abid A, Khalid S, et al. Therapeutic potentials of Quercetin in management of polycystic ovarian syndrome using Letrozole induced rat model: A histological and a biochemical study. J Ovarian Res 2018; 11(1): 26.
[http://dx.doi.org/10.1186/s13048-018-0400-5] [PMID: 29615083]
[43]
Karateke A, Dokuyucu R, Dogan H, et al. Investigation of therapeutic effects of erdosteine on polycystic ovary syndrome in a rat model. Med Princ Pract 2018; 27(6): 515-22.
[http://dx.doi.org/10.1159/000494300] [PMID: 30293079]
[44]
Li X, Zhu Q, Wang W, et al. Elevated chemerin induces insulin resistance in human granulosa-lutein cells from polycystic ovary syndrome patients. FASEB J 2019; 33(10): 11303-13.
[http://dx.doi.org/10.1096/fj.201802829R] [PMID: 31311314]
[45]
Chen YH, Heneidi S, Lee JM, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 2013; 62(7): 2278-86.
[http://dx.doi.org/10.2337/db12-0963] [PMID: 23493574]
[46]
Yang Y, Jiang H, Xiao L, Yang X. MicroRNA-33b-5p is overexpressed and inhibits GLUT4 by targeting HMGA2 in polycystic ovarian syndrome: An in vivo and in vitro study. Oncol Rep 2018; 39(6): 3073-85.
[http://dx.doi.org/10.3892/or.2018.6375] [PMID: 29693142]
[47]
Fang P, Han L, Yu M, et al. Development of metabolic dysfunction in mice lacking chemerin. Mol Cell Endocrinol 2021; 535: 111369.
[http://dx.doi.org/10.1016/j.mce.2021.111369] [PMID: 34171420]
[48]
Takahashi M, Takahashi Y, Takahashi K, et al. Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett 2008; 582(5): 573-8.
[http://dx.doi.org/10.1016/j.febslet.2008.01.023] [PMID: 18242188]
[49]
Wargent ET, Zaibi MS, O’Dowd JF, et al. Evidence from studies in rodents and in isolated adipocytes that agonists of the chemerin receptor CMKLR1 may be beneficial in the treatment of type 2 diabetes. PeerJ 2015; 3: e753.
[http://dx.doi.org/10.7717/peerj.753] [PMID: 25699203]
[50]
Xue L, Yu Y, Zeng F, Tang H, Xiang L. Alleviation of diet-induced fat accumulation by a small molecule CMKLR1 antagonist in mice. J Steroids Horm Sci 2018; 9: 1-7.
[51]
Symonds ME, Pope M, Budge H. The ontogeny of brown adipose tissue. Annu Rev Nutr 2015; 35(1): 295-320.
[http://dx.doi.org/10.1146/annurev-nutr-071813-105330] [PMID: 26076904]
[52]
Flávia RO, Mamede M, Bizzi MF, et al. Brown adipose tissue activity is reduced in women with polycystic ovary syndrome. Eur J Endocrinol 2019; 181(5): 473-80.
[http://dx.doi.org/10.1530/EJE-19-0505] [PMID: 31491743]
[53]
Zhang Q, Ye R, Zhang YY, et al. Brown adipose tissue and novel management strategies for polycystic ovary syndrome therapy. Front Endocrinol 2022; 13: 847249.
[http://dx.doi.org/10.3389/fendo.2022.847249] [PMID: 35663310]
[54]
Chazenbalk G, Singh P, Irge D, Shah A, Abbott DH, Dumesic DA. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids 2013; 78(9): 920-6.
[http://dx.doi.org/10.1016/j.steroids.2013.05.001] [PMID: 23707571]
[55]
Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis: A critical point in metabolic homeostasis. Nutrients 2015; 7(11): 9453-74.
[http://dx.doi.org/10.3390/nu7115475] [PMID: 26580649]
[56]
Cristancho AG, Lazar MA. Forming functional fat: A growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 2011; 12(11): 722-34.
[http://dx.doi.org/10.1038/nrm3198] [PMID: 21952300]
[57]
Tang QQ, Lane MD. Adipogenesis: From stem cell to adipocyte. Annu Rev Biochem 2012; 81(1): 715-36.
[http://dx.doi.org/10.1146/annurev-biochem-052110-115718] [PMID: 22463691]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy